Compare commits
3 Commits
master
...
my-brillia
Author | SHA1 | Date | |
---|---|---|---|
|
279693e9e8 | ||
|
77aa85972a | ||
|
dca3122fab |
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
160
foo.py
Normal file
160
foo.py
Normal file
@ -0,0 +1,160 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
import pathlib
|
||||
from collections import Counter
|
||||
from sklearn.metrics import *
|
||||
import pandas as pd
|
||||
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
import numpy as np, pandas as pd
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.datasets import fetch_20newsgroups
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.metrics import confusion_matrix, accuracy_score
|
||||
sns.set() # use seaborn plotting style
|
||||
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
train_x = pd.read_csv('train/in.tsv', header=None, sep='\t')
|
||||
train_y = pd.read_csv('train/expected.tsv', header=None, sep='\t')
|
||||
dev_x = pd.read_csv('dev-0/in.tsv', header=None, sep='\t')
|
||||
dev_y = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t')
|
||||
test_x = pd.read_csv('test-A/in.tsv', header=None, sep='\t')
|
||||
|
||||
|
||||
# In[61]:
|
||||
|
||||
|
||||
print(dev_y.shape)
|
||||
print(dev_x.shape)
|
||||
|
||||
|
||||
# In[11]:
|
||||
|
||||
|
||||
print(train_x[:15])
|
||||
|
||||
|
||||
# In[27]:
|
||||
|
||||
|
||||
print(train_x.shape)
|
||||
|
||||
|
||||
# In[49]:
|
||||
|
||||
|
||||
print(train_y.shape)
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
print(train_y[:15])
|
||||
|
||||
|
||||
# In[53]:
|
||||
|
||||
|
||||
print(dev_x[:4])
|
||||
|
||||
|
||||
# In[119]:
|
||||
|
||||
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
from sklearn.feature_extraction.text import TfidfTransformer
|
||||
|
||||
vec = CountVectorizer(stop_words='english')
|
||||
x1 = vec.fit_transform(train_x[:20000][0])
|
||||
tfidf_transformer = TfidfTransformer()
|
||||
|
||||
x1_tf = tfidf_transformer.fit_transform(x1)
|
||||
|
||||
|
||||
# In[120]:
|
||||
|
||||
|
||||
# Build the model
|
||||
#model = make_pipeline(TfidfVectorizer(), MultinomialNB())
|
||||
clf = MultinomialNB().fit(x1_tf, train_y[:20000][0])
|
||||
|
||||
|
||||
# In[121]:
|
||||
|
||||
|
||||
# Train the model using the training data
|
||||
#model.fit(x1[:][0], train_y[:289541][0])
|
||||
# Predict the categories of the test data
|
||||
X_new_counts = vec.transform(dev_x[:][0])
|
||||
# We call transform instead of fit_transform because it's already been fit
|
||||
X_new_tfidf = tfidf_transformer.transform(X_new_counts)
|
||||
#predicted_categories = model.predict(dev_x[:][0])
|
||||
|
||||
|
||||
# In[122]:
|
||||
|
||||
|
||||
predicted = clf.predict(X_new_tfidf)
|
||||
|
||||
|
||||
# In[125]:
|
||||
|
||||
|
||||
print(predicted[:10])
|
||||
|
||||
|
||||
# In[126]:
|
||||
|
||||
|
||||
print(predicted.shape)
|
||||
|
||||
|
||||
# In[123]:
|
||||
|
||||
|
||||
#mat = confusion_matrix(dev_y[:][0],predicted_categories)
|
||||
|
||||
print("The accuracy is {}".format(accuracy_score( dev_y[:][0],predicted_categories)))
|
||||
|
||||
|
||||
|
||||
# In[124]:
|
||||
|
||||
|
||||
print('We got an accuracy of',np.mean(predicted == dev_y[:][0])*100, '% over the test data.')
