hf challam robertabase without date (checkpoint 395000) epoch1
This commit is contained in:
parent
9fb4ae5c34
commit
7bcf8513d1
21030
dev-0/out.tsv
21030
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
13
hf_challam_roberta_base/01_create_datasets.py
Normal file
13
hf_challam_roberta_base/01_create_datasets.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
import datetime
|
||||||
|
|
||||||
|
for split in 'train', 'dev-0':
|
||||||
|
with open(f'../{split}/in.tsv') as f_in, open(f'../{split}/expected.tsv') as f_exp, open(f'./{split}_huggingface_format.csv', 'w') as f_hf:
|
||||||
|
f_hf.write('year\ttext\n')
|
||||||
|
for line_in,line_exp in zip(f_in,f_exp):
|
||||||
|
f_hf.write(line_exp.rstrip() + '\t' + line_in.split('\t')[1])
|
||||||
|
|
||||||
|
for split in ('test-A',):
|
||||||
|
with open(f'../{split}/in.tsv') as f_in, open(f'./{split}_huggingface_format.csv', 'w') as f_hf:
|
||||||
|
f_hf.write('year\ttext\n')
|
||||||
|
for line_in in f_in:
|
||||||
|
f_hf.write('0.0' + '\t' + line_in.split('\t')[1])
|
53
hf_challam_roberta_base/02_load_dataset.py
Normal file
53
hf_challam_roberta_base/02_load_dataset.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
import pickle
|
||||||
|
from datasets import load_dataset
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from tqdm import tqdm
|
||||||
|
from sklearn.preprocessing import MinMaxScaler
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
dataset = load_dataset('csv', sep='\t', data_files={'train': ['./train_huggingface_format.csv'], 'test': ['./dev-0_huggingface_format.csv']})
|
||||||
|
test_dataset_A = load_dataset('csv', sep='\t', data_files='test-A_huggingface_format.csv')
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained('without_date/checkpoint-395000')
|
||||||
|
|
||||||
|
def tokenize_function(examples):
|
||||||
|
t = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
||||||
|
return t
|
||||||
|
|
||||||
|
test_tokenized_datasets_A = test_dataset_A.map(tokenize_function, batched=True)
|
||||||
|
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
||||||
|
|
||||||
|
train_dataset = tokenized_datasets["train"].shuffle(seed=42)
|
||||||
|
eval_dataset_full = tokenized_datasets["test"]
|
||||||
|
eval_dataset_small = tokenized_datasets["test"].select(range(2000))
|
||||||
|
test_dataset_A = test_tokenized_datasets_A["train"]
|
||||||
|
|
||||||
|
|
||||||
|
scalers = dict()
|
||||||
|
scalers['year'] = MinMaxScaler().fit(np.array(train_dataset['year']).reshape(-1,1))
|
||||||
|
|
||||||
|
def add_scaled(example):
|
||||||
|
for factor in ('year',):
|
||||||
|
example[factor + '_scaled'] = scalers[factor].transform(np.array(example[factor]).reshape(-1,1)).reshape(1,-1)[0].item()
|
||||||
|
return example
|
||||||
|
|
||||||
|
train_dataset = train_dataset.map(add_scaled)
|
||||||
|
eval_dataset_full = eval_dataset_full.map(add_scaled)
|
||||||
|
eval_dataset_small = eval_dataset_small.map(add_scaled)
|
||||||
|
#test_dataset_A = test_dataset_A.map(add_scaled)
|
||||||
|
|
||||||
|
|
||||||
|
with open('train_dataset.pickle','wb') as f_p:
|
||||||
|
pickle.dump(train_dataset, f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_small.pickle','wb') as f_p:
|
||||||
|
pickle.dump(eval_dataset_small, f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_full.pickle','wb') as f_p:
|
||||||
|
pickle.dump(eval_dataset_full, f_p)
|
||||||
|
|
||||||
|
with open('test_dataset_A.pickle','wb') as f_p:
|
||||||
|
pickle.dump(test_dataset_A, f_p)
|
||||||
|
|
||||||
|
with open('scalers.pickle','wb') as f_p:
|
||||||
|
pickle.dump(scalers, f_p)
|
98
hf_challam_roberta_base/03_train_pytorch_regression.py
Normal file
98
hf_challam_roberta_base/03_train_pytorch_regression.py
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
import pickle
|
||||||
|
from datasets import load_dataset
