609 lines
26 KiB
Python
609 lines
26 KiB
Python
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||
|
"""
|
||
|
TensorFlow, Keras and TFLite versions of YOLOv5
|
||
|
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
|
||
|
|
||
|
Usage:
|
||
|
$ python models/tf.py --weights yolov5s.pt
|
||
|
|
||
|
Export:
|
||
|
$ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
|
||
|
"""
|
||
|
|
||
|
import argparse
|
||
|
import sys
|
||
|
from copy import deepcopy
|
||
|
from pathlib import Path
|
||
|
|
||
|
FILE = Path(__file__).resolve()
|
||
|
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||
|
if str(ROOT) not in sys.path:
|
||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||
|
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
||
|
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from tensorflow import keras
|
||
|
|
||
|
from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
|
||
|
DWConvTranspose2d, Focus, autopad)
|
||
|
from models.experimental import MixConv2d, attempt_load
|
||
|
from models.yolo import Detect, Segment
|
||
|
from utils.activations import SiLU
|
||
|
from utils.general import LOGGER, make_divisible, print_args
|
||
|
|
||
|
|
||
|
class TFBN(keras.layers.Layer):
|
||
|
# TensorFlow BatchNormalization wrapper
|
||
|
def __init__(self, w=None):
|
||
|
super().__init__()
|
||
|
self.bn = keras.layers.BatchNormalization(
|
||
|
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
|
||
|
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
|
||
|
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
|
||
|
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
|
||
|
epsilon=w.eps)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return self.bn(inputs)
|
||
|
|
||
|
|
||
|
class TFPad(keras.layers.Layer):
|
||
|
# Pad inputs in spatial dimensions 1 and 2
|
||
|
def __init__(self, pad):
|
||
|
super().__init__()
|
||
|
if isinstance(pad, int):
|
||
|
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
||
|
else: # tuple/list
|
||
|
self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
||
|
|
||
|
|
||
|
class TFConv(keras.layers.Layer):
|
||
|
# Standard convolution
|
||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
||
|
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
||
|
super().__init__()
|
||
|
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
||
|
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
||
|
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
||
|
conv = keras.layers.Conv2D(
|
||
|
filters=c2,
|
||
|
kernel_size=k,
|
||
|
strides=s,
|
||
|
padding='SAME' if s == 1 else 'VALID',
|
||
|
use_bias=not hasattr(w, 'bn'),
|
||
|
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
||
|
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
||
|
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
||
|
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
||
|
self.act = activations(w.act) if act else tf.identity
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return self.act(self.bn(self.conv(inputs)))
|
||
|
|
||
|
|
||
|
class TFDWConv(keras.layers.Layer):
|
||
|
# Depthwise convolution
|
||
|
def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
|
||
|
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
||
|
super().__init__()
|
||
|
assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
|
||
|
conv = keras.layers.DepthwiseConv2D(
|
||
|
kernel_size=k,
|
||
|
depth_multiplier=c2 // c1,
|
||
|
strides=s,
|
||
|
padding='SAME' if s == 1 else 'VALID',
|
||
|
use_bias=not hasattr(w, 'bn'),
|
||
|
depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
||
|
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
||
|
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
||
|
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
||
|
self.act = activations(w.act) if act else tf.identity
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return self.act(self.bn(self.conv(inputs)))
|
||
|
|
||
|
|
||
|
class TFDWConvTranspose2d(keras.layers.Layer):
|
||
|
# Depthwise ConvTranspose2d
|
||
|
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
|
||
|
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
||
|
super().__init__()
|
||
|
assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
|
||
|
assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
|
||
|
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
|
||
|
self.c1 = c1