|
||||
|
||||
|
||||
# In[130]:
|
||||
|
||||
|
||||
np.savetxt("out.tsv",predicted, delimiter="\t", fmt='%d')
|
||||
|
||||
|
||||
# In[131]:
|
||||
|
||||
|
||||
X_test = vec.transform(test_x[:][0])
|
||||
# We call transform instead of fit_transform because it's already been fit
|
||||
X_tfidf_test = tfidf_transformer.transform(X_test)
|
||||
predicted_test = clf.predict(X_tfidf_test)
|
||||
np.savetxt("out.tsv",predicted_test, delimiter="\t", fmt='%d')
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
|
||||
|
548
pytorch.ipynb
Normal file
548
pytorch.ipynb
Normal file
@ -0,0 +1,548 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import lzma\n",
|
||||
"import torch\n",
|
||||
"import numpy as np\n",
|
||||
"from gensim import downloader\n",
|
||||
"from gensim.models import Word2Vec\n",
|
||||
"import gensim.downloader\n",
|
||||
"import pandas as pd\n",
|
||||
"import csv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"from sklearn.datasets import fetch_20newsgroups\n",
|
||||
"# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
|
||||
"\n",
|
||||
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||
"from sklearn.metrics import accuracy_score"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:1: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" train_x = pd.read_csv('train/in.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n",
|
||||
"C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:2: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" train_y = pd.read_csv('train/expected.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n",
|
||||
"C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:3: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" dev_x = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n",
|
||||
"C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:4: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" dev_y = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n",
|
||||
"C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:5: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" test_x = pd.read_csv('test-A/in.tsv', header=None, sep='\\t',quoting=csv.QUOTE_NONE, error_bad_lines=False)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"train_x = pd.read_csv('train/in.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n",
|
||||
"train_y = pd.read_csv('train/expected.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n",
|
||||
"dev_x = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n",
|
||||
"dev_y = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n",
|
||||
"test_x = pd.read_csv('test-A/in.tsv', header=None, sep='\\t',quoting=csv.QUOTE_NONE, error_bad_lines=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_x = train_x[0]\n",
|
||||
"dev_x = dev_x[0]\n",
|
||||
"test_x = test_x[0]\n",
|
||||
"train_y = train_y[0]\n",
|
||||
"dev_y = dev_y[0]\n",
|
||||
"train_y = train_y.to_numpy()\n",
|
||||
"dev_y = dev_y.to_numpy()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 83,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[==================================================] 100.0% 387.1/387.1MB downloaded\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"word2vec_100 = downloader.load(\"glove-twitter-100\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 105,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_x_w2v = [np.mean([word2vec_100[word.lower()] for word in doc.split() if word.lower() in word2vec_100]\n",
|
||||
" or [np.zeros(100, dtype=float)], axis=0) for doc in train_x]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 106,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dev_x_w2v2 = [np.mean([word2vec_100[word.lower()] for word in doc.split() if word.lower() in word2vec_100]\n",
|
||||
" or [np.zeros(100, dtype=float)], axis=0) for doc in dev_x]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 108,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test_x_w2v = [np.mean([word2vec_100[word.lower()] for word in doc.split() if word.lower() in word2vec_100]\n",
|
||||