|
||||||
|
from transformers import AutoTokenizer, RobertaModel, RobertaTokenizer
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from transformers import AutoModelForSequenceClassification
|
||||||
|
from transformers import AdamW
|
||||||
|
from transformers import get_scheduler
|
||||||
|
import torch
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
BATCH_SIZE = 4
|
||||||
|
|
||||||
|
|
||||||
|
with open('train_dataset.pickle','rb') as f_p:
|
||||||
|
train_dataset = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_small.pickle','rb') as f_p:
|
||||||
|
eval_dataset_small = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_full.pickle','rb') as f_p:
|
||||||
|
eval_dataset_full = pickle.load(f_p)
|
||||||
|
|
||||||
|
|
||||||
|
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=BATCH_SIZE)
|
||||||
|
eval_dataloader = DataLoader(eval_dataset_small, batch_size=BATCH_SIZE)
|
||||||
|
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained('without_date/checkpoint-395000', num_labels=1)
|
||||||
|
optimizer = AdamW(model.parameters(), lr=1e-6)
|
||||||
|
|
||||||
|
|
||||||
|
num_epochs = 1
|
||||||
|
num_training_steps = num_epochs * len(train_dataloader)
|
||||||
|
lr_scheduler = get_scheduler(
|
||||||
|
"linear",
|
||||||
|
optimizer=optimizer,
|
||||||
|
num_warmup_steps=0,
|
||||||
|
num_training_steps=num_training_steps
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
progress_bar = tqdm(range(num_training_steps))
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
model.train()
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
def transform_batch(batch):
|
||||||
|
batch['input_ids'] = torch.stack(batch['input_ids']).permute(1,0).to(device)
|
||||||
|
batch['attention_mask'] = torch.stack(batch['attention_mask']).permute(1,0).to(device)
|
||||||
|
batch['labels'] = batch['year_scaled'].to(device).float()
|
||||||
|
|
||||||
|
batch['labels'].to(device)
|
||||||
|
batch['input_ids'].to(device)
|
||||||
|
batch['attention_mask'].to(device)
|
||||||
|
|
||||||
|
for c in set(batch.keys()) - {'input_ids', 'attention_mask', 'labels'}:
|
||||||
|
del batch[c]
|
||||||
|
return batch
|
||||||
|
|
||||||
|
|
||||||
|
def eval():
|
||||||
|
model.eval()
|
||||||
|
eval_loss = 0.0
|
||||||
|
for i, batch in enumerate(eval_dataloader):
|
||||||
|
batch = transform_batch(batch)
|
||||||
|
outputs = model(**batch)
|
||||||
|
loss = outputs.loss
|
||||||
|
eval_loss += loss.item()
|
||||||
|
print(f'eval loss: {eval_loss / i }')
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
train_loss = 0.0
|
||||||
|
for i, batch in enumerate(train_dataloader):
|
||||||
|
batch = transform_batch(batch)
|
||||||
|
outputs = model(**batch)
|
||||||
|
loss = outputs.loss
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
optimizer.step()
|
||||||
|
lr_scheduler.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
progress_bar.update(1)
|
||||||
|
|
||||||
|
train_loss += loss.item()
|
||||||
|
#import pdb; pdb.set_trace()
|
||||||
|
if i % 5000 == 0 and i > 1 :
|
||||||
|
print(f'train loss: {train_loss / 5000 }', end = '\t\t')
|
||||||
|
train_loss = 0.0
|
||||||
|
eval()
|
||||||
|
|
||||||
|
model.save_pretrained('roberta_year_prediction')
|
55
hf_challam_roberta_base/04_predict.py
Normal file
55
hf_challam_roberta_base/04_predict.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
import pickle
|
||||||
|
import torch
|
||||||
|
from transformers import AutoModelForSequenceClassification
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
with open('train_dataset.pickle','rb') as f_p:
|
||||||
|
train_dataset = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_small.pickle','rb') as f_p:
|
||||||
|
eval_dataset_small = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_full.pickle','rb') as f_p:
|
||||||
|
