102 lines
3.6 KiB
Python
102 lines
3.6 KiB
Python
from cv2 import FileStorage
|
|
from sacred.observers import MongoObserver
|
|
from sacred import Experiment
|
|
from sacred.observers import FileStorageObserver
|
|
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
from tensorflow.keras.models import Sequential
|
|
from tensorflow.keras.layers import Dense
|
|
from sklearn.preprocessing import LabelEncoder
|
|
from sklearn.metrics import accuracy_score
|
|
from keras.utils import np_utils
|
|
from tensorflow import keras
|
|
|
|
ex = Experiment("s444517_sacred")
|
|
ex.observers.append(FileStorageObserver("sacred/"))
|
|
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017', db_name='sacred'))
|
|
|
|
@ex.config
|
|
def config_data():
|
|
epoch = 200
|
|
first_activation_funct = "relu"
|
|
second_activation_funct = "softmax"
|
|
|
|
class MetricsLoggerCallback(keras.callbacks.Callback):
|
|
def __init__(self, _run):
|
|
super().__init__()
|
|
self._run = _run
|
|
|
|
def on_epoch_end(self, _, logs):
|
|
self._run.log_scalar("training.acc", logs.get('accuracy'))
|
|
|
|
|
|
# reading data
|
|
def read_data():
|
|
all_data = []
|
|
for name in ['train', 'test', 'validate']:
|
|
all_data.append(pd.read_csv(f'apps_{name}.csv', header=0))
|
|
return all_data
|
|
|
|
def data_prep():
|
|
train_set, test_set, validate_set = read_data()
|
|
train_set = train_set.drop(columns=["Unnamed: 0"])
|
|
test_set = test_set.drop(columns=["Unnamed: 0"])
|
|
validate_set = validate_set.drop(columns=["Unnamed: 0"])
|
|
numeric_columns = ["Rating", "Reviews", "Installs", "Price", "Genres_numeric_value"]
|
|
|
|
# train set set-up
|
|
x_train_set = train_set[numeric_columns]
|
|
y_train_set = train_set["Category"]
|
|
encoder = LabelEncoder()
|
|
encoder.fit(y_train_set)
|
|
encoded_Y = encoder.transform(y_train_set)
|
|
dummy_y = np_utils.to_categorical(encoded_Y)
|
|
|
|
# validation set set-up
|
|
x_validate_set = validate_set[numeric_columns]
|
|
y_validate_set = validate_set["Category"]
|
|
encoder = LabelEncoder()
|
|
encoder.fit(y_validate_set)
|
|
encoded_Yv = encoder.transform(y_validate_set)
|
|
dummy_yv = np_utils.to_categorical(encoded_Yv)
|
|
|
|
#test set set-up
|
|
x_test_set = test_set[numeric_columns]
|
|
y_test_set = test_set["Category"]
|
|
y_class_names = train_set["Category"].unique()
|
|
encoder = LabelEncoder()
|
|
encoder.fit(y_test_set)
|
|
encoded_Ytt = encoder.transform(y_test_set)
|
|
dummy_ytt = np_utils.to_categorical(encoded_Ytt)
|
|
return x_train_set, dummy_y, x_validate_set, dummy_yv, x_test_set, y_test_set, y_class_names
|
|
|
|
|
|
@ex.main
|
|
def my_main(epoch, first_activation_funct, second_activation_funct, _log, _run):
|
|
x_train_set, dummy_y, x_validate_set, dummy_yv, x_test_set, y_test_set, y_class_names = data_prep()
|
|
|
|
_log.info(f"EPOCH: {epoch}, 1st activation function: {first_activation_funct}, 2nd activation function: {second_activation_funct}")
|
|
number_of_classes = 33
|
|
number_of_features = 5
|
|
model = Sequential()
|
|
model.add(Dense(number_of_classes, activation=first_activation_funct))
|
|
model.add(Dense(number_of_classes, activation=second_activation_funct,input_dim=number_of_features))
|
|
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy', 'categorical_accuracy'])
|
|
model.fit(x_train_set, dummy_y, epochs=epoch, validation_data=(x_validate_set, dummy_yv))
|
|
|
|
model.save("my_model/")
|
|
ex.add_artifact("my_model/saved_model.pb")
|
|
|
|
#model predictions
|
|
yhat = model.predict(x_test_set)
|
|
y_true = []
|
|
y_pred = []
|
|
for numerator, single_pred in enumerate(yhat):
|
|
y_true.append(sorted(y_class_names)[np.argmax(single_pred)])
|
|
y_pred.append(y_test_set[numerator])
|
|
|
|
_run.info["accuracy"] = accuracy_score(y_true, y_pred)
|
|
|
|
ex.run() |