187 lines
8.4 KiB
Python
187 lines
8.4 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from ..general import xywh2xyxy
|
|
from ..loss import FocalLoss, smooth_BCE
|
|
from ..metrics import bbox_iou
|
|
from ..torch_utils import de_parallel
|
|
from .general import crop_mask
|
|
|
|
|
|
class ComputeLoss:
|
|
# Compute losses
|
|
def __init__(self, model, autobalance=False, overlap=False):
|
|
self.sort_obj_iou = False
|
|
self.overlap = overlap
|
|
device = next(model.parameters()).device # get model device
|
|
h = model.hyp # hyperparameters
|
|
self.device = device
|
|
|
|
# Define criteria
|
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
|
|
|
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
|
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
|
|
|
# Focal loss
|
|
g = h['fl_gamma'] # focal loss gamma
|
|
if g > 0:
|
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
|
|
|
m = de_parallel(model).model[-1] # Detect() module
|
|
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
|
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
|
|
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
|
self.na = m.na # number of anchors
|
|
self.nc = m.nc # number of classes
|
|
self.nl = m.nl # number of layers
|
|
self.nm = m.nm # number of masks
|
|
self.anchors = m.anchors
|
|
self.device = device
|
|
|
|
def __call__(self, preds, targets, masks): # predictions, targets, model
|
|
p, proto = preds
|
|
bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
|
|
lcls = torch.zeros(1, device=self.device)
|
|
lbox = torch.zeros(1, device=self.device)
|
|
lobj = torch.zeros(1, device=self.device)
|
|
lseg = torch.zeros(1, device=self.device)
|
|
tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets) # targets
|
|
|
|
# Losses
|
|
for i, pi in enumerate(p): # layer index, layer predictions
|
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
|
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
|
|
|
|
n = b.shape[0] # number of targets
|
|
if n:
|
|
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1) # subset of predictions
|
|
|
|
# Box regression
|
|
pxy = pxy.sigmoid() * 2 - 0.5
|
|
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
|
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
|
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
|
lbox += (1.0 - iou).mean() # iou loss
|
|
|
|
# Objectness
|
|
iou = iou.detach().clamp(0).type(tobj.dtype)
|
|
if self.sort_obj_iou:
|
|
j = iou.argsort()
|
|
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
|
|
if self.gr < 1:
|
|
iou = (1.0 - self.gr) + self.gr * iou
|
|
tobj[b, a, gj, gi] = iou # iou ratio
|
|
|
|
# Classification
|
|
if self.nc > 1: # cls loss (only if multiple classes)
|
|
t = torch.full_like(pcls, self.cn, device=self.device) # targets
|
|
t[range(n), tcls[i]] = self.cp
|
|
lcls += self.BCEcls(pcls, t) # BCE
|
|
|
|
# Mask regression
|
|
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
|
|
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
|
|
marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized
|
|
mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
|
|
for bi in b.unique():
|
|
j = b == bi # matching index
|
|
if self.overlap:
|
|
mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
|
|
else:
|
|
mask_gti = masks[tidxs[i]][j]
|
|
lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
|
|
|
|
obji = self.BCEobj(pi[..., 4], tobj)
|
|
lobj += obji * self.balance[i] # obj loss
|
|
if self.autobalance:
|
|
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
|
|
|
if self.autobalance:
|
|
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
|
lbox *= self.hyp["box"]
|
|
lobj *= self.hyp["obj"]
|
|
lcls *= self.hyp["cls"]
|
|
lseg *= self.hyp["box"] / bs
|
|
|
|
loss = lbox + lobj + lcls + lseg
|
|
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
|
|
|
|
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
|
|
# Mask loss for one image
|
|
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
|
|
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
|
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
|
|
|
|
def build_targets(self, p, targets):
|
|
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
|
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
|
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
|
|
gain = torch.ones(8, device=self.device) # normalized to gridspace gain
|
|
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
|
if self.overlap:
|
|
batch = p[0].shape[0]
|
|
ti = []
|
|
for i in range(batch):
|
|
num = (targets[:, 0] == i).sum() # find number of targets of each image
|
|
ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num)
|
|
ti = torch.cat(ti, 1) # (na, nt)
|
|
else:
|
|
ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
|
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices
|
|
|
|
g = 0.5 # bias
|
|
off = torch.tensor(
|
|
[
|
|
[0, 0],
|
|
[1, 0],
|
|
[0, 1],
|
|
[-1, 0],
|
|
[0, -1], # j,k,l,m
|
|
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
|
],
|
|
device=self.device).float() * g # offsets
|
|
|
|
for i in range(self.nl):
|
|
anchors, shape = self.anchors[i], p[i].shape
|
|
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
|
|
|
# Match targets to anchors
|
|
t = targets * gain # shape(3,n,7)
|
|
if nt:
|
|
# Matches
|
|
r = t[..., 4:6] / anchors[:, None] # wh ratio
|
|
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
|
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
|
t = t[j] # filter
|
|
|
|
# Offsets
|
|
gxy = t[:, 2:4] # grid xy
|
|
gxi = gain[[2, 3]] - gxy # inverse
|
|
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
|
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
|
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
|
t = t.repeat((5, 1, 1))[j]
|
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
|
else:
|
|
t = targets[0]
|
|
offsets = 0
|
|
|
|
# Define
|
|
bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
|
|
(a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class
|
|
gij = (gxy - offsets).long()
|
|
gi, gj = gij.T # grid indices
|
|
|
|
# Append
|
|
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
|
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
|
anch.append(anchors[a]) # anchors
|
|
tcls.append(c) # class
|
|
tidxs.append(tidx)
|
|
xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized
|
|
|
|
return tcls, tbox, indices, anch, tidxs, xywhn
|