eval_dataset_full = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('test_dataset_A.pickle','rb') as f_p:
|
||||||
|
test_dataset_A = pickle.load(f_p)
|
||||||
|
|
||||||
|
|
||||||
|
device = 'cuda'
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained('./roberta_year_prediction')
|
||||||
|
model.eval()
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
with open('scalers.pickle', 'rb') as f_scaler:
|
||||||
|
scalers = pickle.load(f_scaler)
|
||||||
|
|
||||||
|
def predict(dataset, out_f):
|
||||||
|
eval_dataloader = DataLoader(dataset, batch_size=1)
|
||||||
|
outputs = []
|
||||||
|
|
||||||
|
progress_bar = tqdm(range(len(eval_dataloader)))
|
||||||
|
|
||||||
|
for batch in eval_dataloader:
|
||||||
|
batch['input_ids'] = torch.stack(batch['input_ids']).permute(1,0).to(device)
|
||||||
|
batch['attention_mask'] = torch.stack(batch['attention_mask']).permute(1,0).to(device)
|
||||||
|
batch['labels'] = batch['year_scaled'].to(device).float()
|
||||||
|
|
||||||
|
batch['labels'].to(device)
|
||||||
|
batch['input_ids'].to(device)
|
||||||
|
batch['attention_mask'].to(device)
|
||||||
|
|
||||||
|
for c in set(batch.keys()) - {'input_ids', 'attention_mask', 'labels'}:
|
||||||
|
del batch[c]
|
||||||
|
outputs.extend(model(**batch).logits.tolist())
|
||||||
|
progress_bar.update(1)
|
||||||
|
outputs_transformed = scalers['year'].inverse_transform(outputs)
|
||||||
|
|
||||||
|
with open(out_f,'w') as f_out:
|
||||||
|
|
||||||
|
for o in outputs_transformed:
|
||||||
|
f_out.write(str(o[0]) + '\n')
|
||||||
|
|
||||||
|
predict(eval_dataset_full, '../dev-0/out.tsv')
|
||||||
|
predict(eval_dataset_full, '../test-A/out.tsv')
|
52
hf_challam_roberta_base/04_predict_from_file.py
Normal file
52
hf_challam_roberta_base/04_predict_from_file.py
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
import pickle
|
||||||
|
import torch
|
||||||
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
#with open('train_dataset.pickle','rb') as f_p:
|
||||||
|
# train_dataset = pickle.load(f_p)
|
||||||
|
#
|
||||||
|
#with open('eval_dataset_small.pickle','rb') as f_p:
|
||||||
|
# eval_dataset_small = pickle.load(f_p)
|
||||||
|
#
|
||||||
|
#with open('eval_dataset_full.pickle','rb') as f_p:
|
||||||
|
# eval_dataset_full = pickle.load(f_p)
|
||||||
|
#
|
||||||
|
#with open('test_dataset_A.pickle','rb') as f_p:
|
||||||
|
# test_dataset_A = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('dev-0_huggingface_format.csv','r') as f_p:
|
||||||
|
eval_dataset_full = f_p.readlines()
|
||||||
|
|
||||||
|
with open('test-A_huggingface_format.csv','r') as f_p:
|
||||||
|
test_dataset = f_p.readlines()
|
||||||
|
|
||||||
|
device = 'cuda'
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained('./roberta_year_prediction')
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained('without_date/checkpoint-395000/')
|
||||||
|
model.eval()
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
with open('scalers.pickle', 'rb') as f_scaler:
|
||||||
|
scalers = pickle.load(f_scaler)
|
||||||
|
|
||||||
|
def predict(dataset, out_f):
|
||||||
|
outputs = []
|
||||||
|
|
||||||
|
for sample in tqdm(eval_dataset_full[1:]):
|
||||||
|
y, t = sample.split('\t')
|
||||||
|
t = t.rstrip()
|
||||||
|
|
||||||
|
t = tokenizer(t, padding="max_length", truncation=True, max_length=512, return_tensors='pt').to('cuda')
|
||||||
|
|
||||||
|
outputs.extend(model(**t).logits.tolist())
|
||||||
|
outputs_transformed = scalers['year'].inverse_transform(outputs)
|
||||||
|
|
||||||
|
with open(out_f,'w') as f_out:
|
||||||
|
|
||||||
|
for o in outputs_transformed:
|
||||||
|
f_out.write(str(o[0]) + '\n')
|
||||||
|
|
||||||
|
predict(eval_dataset_full, '../dev-0/out.tsv')
|
||||||
|
predict(test_dataset, '../test-A/out.tsv')
|
19015
test-A/out.tsv
19015
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user