hf roberta base epoch1 (fix)
This commit is contained in:
parent
f986c74861
commit
dc6eb48ec2
21032
dev-0/out.tsv
21032
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
@ -1,26 +1,38 @@
|
||||
import pickle
|
||||
from datasets import load_dataset
|
||||
from datasets import load_dataset, Dataset
|
||||
from transformers import AutoTokenizer
|
||||
from tqdm import tqdm
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
import numpy as np
|
||||
|
||||
dataset = load_dataset('csv', sep='\t', data_files={'train': ['./train_huggingface_format.csv'], 'test': ['./dev-0_huggingface_format.csv']})
|
||||
test_dataset_A = load_dataset('csv', sep='\t', data_files='test-A_huggingface_format.csv')
|
||||
|
||||
#dataset = load_dataset('csv', sep='\t', data_files={'train': ['./train_huggingface_format.csv'], 'test': ['./dev-0_huggingface_format.csv']})
|
||||
#test_dataset_A = load_dataset('csv', sep='\t', data_files='test-A_huggingface_format.csv')
|
||||
#
|
||||
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
|
||||
|
||||
#
|
||||
def tokenize_function(examples):
|
||||
t = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
||||
return t
|
||||
#
|
||||
#test_tokenized_datasets_A = test_dataset_A.map(tokenize_function, batched=True)
|
||||
#tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
||||
|
||||
test_tokenized_datasets_A = test_dataset_A.map(tokenize_function, batched=True)
|
||||
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
||||
def get_dataset_dict(dataset):
|
||||
with open(dataset) as f_in:
|
||||
next(f_in)
|
||||
d = dict()
|
||||
d['year'] = list()
|
||||
d['text'] = list()
|
||||
for l in f_in:
|
||||
y,t = l.rstrip().split('\t')
|
||||
d['year'].append(y)
|
||||
d['text'].append(t)
|
||||
return d
|
||||
|
||||
train_dataset = tokenized_datasets["train"].shuffle(seed=42)
|
||||
eval_dataset_full = tokenized_datasets["test"]
|
||||
eval_dataset_small = tokenized_datasets["test"].select(range(2000))
|
||||
test_dataset_A = test_tokenized_datasets_A["train"]
|
||||
train_dataset = Dataset.from_dict(get_dataset_dict('train_huggingface_format.csv')).map(tokenize_function, batched=True).shuffle(seed=42)
|
||||
eval_dataset_full = Dataset.from_dict(get_dataset_dict('dev-0_huggingface_format.csv')).map(tokenize_function, batched=True).shuffle(seed=42)
|
||||
eval_dataset_small = eval_dataset_full.select(range(2000))
|
||||
test_dataset_A = Dataset.from_dict(get_dataset_dict('test-A_huggingface_format.csv')).map(tokenize_function, batched=True).shuffle(seed=42)
|
||||
|
||||
|
||||
scalers = dict()
|
||||
@ -34,7 +46,7 @@ def add_scaled(example):
|
||||
train_dataset = train_dataset.map(add_scaled)
|
||||
eval_dataset_full = eval_dataset_full.map(add_scaled)
|
||||
eval_dataset_small = eval_dataset_small.map(add_scaled)
|
||||
#test_dataset_A = test_dataset_A.map(add_scaled)
|
||||
test_dataset_A = test_dataset_A.map(add_scaled)
|
||||
|
||||
|
||||
with open('train_dataset.pickle','wb') as f_p:
|
||||
|
@ -10,7 +10,6 @@ from tqdm.auto import tqdm
|
||||
|
||||
BATCH_SIZE = 4
|
||||
|
||||
|
||||
with open('train_dataset.pickle','rb') as f_p:
|
||||
train_dataset = pickle.load(f_p)
|
||||
|
||||
@ -29,14 +28,14 @@ model = AutoModelForSequenceClassification.from_pretrained('roberta-base', num_l
|
||||
optimizer = AdamW(model.parameters(), lr=1e-6)
|
||||
|
||||
|
||||
num_epochs = 3
|
||||
num_epochs = 1
|
||||
num_training_steps = num_epochs * len(train_dataloader)
|
||||
lr_scheduler = get_scheduler(
|
||||
"linear",
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=0,
|
||||
num_training_steps=num_training_steps
|
||||
)
|
||||
#lr_scheduler = get_scheduler(
|
||||
# "linear",
|
||||
# optimizer=optimizer,
|
||||
# num_warmup_steps=0,
|
||||
# num_training_steps=num_training_steps
|
||||
#)
|
||||
|
||||
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
@ -71,7 +70,7 @@ def eval():
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
eval_loss += loss.item()
|
||||
print(f'eval loss: {eval_loss / i }')
|
||||
print(f'epoch {epoch} eval loss: {eval_loss / i }')
|
||||
model.train()
|
||||
|
||||
|
||||
@ -84,14 +83,14 @@ for epoch in range(num_epochs):
|
||||
loss.backward()
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
#lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
progress_bar.update(1)
|
||||
|
||||
train_loss += loss.item()
|
||||
#import pdb; pdb.set_trace()
|
||||
if i % 5000 == 0 and i > 1 :
|
||||
print(f'train loss: {train_loss / 5000 }', end = '\t\t')
|
||||
print(f' epoch {epoch} train loss: {train_loss / 5000 }', end = '\t\t')
|
||||
train_loss = 0.0
|
||||
eval()
|
||||
|
||||
|
@ -20,7 +20,7 @@ with open('eval_dataset_full.pickle','rb') as f_p:
|
||||
eval_dataset_full = pickle.load(f_p)
|
||||
|
||||
device = 'cuda'
|
||||
model = AutoModelForSequenceClassification.from_pretrained('./roberta_year_prediction')
|
||||
model = AutoModelForSequenceClassification.from_pretrained('./roberta_year_prediction/epoch_0')
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
|
16992
test-A/out.tsv
16992
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user