" or [np.zeros(100, dtype=float)], axis=0) for doc in test_x]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<class 'list'>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(type(x_train_w2v))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 78,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class NeuralNetworkModelx(torch.nn.Module):\n",
|
||||
"\n",
|
||||
" def __init__(self):\n",
|
||||
" super(NeuralNetworkModelx, self).__init__()\n",
|
||||
" self.fc1 = torch.nn.Linear(100,500)\n",
|
||||
" self.fc2 = torch.nn.Linear(500,1)\n",
|
||||
"\n",
|
||||
" def forward(self, x):\n",
|
||||
" x = self.fc1(x)\n",
|
||||
" x = torch.relu(x)\n",
|
||||
" x = self.fc2(x)\n",
|
||||
" x = torch.sigmoid(x)\n",
|
||||
" return x"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 71,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict(model, data):\n",
|
||||
" model.eval()\n",
|
||||
" predictions = []\n",
|
||||
" for x in data:\n",
|
||||
" X = torch.tensor(np.array(x).astype(np.float32))\n",
|
||||
" Y_predictions = model(X)\n",
|
||||
" if Y_predictions[0] > 0.5:\n",
|
||||
" predictions.append(\"1\")\n",
|
||||
" else:\n",
|
||||
" predictions.append(\"0\")\n",
|
||||
" return predictions"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 93,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"BATCH_SIZE = 22"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 94,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"FEATURES = 100"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 95,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = NeuralNetworkModelx()\n",
|
||||
"criterion = torch.nn.BCELoss()\n",
|
||||
"optimizer = torch.optim.ASGD(model.parameters(), lr=0.1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 97,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_loss_acc(model, X_dataset, Y_dataset):\n",
|
||||
" loss_score = 0\n",
|
||||
" acc_score = 0\n",
|
||||
" items_total = 0\n",
|
||||
" model.eval()\n",
|
||||
" for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n",
|
||||
" X = np.array(X_dataset[i:i+BATCH_SIZE]).astype(np.float32)\n",
|
||||
" X = torch.tensor(X)\n",
|
||||
" Y = Y_dataset[i:i+BATCH_SIZE]\n",
|
||||
" Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
|
||||
" Y_predictions = model(X)\n",
|
||||
" acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
|
||||
" items_total += Y.shape[0]\n",
|
||||
"\n",
|
||||
" loss = criterion(Y_predictions, Y)\n",
|
||||
"\n",
|
||||
" loss_score += loss.item() * Y.shape[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 107,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5251316127311283 0.7293691876828085\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5236849654193508 0.7303671882284282\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"2"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5224315920787511 0.7310509394672956\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"3"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5211956211888409 0.7323010301161341\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"4"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5201234243425219 0.7329606083314052\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"5"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5192769648569354 0.7337203319301469\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"6"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5182789765264713 0.7341761660893918\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"7"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5173362161154499 0.7348944502191112\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"8"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5163200458762819 0.7358717310302197\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"9"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.5155178654158614 0.7361583540242904\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for epoch in range(10):\n",
|
||||
" loss_score = 0\n",
|
||||
" acc_score = 0\n",
|
||||
" items_total = 0\n",
|
||||
" for i in range(0, train_y.shape[0], BATCH_SIZE):\n",
|
||||
" x = train_x_w2v[i:i+BATCH_SIZE]\n",
|
||||
" x = torch.tensor(np.array(x).astype(np.float32))\n",
|
||||
" y = train_y[i:i+BATCH_SIZE]\n",
|
||||
