127 lines
3.6 KiB
Python
127 lines
3.6 KiB
Python
from config import MODEL, TEST
|
|
import pickle
|
|
from datasets import load_dataset
|
|
from transformers import AutoTokenizer, RobertaModel, RobertaTokenizer
|
|
from torch.utils.data import DataLoader
|
|
from transformers import AutoModelForSequenceClassification
|
|
from transformers import AdamW
|
|
from transformers import get_scheduler
|
|
import torch
|
|
from tqdm.auto import tqdm
|
|
|
|
BATCH_SIZE = 4
|
|
EARLY_STOPPING = 3
|
|
WARMUP_STEPS = 10_000
|
|
|
|
STEPS_EVAL = 5_000
|
|
if TEST:
|
|
STEPS_EVAL = 100
|
|
WARMUP_STEPS = 10
|
|
|
|
|
|
with open('train_dataset.pickle','rb') as f_p:
|
|
train_dataset = pickle.load(f_p)
|
|
|
|
with open('eval_dataset_small.pickle','rb') as f_p:
|
|
eval_dataset_small = pickle.load(f_p)
|
|
|
|
with open('eval_dataset_full.pickle','rb') as f_p:
|
|
eval_dataset_full = pickle.load(f_p)
|
|
|
|
|
|
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=BATCH_SIZE)
|
|
eval_dataloader_small = DataLoader(eval_dataset_small, batch_size=BATCH_SIZE)
|
|
eval_dataloader_full = DataLoader(eval_dataset_full, batch_size=BATCH_SIZE)
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL, num_labels=1)
|
|
optimizer = AdamW(model.parameters(), lr=1e-6)
|
|
|
|
|
|
num_epochs = 5
|
|
num_training_steps = num_epochs * len(train_dataloader)
|
|
lr_scheduler = get_scheduler(
|
|
"linear",
|
|
optimizer=optimizer,
|
|
num_warmup_steps=WARMUP_STEPS,
|
|
num_training_steps=num_training_steps
|
|
)
|
|
|
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
model.to(device)
|
|
|
|
|
|
progress_bar = tqdm(range(num_training_steps))
|
|
model.train()
|
|
|
|
model.train()
|
|
model.to(device)
|
|
|
|
def transform_batch(batch):
|
|
batch['input_ids'] = torch.stack(batch['input_ids']).permute(1,0).to(device)
|
|
batch['attention_mask'] = torch.stack(batch['attention_mask']).permute(1,0).to(device)
|
|
batch['labels'] = batch['year_scaled'].to(device).float()
|
|
|
|
batch['labels'].to(device)
|
|
batch['input_ids'].to(device)
|
|
batch['attention_mask'].to(device)
|
|
|
|
for c in set(batch.keys()) - {'input_ids', 'attention_mask', 'labels'}:
|
|
del batch[c]
|
|
return batch
|
|
|
|
|
|
def eval(full = False):
|
|
model.eval()
|
|
eval_loss = 0.0
|
|
dataloader = eval_dataloader_full if full else eval_dataloader_small
|
|
for i, batch in enumerate(eval_dataloader_small):
|
|
batch = transform_batch(batch)
|
|
outputs = model(**batch)
|
|
loss = outputs.loss
|
|
eval_loss += loss.item()
|
|
print(f'epoch {epoch} eval loss: {eval_loss / i }')
|
|
model.train()
|
|
return eval_loss
|
|
|
|
|
|
best_eval_loss = 9999
|
|
epochs_without_progress = 0
|
|
for epoch in range(num_epochs):
|
|
train_loss = 0.0
|
|
for i, batch in enumerate(train_dataloader):
|
|
batch = transform_batch(batch)
|
|
outputs = model(**batch)
|
|
loss = outputs.loss
|
|
loss.backward()
|
|
train_loss += loss.item()
|
|
progress_bar.update(1)
|
|
|
|
# DELAYED UPDATE
|
|
#if i % 16 == 1 and i > 1:
|
|
# optimizer.step()
|
|
# #lr_scheduler.step()
|
|
# optimizer.zero_grad()
|
|
|
|
# DELAYED UPDATE
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
if i % STEPS_EVAL == 0 and i > 1 :
|
|
print(f' epoch {epoch} train loss: {train_loss / STEPS_EVAL }', end = '\t\t')
|
|
train_loss = 0.0
|
|
eval(full = False)
|
|
|
|
model.save_pretrained(f'roberta_year_prediction/epoch_{epoch}')
|
|
eval_loss = eval(full=True)
|
|
|
|
if eval_loss < best_eval_loss:
|
|
model.save_pretrained(f'roberta_year_prediction/epoch_best')
|
|
best_eval_loss = eval_loss
|
|
else:
|
|
epochs_without_progress += 1
|
|
|
|
if epochs_without_progress > EARLY_STOPPING:
|
|
break
|