|
||
|
self.conv = [
|
||
|
keras.layers.Conv2DTranspose(filters=1,
|
||
|
kernel_size=k,
|
||
|
strides=s,
|
||
|
padding='VALID',
|
||
|
output_padding=p2,
|
||
|
use_bias=True,
|
||
|
kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
|
||
|
bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
|
||
|
|
||
|
|
||
|
class TFFocus(keras.layers.Layer):
|
||
|
# Focus wh information into c-space
|
||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
||
|
# ch_in, ch_out, kernel, stride, padding, groups
|
||
|
super().__init__()
|
||
|
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
|
||
|
|
||
|
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
||
|
# inputs = inputs / 255 # normalize 0-255 to 0-1
|
||
|
inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
|
||
|
return self.conv(tf.concat(inputs, 3))
|
||
|
|
||
|
|
||
|
class TFBottleneck(keras.layers.Layer):
|
||
|
# Standard bottleneck
|
||
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
|
||
|
super().__init__()
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||
|
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
|
||
|
self.add = shortcut and c1 == c2
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
||
|
|
||
|
|
||
|
class TFCrossConv(keras.layers.Layer):
|
||
|
# Cross Convolution
|
||
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
|
||
|
super().__init__()
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
|
||
|
self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
|
||
|
self.add = shortcut and c1 == c2
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
||
|
|
||
|
|
||
|
class TFConv2d(keras.layers.Layer):
|
||
|
# Substitution for PyTorch nn.Conv2D
|
||
|
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
||
|
super().__init__()
|
||
|
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
||
|
self.conv = keras.layers.Conv2D(filters=c2,
|
||
|
kernel_size=k,
|
||
|
strides=s,
|
||
|
padding='VALID',
|
||
|
use_bias=bias,
|
||
|
kernel_initializer=keras.initializers.Constant(
|
||
|
w.weight.permute(2, 3, 1, 0).numpy()),
|
||
|
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return self.conv(inputs)
|
||
|
|
||
|
|
||
|
class TFBottleneckCSP(keras.layers.Layer):
|
||
|
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
||
|
# ch_in, ch_out, number, shortcut, groups, expansion
|
||
|
super().__init__()
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||
|
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
|
||
|
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
||
|
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
||
|
self.bn = TFBN(w.bn)
|
||
|
self.act = lambda x: keras.activations.swish(x)
|
||
|
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
||
|
|
||
|
def call(self, inputs):
|
||
|
y1 = self.cv3(self.m(self.cv1(inputs)))
|
||
|
y2 = self.cv2(inputs)
|
||
|
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
|
||
|
|
||
|
|
||
|
class TFC3(keras.layers.Layer):
|
||
|
# CSP Bottleneck with 3 convolutions
|
||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
||
|
# ch_in, ch_out, number, shortcut, groups, expansion
|
||
|
super().__init__()
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||
|
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
||
|
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
||
|
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
||
|
|
||
|
|
||
|
class TFC3x(keras.layers.Layer):
|
||
|
# 3 module with cross-convolutions
|
||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
||
|
# ch_in, ch_out, number, shortcut, groups, expansion
|
||
|
super().__init__()
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||
|
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
||
|
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
||
|
self.m = keras.Sequential([
|
||
|
TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
||
|
|
||
|
|
||
|
class TFSPP(keras.layers.Layer):
|
||
|
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||
|
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
||
|
super().__init__()
|
||
|
c_ = c1 // 2 # hidden channels
|
||
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||
|
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
|
||
|
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
|
||
|
|
||
|
def call(self, inputs):
|
||
|
x = self.cv1(inputs)
|
||
|
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
