70 lines
2.2 KiB
Python
70 lines
2.2 KiB
Python
|
##My cnn, classyfing the plates as dirty, clean or full.
|
||
|
#imports
|
||
|
from keras.models import Sequential
|
||
|
from keras.layers import Convolution2D
|
||
|
from keras.layers import MaxPooling2D
|
||
|
from keras.layers import Flatten
|
||
|
from keras.layers import Dense
|
||
|
from keras.callbacks import EarlyStopping
|
||
|
from keras.callbacks import ModelCheckpoint
|
||
|
|
||
|
#initializing:
|
||
|
classifier = Sequential()
|
||
|
|
||
|
#Convolution:
|
||
|
classifier.add(Convolution2D(32, (3, 3), input_shape =(256, 256, 3), activation = "relu"))
|
||
|
|
||
|
#Pooling:
|
||
|
classifier.add(MaxPooling2D(pool_size = (2,2)))
|
||
|
|
||
|
# Adding a second convolutional layer
|
||
|
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
|
||
|
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
||
|
|
||
|
|
||
|
#Flattening:
|
||
|
classifier.add(Flatten())
|
||
|
|
||
|
#Fully connected layers::
|
||
|
classifier.add(Dense(units = 128, activation = "relu"))
|
||
|
classifier.add(Dense(units = 3, activation = "softmax"))
|
||
|
|
||
|
#Making CNN:
|
||
|
classifier.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
|
||
|
|
||
|
#From KERAS:
|
||
|
from keras.preprocessing.image import ImageDataGenerator
|
||
|
|
||
|
#Data augmentation:
|
||
|
train_datagen = ImageDataGenerator(
|
||
|
rescale=1./255,
|
||
|
shear_range=0.2,
|
||
|
zoom_range=0.2,
|
||
|
horizontal_flip=True,
|
||
|
width_shift_range=0.2,
|
||
|
height_shift_range=0.1,
|
||
|
fill_mode='nearest')
|
||
|
|
||
|
test_datagen = ImageDataGenerator(rescale=1./255)
|
||
|
|
||
|
training_set = train_datagen.flow_from_directory('plates/training_set',
|
||
|
target_size=(256, 256),
|
||
|
batch_size=16,
|
||
|
class_mode='categorical')
|
||
|
|
||
|
test_set = test_datagen.flow_from_directory('plates/test_set',
|
||
|
target_size=(256, 256),
|
||
|
batch_size=16,
|
||
|
class_mode='categorical')
|
||
|
|
||
|
# callbacks:
|
||
|
es = EarlyStopping(monitor='val_loss', mode='min', baseline=1, patience = 10)
|
||
|
mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', save_best_only=True, verbose = 1, period = 10)
|
||
|
classifier.fit_generator(
|
||
|
training_set,
|
||
|
steps_per_epoch = 88,
|
||
|
epochs=200,
|
||
|
callbacks=[es, mc],
|
||
|
validation_data=test_set,
|
||
|
validation_steps=10)
|