mlflow attempt task 2 prediction registry

This commit is contained in:
Kamila 2022-05-15 13:24:08 +02:00
parent 3486dc39ff
commit f30cd5011b
2 changed files with 60 additions and 0 deletions

28
Jenkinsfile_pred_reg Normal file
View File

@ -0,0 +1,28 @@
pipeline {
agent {
dockerfile true
}
parameters {
string(
defaultValue: 'input_example.json',
description: 'Input file name',
name: 'INPUT_FILE_NAME',
trim: false
)
}
stages {
stage('Stage 1') {
steps {
echo 'Hello world!'
}
}
stage('Prediction') {
steps {
sh 'python3 predict_registry.py $INPUT_FILE_NAME'
}
}
}
}

32
predict_registry.py Normal file
View File

@ -0,0 +1,32 @@
import json
import mlflow
import numpy as np
import sys
mlflow.set_tracking_uri("http://172.17.0.1:5000")
client =mlflow.tracking .MlflowClient()
model_version = 14
model_name = "s449288"
experiment = client.get_latest_versions(model_name, stages=None)
print(experiment)
print(experiment[0].source)
model = mlflow.pyfunc.load_model(
model_uri=f"models:/{model_name}/{model_version}"
)
with open(f'{experiment[0].source}/{(sys.argv[1:])[0]}', 'r') as file:
json_data = json.load(file)
print(f"Prediction: {model.predict(np.array([json_data['inputs']]))}")
'''
PATH = "mlruns/14/80fe21a0804844088147d15a3cebb3e5/artifacts/lego-model"
model = mlflow.pyfunc.load_model(PATH)
with open(f'{PATH}/{(sys.argv[1:])[0]}', 'r') as file:
json_data = json.load(file)
print(f"Prediction: {model.predict(np.array([json_data['inputs']]))}")
'''