18 lines
490 B
Python
18 lines
490 B
Python
import json
|
|
import mlflow
|
|
import numpy as np
|
|
import sys
|
|
import tarfile
|
|
|
|
file = tarfile.open('mlruns.tar.gz')
|
|
file.extractall('./ml')
|
|
|
|
input = str((sys.argv[1:])[0])
|
|
PATH = "ml/mlruns/1/f65f936936024133a2c03e1e486ba9cf/artifacts/model/"
|
|
model =mlflow.pyfunc.load_model(f"{PATH}")
|
|
|
|
with open(f'{PATH}{input}', 'r') as file:
|
|
json_data = json.load(file)
|
|
|
|
print(f"Input: {json_data['inputs']}")
|
|
print(f"Prediction: {model.predict(np.array([json_data['inputs']], dtype=np.float32))}") |