Individual project #1 #1
BIN
plates.rar
Normal file
BIN
plates.rar
Normal file
Binary file not shown.
BIN
s444523.rar
Normal file
BIN
s444523.rar
Normal file
Binary file not shown.
58
waiter_v3.py
58
waiter_v3.py
@ -8,10 +8,37 @@ import math
|
|||||||
# For CNN:
|
# For CNN:
|
||||||
|
|
||||||
import keras
|
import keras
|
||||||
from keras.models import load_model
|
|
||||||
from keras.preprocessing import image
|
from keras.preprocessing import image
|
||||||
|
from keras.models import Sequential
|
||||||
|
from keras.layers import Convolution2D
|
||||||
|
from keras.layers import MaxPooling2D
|
||||||
|
from keras.layers import Flatten
|
||||||
|
from keras.layers import Dense
|
||||||
|
|
||||||
|
|
||||||
|
#initializing:
|
||||||
|
classifier = Sequential()
|
||||||
|
#Convolution:
|
||||||
|
classifier.add(Convolution2D(32, (3, 3), input_shape =(256, 256, 3), activation = "relu"))
|
||||||
|
#Pooling:
|
||||||
|
classifier.add(MaxPooling2D(pool_size = (2,2)))
|
||||||
|
|
||||||
|
# Adding a second convolutional layer
|
||||||
|
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
|
||||||
|
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
||||||
|
|
||||||
|
#Flattening:
|
||||||
|
classifier.add(Flatten())
|
||||||
|
|
||||||
|
#Fully connected layers::
|
||||||
|
classifier.add(Dense(units = 128, activation = "relu"))
|
||||||
|
classifier.add(Dense(units = 3, activation = "softmax"))
|
||||||
|
|
||||||
|
# loading weigjts:
|
||||||
|
classifier.load_weights('s444523/best_model_weights2.h5')
|
||||||
|
#Making CNN:
|
||||||
|
classifier.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
|
||||||
|
|
||||||
saved_model = load_model('s444523/best_model.h5')
|
|
||||||
|
|
||||||
########################
|
########################
|
||||||
### WS ###
|
### WS ###
|
||||||
@ -53,7 +80,10 @@ class Table:
|
|||||||
|
|
||||||
# The finction "state of meal" chooses a photo of a plate at the given table.
|
# The finction "state of meal" chooses a photo of a plate at the given table.
|
||||||
def state_of_meal(self):
|
def state_of_meal(self):
|
||||||
num = np.random.randint(1, 102)
|
## !!!!!!###
|
||||||
|
num = np.random.randint(67, 100)
|
||||||
|
## !!!!!!###
|
||||||
|
|
||||||
if num<=67:
|
if num<=67:
|
||||||
img_name = 'plates/{}.png'.format(num)
|
img_name = 'plates/{}.png'.format(num)
|
||||||
else:
|
else:
|
||||||
@ -121,14 +151,18 @@ class Agent:
|
|||||||
def check_plates(self, table_number):
|
def check_plates(self, table_number):
|
||||||
table = self.define_table(table_number)
|
table = self.define_table(table_number)
|
||||||
plate = table.state_of_meal()
|
plate = table.state_of_meal()
|
||||||
clean_plate = image.load_img(plate, target_size = (256, 256))
|
plate= image.load_img(plate, target_size = (256, 256))
|
||||||
clean_plate = image.img_to_array(clean_plate)
|
plate = image.img_to_array(plate)
|
||||||
clean_plate = np.expand_dims(clean_plate, axis = 0)
|
plate = np.expand_dims(plate, axis = 0)
|
||||||
result = saved_model.predict(clean_plate)[0]
|
result = classifier.predict(plate)[0]
|
||||||
for i, x in enumerate (result):
|
print (result)
|
||||||
if x:
|
if result[1] == 1:
|
||||||
pred_class = i
|
result[1] = 0
|
||||||
table.change_state(pred_class)
|
x = int(input("Excuse me, have You done eating? 1=Yes, 2 = No \n"))
|
||||||
|
result[x] = 1
|
||||||
|
for i, x in enumerate(result):
|
||||||
|
if result[i] == 1:
|
||||||
|
table.change_state(i)
|
||||||
|
|
||||||
########################
|
########################
|
||||||
### /WS ###
|
### /WS ###
|
||||||
@ -327,7 +361,7 @@ while not done:
|
|||||||
# After each fool loop, we can quit the program:.
|
# After each fool loop, we can quit the program:.
|
||||||
if len(destination_tables) == 0:
|
if len(destination_tables) == 0:
|
||||||
play_again = 1
|
play_again = 1
|
||||||
play_again = int(input("Exit? 0=No, 1=Yes"))
|
play_again = int(input("Exit? 0=No, 1=Yes \n"))
|
||||||
if play_again:
|
if play_again:
|
||||||
pygame.quit()
|
pygame.quit()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user