# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # YOLOv5 Continuous Integration (CI) GitHub Actions tests name: YOLOv5 CI on: push: branches: [ master ] pull_request: branches: [ master ] schedule: - cron: '0 0 * * *' # runs at 00:00 UTC every day jobs: Benchmarks: runs-on: ${{ matrix.os }} strategy: fail-fast: false matrix: os: [ ubuntu-latest ] python-version: [ '3.9' ] # requires python<=3.9 model: [ yolov5n ] steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python-version }} #- name: Cache pip # uses: actions/cache@v3 # with: # path: ~/.cache/pip # key: ${{ runner.os }}-Benchmarks-${{ hashFiles('requirements.txt') }} # restore-keys: ${{ runner.os }}-Benchmarks- - name: Install requirements run: | python -m pip install --upgrade pip wheel pip install -r requirements.txt coremltools openvino-dev tensorflow-cpu --extra-index-url https://download.pytorch.org/whl/cpu python --version pip --version pip list - name: Benchmark DetectionModel run: | python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29 - name: Benchmark SegmentationModel run: | python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22 - name: Test predictions run: | python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224 python detect.py --weights ${{ matrix.model }}.onnx --img 320 python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320 python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224 Tests: timeout-minutes: 60 runs-on: ${{ matrix.os }} strategy: fail-fast: false matrix: os: [ ubuntu-latest, windows-latest ] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049 python-version: [ '3.10' ] model: [ yolov5n ] include: - os: ubuntu-latest python-version: '3.7' # '3.6.8' min model: yolov5n - os: ubuntu-latest python-version: '3.8' model: yolov5n - os: ubuntu-latest python-version: '3.9' model: yolov5n - os: ubuntu-latest python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8 model: yolov5n torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/ steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python-version }} - name: Get cache dir # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow id: pip-cache run: echo "::set-output name=dir::$(pip cache dir)" - name: Cache pip uses: actions/cache@v3 with: path: ${{ steps.pip-cache.outputs.dir }} key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }} restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip- - name: Install requirements run: | python -m pip install --upgrade pip wheel if [ "${{ matrix.torch }}" == "1.7.0" ]; then pip install -r requirements.txt torch==1.7.0 torchvision==0.8.1 --extra-index-url https://download.pytorch.org/whl/cpu else pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu fi shell: bash # for Windows compatibility - name: Check environment run: | python -c "import utils; utils.notebook_init()" echo "RUNNER_OS is ${{ runner.os }}" echo "GITHUB_EVENT_NAME is ${{ github.event_name }}" echo "GITHUB_WORKFLOW is ${{ github.workflow }}" echo "GITHUB_ACTOR is ${{ github.actor }}" echo "GITHUB_REPOSITORY is ${{ github.repository }}" echo "GITHUB_REPOSITORY_OWNER is ${{ github.repository_owner }}" python --version pip --version pip list - name: Test detection shell: bash # for Windows compatibility run: | # export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories m=${{ matrix.model }} # official weights b=runs/train/exp/weights/best # best.pt checkpoint python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train for d in cpu; do # devices for w in $m $b; do # weights python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val python detect.py --imgsz 64 --weights $w.pt --device $d # detect done done python hubconf.py --model $m # hub # python models/tf.py --weights $m.pt # build TF model python models/yolo.py --cfg $m.yaml # build PyTorch model python export.py --weights $m.pt --img 64 --include torchscript # export python - <<EOF import torch im = torch.zeros([1, 3, 64, 64]) for path in '$m', '$b': model = torch.hub.load('.', 'custom', path=path, source='local') print(model('data/images/bus.jpg')) model(im) # warmup, build grids for trace torch.jit.trace(model, [im]) EOF - name: Test segmentation shell: bash # for Windows compatibility run: | m=${{ matrix.model }}-seg # official weights b=runs/train-seg/exp/weights/best # best.pt checkpoint python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train for d in cpu; do # devices for w in $m $b; do # weights python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict python export.py --weights $w.pt --img 64 --include torchscript --device $d # export done done - name: Test classification shell: bash # for Windows compatibility run: | m=${{ matrix.model }}-cls.pt # official weights b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict python export.py --weights $b --img 64 --include torchscript # export python - <<EOF import torch for path in '$m', '$b': model = torch.hub.load('.', 'custom', path=path, source='local') EOF