Compare commits
No commits in common. "master" and "master" have entirely different histories.
5272
dev-0/out.tsv
5272
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
5272
dev-0/out_b.tsv
5272
dev-0/out_b.tsv
File diff suppressed because it is too large
Load Diff
51
run.py
51
run.py
@ -1,51 +0,0 @@
|
||||
import lzma
|
||||
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
# from sklearn.metrics import accuracy_score
|
||||
|
||||
|
||||
def get_data(file_name, data_type):
|
||||
lines = []
|
||||
if data_type == "tsv":
|
||||
with open(file_name, encoding="utf-8") as file:
|
||||
for line in file.readlines():
|
||||
lines.append(int(line.replace("\n", "")))
|
||||
else:
|
||||
with lzma.open(f"{file_name}.{data_type}") as file:
|
||||
for line in file.readlines():
|
||||
lines.append(line.rstrip().decode("utf-8"))
|
||||
return lines
|
||||
|
||||
|
||||
def bayes(train):
|
||||
x_data = get_data(f"{train}/in.tsv", "xz")
|
||||
Y_data = get_data(f"{train}/expected.tsv", "tsv")
|
||||
|
||||
vectorizer = TfidfVectorizer(stop_words="english")
|
||||
X_data = vectorizer.fit_transform(x_data)
|
||||
|
||||
clf = MultinomialNB()
|
||||
y_pred = clf.fit(X_data, Y_data)
|
||||
|
||||
for predct in ["test-A", "dev-0"]:
|
||||
Y_test = get_data(f"{predct}/in.tsv", "xz")
|
||||
y_prediction = y_pred.predict(vectorizer.transform(Y_test))
|
||||
|
||||
with open(f"{predct}\out.tsv", "w", encoding="UTF-8") as file_out:
|
||||
for single_pred in y_prediction:
|
||||
file_out.writelines(f"{str(single_pred)}\n")
|
||||
|
||||
|
||||
bayes("train")
|
||||
|
||||
'''y_true = []
|
||||
with open("dev-0/expected.tsv", encoding='utf-8') as file:
|
||||
for line in file.readlines():
|
||||
y_true.append(line)
|
||||
y_pred = []
|
||||
with open("dev-0/out.tsv", encoding='utf-8') as file:
|
||||
for line in file.readlines():
|
||||
y_pred.append(line)
|
||||
print(accuracy_score(y_true, y_pred))'''
|
||||
|
116
run_nn.py
116
run_nn.py
@ -1,116 +0,0 @@
|
||||
import lzma
|
||||
# from sklearn.metrics import accuracy_score
|
||||
import numpy as np
|
||||
import gensim
|
||||
import gensim.downloader
|
||||
import torch
|
||||
import pandas as pd
|
||||
import re
|
||||
|
||||
BATCH_SIZE = 5
|
||||
|
||||
|
||||
class LogisticRegressionModel(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(LogisticRegressionModel, self).__init__()
|
||||
self.layer_one = torch.nn.Linear(100, 500)
|
||||
self.layer_two = torch.nn.Linear(500, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.layer_one(x)
|
||||
x = torch.relu(x)
|
||||
x = self.layer_two(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
|
||||
def get_data(file_name, data_type):
|
||||
lines = []
|
||||
if data_type == "tsv":
|
||||
with open(file_name, encoding="utf-8") as file:
|
||||
for line in file.readlines():
|
||||
lines.append(int(line.replace("\n", "")))
|
||||
else:
|
||||
with lzma.open(f"{file_name}.{data_type}") as file:
|
||||
for line in file.readlines():
|
||||
lines.append(line.rstrip().decode("utf-8"))
|
||||
return lines
|
||||
|
||||
|
||||
def clean_data(x_data):
|
||||
for sentance in range(len(x_data)):
|
||||
x_data[sentance] = re.sub(r"\\n"," ", x_data[sentance])
|
||||
x_data[sentance] = re.sub(r"\W"," ", x_data[sentance])
|
||||
return x_data
|
||||
|
||||
|
||||
def train_model(word2vector):
|
||||
x_data = clean_data(get_data(f"train/in.tsv", "xz"))
|
||||
Y_train = pd.Series(get_data(f"train/expected.tsv", "tsv"))
|
||||
X_train = [np.mean([word2vector[word] for word in sentance.split() if word in word2vector] or [np.zeros(100)], axis=0) for sentance in x_data]
|
||||
lr_model = LogisticRegressionModel()
|
||||
|
||||
acc_score = 0
|
||||
items_total = 0
|
||||
lr_model.train()
|
||||
for i in range(0, len(Y_train), BATCH_SIZE):
|
||||
#print(i, end=", ")
|
||||
X = X_train[i:i+BATCH_SIZE]
|
||||
X = torch.tensor(np.array(X))
|
||||
|
||||
Y = Y_train[i:i+BATCH_SIZE]
|
||||
Y = torch.tensor(Y.astype(np.float32).to_numpy()).reshape(-1,1)
|
||||
Y_predictions = lr_model(X.float())
|
||||
|
||||
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||||
items_total += len(Y_train)
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = torch.optim.SGD(lr_model.parameters(), lr = 0.1)
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(Y_predictions, Y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
#print(f"acc score: {acc_score}")
|
||||
return lr_model
|
||||
|
||||
|
||||
def prediction(lr_model, word2vector, name_of_file):
|
||||
x_data = clean_data(get_data(f"{name_of_file}/in.tsv", "xz"))
|
||||
x_data = [np.mean([word2vector[word] for word in sentance.split() if word in word2vector] or [np.zeros(100)], axis=0) for sentance in x_data]
|
||||
|
||||
y_predictions = []
|
||||
with torch.no_grad():
|
||||
for i in range(0, len(x_data), BATCH_SIZE):
|
||||
x = x_data[i:i + BATCH_SIZE]
|
||||
prediction_x = lr_model(torch.tensor(x).float())
|
||||
y_predictions.extend((prediction_x > 0.5))
|
||||
|
||||
results = []
|
||||
for result in y_predictions:
|
||||
results.append(result.int()[0].item())
|
||||
|
||||
with open(f"{name_of_file}\out.tsv", "w", encoding="UTF-8") as file_out:
|
||||
for single_pred in results:
|
||||
file_out.writelines(f"{str(single_pred)}\n")
|
||||
|
||||
|
||||
word2vector = gensim.downloader.load("glove-wiki-gigaword-100")
|
||||
|
||||
lr_model = train_model(word2vector)
|
||||
prediction(lr_model, word2vector, "dev-0")
|
||||
prediction(lr_model, word2vector, "test-A")
|
||||
|
||||
|
||||
'''y_true = []
|
||||
with open("dev-0/expected.tsv", encoding='utf-8') as file:
|
||||
for line in file.readlines():
|
||||
y_true.append(line)
|
||||
y_pred = []
|
||||
with open("dev-0/out.tsv", encoding='utf-8') as file:
|
||||
for line in file.readlines():
|
||||
y_pred.append(line)
|
||||
print(accuracy_score(y_true, y_pred))'''
|
||||
|
||||
|
5152
test-A/out.tsv
5152
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
5152
test-A/out_b.tsv
5152
test-A/out_b.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user