|
||
|
|
||
|
|
||
|
class TFSPPF(keras.layers.Layer):
|
||
|
# Spatial pyramid pooling-Fast layer
|
||
|
def __init__(self, c1, c2, k=5, w=None):
|
||
|
super().__init__()
|
||
|
c_ = c1 // 2 # hidden channels
|
||
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||
|
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
|
||
|
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
|
||
|
|
||
|
def call(self, inputs):
|
||
|
x = self.cv1(inputs)
|
||
|
y1 = self.m(x)
|
||
|
y2 = self.m(y1)
|
||
|
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
|
||
|
|
||
|
|
||
|
class TFDetect(keras.layers.Layer):
|
||
|
# TF YOLOv5 Detect layer
|
||
|
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
||
|
super().__init__()
|
||
|
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
||
|
self.nc = nc # number of classes
|
||
|
self.no = nc + 5 # number of outputs per anchor
|
||
|
self.nl = len(anchors) # number of detection layers
|
||
|
self.na = len(anchors[0]) // 2 # number of anchors
|
||
|
self.grid = [tf.zeros(1)] * self.nl # init grid
|
||
|
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
||
|
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
|
||
|
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
||
|
self.training = False # set to False after building model
|
||
|
self.imgsz = imgsz
|
||
|
for i in range(self.nl):
|
||
|
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
||
|
self.grid[i] = self._make_grid(nx, ny)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
z = [] # inference output
|
||
|
x = []
|
||
|
for i in range(self.nl):
|
||
|
x.append(self.m[i](inputs[i]))
|
||
|
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
||
|
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
||
|
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
|
||
|
|
||
|
if not self.training: # inference
|
||
|
y = x[i]
|
||
|
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
|
||
|
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
|
||
|
xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy
|
||
|
wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
|
||
|
# Normalize xywh to 0-1 to reduce calibration error
|
||
|
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
||
|
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
||
|
y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1)
|
||
|
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
|
||
|
|
||
|
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
|
||
|
|
||
|
@staticmethod
|
||
|
def _make_grid(nx=20, ny=20):
|
||
|
# yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
||
|
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||
|
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
|
||
|
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
||
|
|
||
|
|
||
|
class TFSegment(TFDetect):
|
||
|
# YOLOv5 Segment head for segmentation models
|
||
|
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
|
||
|
super().__init__(nc, anchors, ch, imgsz, w)
|
||
|
self.nm = nm # number of masks
|
||
|
self.npr = npr # number of protos
|
||
|
self.no = 5 + nc + self.nm # number of outputs per anchor
|
||
|
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv
|
||
|
self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos
|
||
|
self.detect = TFDetect.call
|
||
|
|
||
|
def call(self, x):
|
||
|
p = self.proto(x[0])
|
||
|
# p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos
|
||
|
p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160)
|
||
|
x = self.detect(self, x)
|
||
|
return (x, p) if self.training else (x[0], p)
|
||
|
|
||
|
|
||
|
class TFProto(keras.layers.Layer):
|
||
|
|
||
|
def __init__(self, c1, c_=256, c2=32, w=None):
|
||
|
super().__init__()
|
||
|
self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
|
||
|
self.upsample = TFUpsample(None, scale_factor=2, mode='nearest')
|
||
|
self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
|
||
|
self.cv3 = TFConv(c_, c2, w=w.cv3)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
|
||
|
|
||
|
|
||
|
class TFUpsample(keras.layers.Layer):
|
||
|
# TF version of torch.nn.Upsample()
|
||
|
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
||
|
super().__init__()
|
||
|
assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
|
||
|
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
|
||
|
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