" y = torch.tensor(y.astype(np.float32)).reshape(-1, 1)\n",
|
||||
" y_pred = model(x)\n",
|
||||
" acc_score += torch.sum((y_pred > 0.5) == y).item()\n",
|
||||
" items_total += y.shape[0]\n",
|
||||
"\n",
|
||||
" optimizer.zero_grad()\n",
|
||||
" loss = criterion(y_pred, y)\n",
|
||||
" loss.backward()\n",
|
||||
" optimizer.step()\n",
|
||||
"\n",
|
||||
" loss_score += loss.item() * y.shape[0]\n",
|
||||
" display(epoch)\n",
|
||||
" #display(get_loss_acc(model, train_x_w2v, train_y))\n",
|
||||
" #display(get_loss_acc(model, dev_x_w2v2, dev_y))\n",
|
||||
" print((loss_score / items_total), (acc_score / items_total))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 119,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pred_dev = predict(model, dev_x_w2v2)\n",
|
||||
"pred_test = predict(model, test_x_w2v)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 120,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dev_pred = [int(i) for i in pred_dev]\n",
|
||||
"test_pred = [int(i) for i in pred_test]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 121,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dev_pred = np.array(dev_pred)\n",
|
||||
"test_pred = np.array(test_pred)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 122,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"numpy.ndarray"
|
||||
]
|
||||
},
|
||||
"execution_count": 122,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"type(dev_pred)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 123,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array([0, 1, 0, ..., 0, 1, 0])"
|
||||
]
|
||||
},
|
||||
"execution_count": 123,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dev_pred"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 124,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"np.savetxt(\"dev-0/out.tsv\",dev_pred, delimiter=\"\\t\", fmt='%d')\n",
|
||||
"np.savetxt(\"test-A/out.tsv\",test_pred, delimiter=\"\\t\", fmt='%d')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "py",
|
||||
"language": "python",
|
||||
"name": "py"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
305
run_pytorch.py
Normal file
305
run_pytorch.py
Normal file
@ -0,0 +1,305 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
from sklearn.datasets import fetch_20newsgroups
|
||||
# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
|
||||
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
|
||||
# In[71]:
|
||||
|
||||
|
||||
import numpy as np
|
||||
import gensim
|
||||
import torch
|
||||
import pandas as pd
|
||||
from gensim.test.utils import common_texts
|
||||
from gensim.models import Word2Vec
|
||||
import csv
|
||||
|
||||
|
||||
# In[84]:
|
||||
|
||||
|
||||
train_x = pd.read_csv('train/in.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||||
train_y = pd.read_csv('train/expected.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||||
dev_x = pd.read_csv('dev-0/in.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||||
dev_y = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||||
test_x = pd.read_csv('test-A/in.tsv', header=None, sep='\t',quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||||
|
||||
|
||||
# In[85]:
|
||||
|
||||
|
||||
print(len(train_x))
|
||||
|
||||
|
||||
# In[86]:
|
||||
|
||||
|
||||
print(len(train_y))
|
||||
|
||||
|
||||
# In[87]:
|
||||
|
||||
|
||||
train_y = train_y[0]
|
||||
|
||||
|
||||
# In[100]:
|
||||
|
||||
|
||||
dev_y = dev_y[0]
|
||||
|
||||
|
||||
# In[88]:
|
||||
|
||||
|
||||
print(type(train_y))
|
||||
|
||||
|
||||
# In[89]:
|
||||
|
||||
|
||||
train_y = train_y.to_numpy()
|
||||
|
||||
|
||||
# In[102]:
|
||||
|
||||
|
||||
dev_y = dev_y.to_numpy()
|
||||
|
||||
|
||||
# In[90]:
|
||||
|
||||
|
||||
train_x.head
|
||||
|
||||
|
||||
# In[91]:
|
||||
|
||||
|
||||
dev_x.head()
|
||||
|
||||
|
||||
# In[92]:
|
||||
|
||||
|
||||
train_x = train_x[0]
|
||||
|
||||
|
||||
# In[93]:
|
||||
|
||||
|
||||
vec_model = Word2Vec(train_x, vector_size=100, window=5, min_count=1, workers=4)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
def w2v(model, data):
|
||||
return np.array([np.mean([model.wv[word] if word in model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in data])
