165 lines
7.8 KiB
Python
165 lines
7.8 KiB
Python
|
"""Main Logger class for ClearML experiment tracking."""
|
||
|
import glob
|
||
|
import re
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import yaml
|
||
|
|
||
|
from utils.plots import Annotator, colors
|
||
|
|
||
|
try:
|
||
|
import clearml
|
||
|
from clearml import Dataset, Task
|
||
|
|
||
|
assert hasattr(clearml, '__version__') # verify package import not local dir
|
||
|
except (ImportError, AssertionError):
|
||
|
clearml = None
|
||
|
|
||
|
|
||
|
def construct_dataset(clearml_info_string):
|
||
|
"""Load in a clearml dataset and fill the internal data_dict with its contents.
|
||
|
"""
|
||
|
dataset_id = clearml_info_string.replace('clearml://', '')
|
||
|
dataset = Dataset.get(dataset_id=dataset_id)
|
||
|
dataset_root_path = Path(dataset.get_local_copy())
|
||
|
|
||
|
# We'll search for the yaml file definition in the dataset
|
||
|
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
|
||
|
if len(yaml_filenames) > 1:
|
||
|
raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
|
||
|
'the dataset definition this way.')
|
||
|
elif len(yaml_filenames) == 0:
|
||
|
raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
|
||
|
'inside the dataset root path.')
|
||
|
with open(yaml_filenames[0]) as f:
|
||
|
dataset_definition = yaml.safe_load(f)
|
||
|
|
||
|
assert set(dataset_definition.keys()).issuperset(
|
||
|
{'train', 'test', 'val', 'nc', 'names'}
|
||
|
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
|
||
|
|
||
|
data_dict = dict()
|
||
|
data_dict['train'] = str(
|
||
|
(dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
|
||
|
data_dict['test'] = str(
|
||
|
(dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
|
||
|
data_dict['val'] = str(
|
||
|
(dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
|
||
|
data_dict['nc'] = dataset_definition['nc']
|
||
|
data_dict['names'] = dataset_definition['names']
|
||
|
|
||
|
return data_dict
|
||
|
|
||
|
|
||
|
class ClearmlLogger:
|
||
|
"""Log training runs, datasets, models, and predictions to ClearML.
|
||
|
|
||
|
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
|
||
|
this information includes hyperparameters, system configuration and metrics, model metrics, code information and
|
||
|
basic data metrics and analyses.
|
||
|
|
||
|
By providing additional command line arguments to train.py, datasets,
|
||
|
models and predictions can also be logged.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, opt, hyp):
|
||
|
"""
|
||
|
- Initialize ClearML Task, this object will capture the experiment
|
||
|
- Upload dataset version to ClearML Data if opt.upload_dataset is True
|
||
|
|
||
|
arguments:
|
||
|
opt (namespace) -- Commandline arguments for this run
|
||
|
hyp (dict) -- Hyperparameters for this run
|
||
|
|
||
|
"""
|
||
|
self.current_epoch = 0
|
||
|
# Keep tracked of amount of logged images to enforce a limit
|
||
|
self.current_epoch_logged_images = set()
|
||
|
# Maximum number of images to log to clearML per epoch
|
||
|
self.max_imgs_to_log_per_epoch = 16
|
||
|
# Get the interval of epochs when bounding box images should be logged
|
||
|
self.bbox_interval = opt.bbox_interval
|
||
|
self.clearml = clearml
|
||
|
self.task = None
|
||
|
self.data_dict = None
|
||
|
if self.clearml:
|
||
|
self.task = Task.init(
|
||
|
project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5',
|
||
|
task_name=opt.name if opt.name != 'exp' else 'Training',
|
||
|
tags=['YOLOv5'],
|
||
|
output_uri=True,
|
||
|
reuse_last_task_id=opt.exist_ok,
|
||
|
auto_connect_frameworks={'pytorch': False}
|
||
|
# We disconnect pytorch auto-detection, because we added manual model save points in the code
|
||
|
)
|
||
|
# ClearML's hooks will already grab all general parameters
|
||
|
# Only the hyperparameters coming from the yaml config file
|
||
|
# will have to be added manually!
|
||
|
self.task.connect(hyp, name='Hyperparameters')
|
||
|
self.task.connect(opt, name='Args')
|
||
|
|
||
|
# Make sure the code is easily remotely runnable by setting the docker image to use by the remote agent
|
||
|
self.task.set_base_docker("ultralytics/yolov5:latest",
|
||
|
docker_arguments='--ipc=host -e="CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"',
|
||
|
docker_setup_bash_script='pip install clearml')
|
||
|
|
||
|
# Get ClearML Dataset Version if requested
|
||
|
if opt.data.startswith('clearml://'):
|
||
|
# data_dict should have the following keys:
|
||
|
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
|
||
|
self.data_dict = construct_dataset(opt.data)
|
||
|
# Set data to data_dict because wandb will crash without this information and opt is the best way
|
||
|
# to give it to them
|
||
|
opt.data = self.data_dict
|
||
|
|
||
|
def log_debug_samples(self, files, title='Debug Samples'):
|
||
|
"""
|
||
|
Log files (images) as debug samples in the ClearML task.
|
||
|
|
||
|
arguments:
|
||
|
files (List(PosixPath)) a list of file paths in PosixPath format
|
||
|
title (str) A title that groups together images with the same values
|
||
|
"""
|
||
|
for f in files:
|
||
|
if f.exists():
|
||
|
it = re.search(r'_batch(\d+)', f.name)
|
||
|
iteration = int(it.groups()[0]) if it else 0
|
||
|
self.task.get_logger().report_image(title=title,
|
||
|
series=f.name.replace(it.group(), ''),
|
||
|
local_path=str(f),
|
||
|
iteration=iteration)
|
||
|
|
||
|
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
|
||
|
"""
|
||
|
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
|
||
|
|
||
|
arguments:
|
||
|
image_path (PosixPath) the path the original image file
|
||
|
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||
|
class_names (dict): dict containing mapping of class int to class name
|
||
|
image (Tensor): A torch tensor containing the actual image data
|
||
|
"""
|
||
|
if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
|
||
|
# Log every bbox_interval times and deduplicate for any intermittend extra eval runs
|
||
|
if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
|
||
|
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
|
||
|
annotator = Annotator(im=im, pil=True)
|
||
|
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
|
||
|
color = colors(i)
|
||
|
|
||
|
class_name = class_names[int(class_nr)]
|
||
|
confidence_percentage = round(float(conf) * 100, 2)
|
||
|
label = f"{class_name}: {confidence_percentage}%"
|
||
|
|
||
|
if conf > conf_threshold:
|
||
|
annotator.rectangle(box.cpu().numpy(), outline=color)
|
||
|
annotator.box_label(box.cpu().numpy(), label=label, color=color)
|
||
|
|
||
|
annotated_image = annotator.result()
|
||
|
self.task.get_logger().report_image(title='Bounding Boxes',
|
||
|
series=image_path.name,
|
||
|
iteration=self.current_epoch,
|
||
|
image=annotated_image)
|
||
|
self.current_epoch_logged_images.add(image_path)
|