||
|
# with default arguments: align_corners=False, half_pixel_centers=False
|
||
|
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
||
|
# size=(x.shape[1] * 2, x.shape[2] * 2))
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return self.upsample(inputs)
|
||
|
|
||
|
|
||
|
class TFConcat(keras.layers.Layer):
|
||
|
# TF version of torch.concat()
|
||
|
def __init__(self, dimension=1, w=None):
|
||
|
super().__init__()
|
||
|
assert dimension == 1, "convert only NCHW to NHWC concat"
|
||
|
self.d = 3
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return tf.concat(inputs, self.d)
|
||
|
|
||
|
|
||
|
def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
||
|
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
||
|
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
||
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||
|
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||
|
|
||
|
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||
|
m_str = m
|
||
|
m = eval(m) if isinstance(m, str) else m # eval strings
|
||
|
for j, a in enumerate(args):
|
||
|
try:
|
||
|
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||
|
except NameError:
|
||
|
pass
|
||
|
|
||
|
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||
|
if m in [
|
||
|
nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
|
||
|
BottleneckCSP, C3, C3x]:
|
||
|
c1, c2 = ch[f], args[0]
|
||
|
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
||
|
|
||
|
args = [c1, c2, *args[1:]]
|
||
|
if m in [BottleneckCSP, C3, C3x]:
|
||
|
args.insert(2, n)
|
||
|
n = 1
|
||
|
elif m is nn.BatchNorm2d:
|
||
|
args = [ch[f]]
|
||
|
elif m is Concat:
|
||
|
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
||
|
elif m in [Detect, Segment]:
|
||
|
args.append([ch[x + 1] for x in f])
|
||
|
if isinstance(args[1], int): # number of anchors
|
||
|
args[1] = [list(range(args[1] * 2))] * len(f)
|
||
|
if m is Segment:
|
||
|
args[3] = make_divisible(args[3] * gw, 8)
|
||
|
args.append(imgsz)
|
||
|
else:
|
||
|
c2 = ch[f]
|
||
|
|
||
|
tf_m = eval('TF' + m_str.replace('nn.', ''))
|
||
|
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
|
||
|
else tf_m(*args, w=model.model[i]) # module
|
||
|
|
||
|
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||
|
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||
|
np = sum(x.numel() for x in torch_m_.parameters()) # number params
|
||
|
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||
|
LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
|
||
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||
|
layers.append(m_)
|
||
|
ch.append(c2)
|
||
|
return keras.Sequential(layers), sorted(save)
|
||
|
|
||
|
|
||
|
class TFModel:
|
||
|
# TF YOLOv5 model
|
||
|
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
||
|
super().__init__()
|
||
|
if isinstance(cfg, dict):
|
||
|
self.yaml = cfg # model dict
|
||
|
else: # is *.yaml
|
||
|
import yaml # for torch hub
|
||
|
self.yaml_file = Path(cfg).name
|
||
|
with open(cfg) as f:
|
||
|
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||
|
|
||
|
# Define model
|
||
|
if nc and nc != self.yaml['nc']:
|
||
|
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
|
||
|
self.yaml['nc'] = nc # override yaml value
|
||
|
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
||
|
|
||
|
def predict(self,
|
||
|
inputs,
|
||
|
tf_nms=False,
|
||
|
agnostic_nms=False,
|
||
|
topk_per_class=100,
|
||
|
topk_all=100,
|
||
|
iou_thres=0.45,
|
||
|
conf_thres=0.25):
|
||
|
y = [] # outputs
|
||
|
x = inputs
|
||
|
for m in self.model.layers:
|
||
|
if m.f != -1: # if not from previous layer
|
||
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||
|
|
||
|
x = m(x) # run
|
||
|
y.append(x if m.i in self.savelist else None) # save output
|
||
|
|
||
|
# Add TensorFlow NMS
|
||
|
if tf_nms:
|
||
|
boxes = self._xywh2xyxy(x[0][..., :4])
|
||
|
probs = x[0][:, :, 4:5]
|
||
|
classes = x[0][:, :, 5:]
|
||
|
scores = probs * classes
|
||
|
if agnostic_nms:
|
||
|
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
||
|
else:
|
||
|
boxes = tf.expand_dims(boxes, 2)
|
||
|
nms = tf.image.combined_non_max_suppression(boxes,
|
||
|
scores,
|
||
|
topk_per_class,
|
||
|
topk_all,
|
||
|
iou_thres,
|
||
|
conf_thres,
|
||
|
clip_boxes=False)
|
||
|
return (nms,)
|
||
|
return x # output [1,6300,85] = [xywh, conf, class0, class1, ...]