|
||||
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
w2v()
|
||||
|
||||
|
||||
# In[96]:
|
||||
|
||||
|
||||
dev_x = dev_x[0]
|
||||
test_x = test_x[0]
|
||||
|
||||
|
||||
# In[95]:
|
||||
|
||||
|
||||
vec_x_train = np.array([np.mean([vec_model.wv[word] if word in vec_model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in train_x])
|
||||
|
||||
|
||||
# In[97]:
|
||||
|
||||
|
||||
vec_x_dev = np.array([np.mean([vec_model.wv[word] if word in vec_model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in dev_x])
|
||||
vec_x_test = np.array([np.mean([vec_model.wv[word] if word in vec_model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in test_x])
|
||||
|
||||
|
||||
# In[36]:
|
||||
|
||||
|
||||
X_dev0_w2v = vectorize(vec_model,dev_x)
|
||||
X_test_w2v = vectorize(vec_model,test_x)
|
||||
|
||||
|
||||
# In[7]:
|
||||
|
||||
|
||||
class NeuralNetworkModel(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(NeuralNetworkModel, self).__init__()
|
||||
self.fc1 = torch.nn.Linear(FEAUTERES,500)
|
||||
self.fc2 = torch.nn.Linear(500,1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
|
||||
# In[37]:
|
||||
|
||||
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
def get_loss_acc(model, X_dataset, Y_dataset):
|
||||
loss_score = 0
|
||||
acc_score = 0
|
||||
items_total = 0
|
||||
model.eval()
|
||||
for i in range(0, Y_dataset.shape[0], BATCH_SIZE):
|
||||
X = np.array(X_dataset[i:i+BATCH_SIZE]).astype(np.float32)
|
||||
X = torch.tensor(X)
|
||||
Y = Y_dataset[i:i+BATCH_SIZE]
|
||||
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
||||
Y_predictions = model(X)
|
||||
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||||
items_total += Y.shape[0]
|
||||
|
||||
loss = criterion(Y_predictions, Y)
|
||||
|
||||
loss_score += loss.item() * Y.shape[0]
|
||||
return (loss_score / items_total), (acc_score / items_total)
|
||||
|
||||
|
||||
# In[9]:
|
||||
|
||||
|
||||
def predict(model, data):
|
||||
model.eval()
|
||||
predictions = []
|
||||
for x in data:
|
||||
X = torch.tensor(np.array(x).astype(np.float32))
|
||||
Y_predictions = model(X)
|
||||
if Y_predictions[0] > 0.5:
|
||||
predictions.append("1")
|
||||
else:
|
||||
predictions.append("0")
|
||||
return predictions
|
||||
|
||||
|
||||
# In[18]:
|
||||
|
||||
|
||||
FEAUTERES = 100
|
||||
|
||||
|
||||
# In[62]:
|
||||
|
||||
|
||||
BATCH_SIZE = 5
|
||||
|
||||
|
||||
# In[58]:
|
||||
|
||||
|
||||
nn_model = NeuralNetworkModel()
|
||||
|
||||
|
||||
# In[103]:
|
||||
|
||||
|
||||
for epoch in range(7):
|
||||
loss_score = 0
|
||||
acc_score = 0
|
||||
items_total = 0
|
||||
nn_model.train()
|
||||
for i in range(0, train_y.shape[0], BATCH_SIZE):
|
||||
X = vec_x_train[i:i+BATCH_SIZE]
|
||||
X = torch.tensor(X)
|
||||
Y = train_y[i:i+BATCH_SIZE]
|
||||
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
||||
Y_predictions = nn_model(X)
|
||||
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||||
items_total += Y.shape[0]
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(Y_predictions, Y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
loss_score += loss.item() * Y.shape[0]
|
||||
|
||||
display(epoch)
|
||||
display(get_loss_acc(nn_model,vec_x_train, train_y))
|
||||
display(get_loss_acc(nn_model, vec_x_dev, dev_y))
|
||||
|
||||
|
||||
# In[104]:
|
||||
|
||||
|
||||
dev_pred = predict(nn_model, vec_x_dev)
|
||||
test_pred = predict(nn_model, vec_x_test)
|
||||
|
||||
|
||||
# In[105]:
|
||||
|
||||
|
||||
dev_pred
|
||||
|
||||
|
||||
# In[119]:
|
||||
|
||||
|
||||
dev_pred = [int(i) for i in dev_pred]
|
||||
test_pred = [int(i) for i in test_pred]
|
||||
|
||||
|
||||
# In[120]:
|
||||
|
||||
|
||||
dev_pred = np.array(dev_pred)
|
||||
test_pred = np.array(test_pred)
|
||||
|
||||
|
||||
# In[117]:
|
||||
|
||||
|
||||
dev_pred
|
||||
|
||||
|
||||
# In[121]:
|
||||
|
||||
|
||||
np.savetxt("dev-0/out.tsv",dev_pred, delimiter="\t", fmt='%d')
|
||||
|
||||
|
||||
# In[122]:
|
||||
|
||||
|
||||
np.savetxt("test-A/out.tsv",test_pred, delimiter="\t", fmt='%d')
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
|
||||
|
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user