|
||
|
# x = x[0] # [x(1,6300,85), ...] to x(6300,85)
|
||
|
# xywh = x[..., :4] # x(6300,4) boxes
|
||
|
# conf = x[..., 4:5] # x(6300,1) confidences
|
||
|
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
||
|
# return tf.concat([conf, cls, xywh], 1)
|
||
|
|
||
|
@staticmethod
|
||
|
def _xywh2xyxy(xywh):
|
||
|
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||
|
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
|
||
|
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
||
|
|
||
|
|
||
|
class AgnosticNMS(keras.layers.Layer):
|
||
|
# TF Agnostic NMS
|
||
|
def call(self, input, topk_all, iou_thres, conf_thres):
|
||
|
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
||
|
return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
|
||
|
input,
|
||
|
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
||
|
name='agnostic_nms')
|
||
|
|
||
|
@staticmethod
|
||
|
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
|
||
|
boxes, classes, scores = x
|
||
|
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
||
|
scores_inp = tf.reduce_max(scores, -1)
|
||
|
selected_inds = tf.image.non_max_suppression(boxes,
|
||
|
scores_inp,
|
||
|
max_output_size=topk_all,
|
||
|
iou_threshold=iou_thres,
|
||
|
score_threshold=conf_thres)
|
||
|
selected_boxes = tf.gather(boxes, selected_inds)
|
||
|
padded_boxes = tf.pad(selected_boxes,
|
||
|
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
||
|
mode="CONSTANT",
|
||
|
constant_values=0.0)
|
||
|
selected_scores = tf.gather(scores_inp, selected_inds)
|
||
|
padded_scores = tf.pad(selected_scores,
|
||
|
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
||
|
mode="CONSTANT",
|
||
|
constant_values=-1.0)
|
||
|
selected_classes = tf.gather(class_inds, selected_inds)
|
||
|
padded_classes = tf.pad(selected_classes,
|
||
|
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
||
|
mode="CONSTANT",
|
||
|
constant_values=-1.0)
|
||
|
valid_detections = tf.shape(selected_inds)[0]
|
||
|
return padded_boxes, padded_scores, padded_classes, valid_detections
|
||
|
|
||
|
|
||
|
def activations(act=nn.SiLU):
|
||
|
# Returns TF activation from input PyTorch activation
|
||
|
if isinstance(act, nn.LeakyReLU):
|
||
|
return lambda x: keras.activations.relu(x, alpha=0.1)
|
||
|
elif isinstance(act, nn.Hardswish):
|
||
|
return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
|
||
|
elif isinstance(act, (nn.SiLU, SiLU)):
|
||
|
return lambda x: keras.activations.swish(x)
|
||
|
else:
|
||
|
raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
|
||
|
|
||
|
|
||
|
def representative_dataset_gen(dataset, ncalib=100):
|
||
|
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
||
|
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
||
|
im = np.transpose(img, [1, 2, 0])
|
||
|
im = np.expand_dims(im, axis=0).astype(np.float32)
|
||
|
im /= 255
|
||
|
yield [im]
|
||
|
if n >= ncalib:
|
||
|
break
|
||
|
|
||
|
|
||
|
def run(
|
||
|
weights=ROOT / 'yolov5s.pt', # weights path
|
||
|
imgsz=(640, 640), # inference size h,w
|
||
|
batch_size=1, # batch size
|
||
|
dynamic=False, # dynamic batch size
|
||
|
):
|
||
|
# PyTorch model
|
||
|
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
||
|
model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
|
||
|
_ = model(im) # inference
|
||
|
model.info()
|
||
|
|
||
|
# TensorFlow model
|
||
|
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
||
|
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
||
|
_ = tf_model.predict(im) # inference
|
||
|
|
||
|
# Keras model
|
||
|
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
||
|
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
|
||
|
keras_model.summary()
|
||
|
|
||
|
LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
|
||
|
|
||
|
|
||
|
def parse_opt():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
||
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
||
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||
|
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
|
||
|
opt = parser.parse_args()
|
||
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||
|
print_args(vars(opt))
|
||
|
return opt
|
||
|
|
||
|
|
||
|
def main(opt):
|
||
|
run(**vars(opt))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
opt = parse_opt()
|
||
|
main(opt)
|