{ "cells": [ { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import lzma\n", "import torch\n", "import numpy as np\n", "from gensim import downloader\n", "from gensim.models import Word2Vec\n", "import gensim.downloader\n", "import pandas as pd\n", "import csv" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "from sklearn.datasets import fetch_20newsgroups\n", "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n", "\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.metrics import accuracy_score" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:1: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n", "\n", "\n", " train_x = pd.read_csv('train/in.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n", "C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:2: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n", "\n", "\n", " train_y = pd.read_csv('train/expected.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n", "C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:3: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n", "\n", "\n", " dev_x = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n", "C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:4: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n", "\n", "\n", " dev_y = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n", "C:\\Users\\10118794\\AppData\\Local\\Temp\\ipykernel_32100\\3675615398.py:5: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n", "\n", "\n", " test_x = pd.read_csv('test-A/in.tsv', header=None, sep='\\t',quoting=csv.QUOTE_NONE, error_bad_lines=False)\n" ] } ], "source": [ "train_x = pd.read_csv('train/in.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n", "train_y = pd.read_csv('train/expected.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n", "dev_x = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n", "dev_y = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)\n", "test_x = pd.read_csv('test-A/in.tsv', header=None, sep='\\t',quoting=csv.QUOTE_NONE, error_bad_lines=False)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "train_x = train_x[0]\n", "dev_x = dev_x[0]\n", "test_x = test_x[0]\n", "train_y = train_y[0]\n", "dev_y = dev_y[0]\n", "train_y = train_y.to_numpy()\n", "dev_y = dev_y.to_numpy()" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[==================================================] 100.0% 387.1/387.1MB downloaded\n" ] } ], "source": [ "word2vec_100 = downloader.load(\"glove-twitter-100\")" ] }, { "cell_type": "code", "execution_count": 105, "metadata": {}, "outputs": [], "source": [ "train_x_w2v = [np.mean([word2vec_100[word.lower()] for word in doc.split() if word.lower() in word2vec_100]\n", " or [np.zeros(100, dtype=float)], axis=0) for doc in train_x]\n" ] }, { "cell_type": "code", "execution_count": 106, "metadata": {}, "outputs": [], "source": [ "dev_x_w2v2 = [np.mean([word2vec_100[word.lower()] for word in doc.split() if word.lower() in word2vec_100]\n", " or [np.zeros(100, dtype=float)], axis=0) for doc in dev_x]" ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [], "source": [ "test_x_w2v = [np.mean([word2vec_100[word.lower()] for word in doc.split() if word.lower() in word2vec_100]\n", " or [np.zeros(100, dtype=float)], axis=0) for doc in test_x]" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "print(type(x_train_w2v))" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [], "source": [ "class NeuralNetworkModelx(torch.nn.Module):\n", "\n", " def __init__(self):\n", " super(NeuralNetworkModelx, self).__init__()\n", " self.fc1 = torch.nn.Linear(100,500)\n", " self.fc2 = torch.nn.Linear(500,1)\n", "\n", " def forward(self, x):\n", " x = self.fc1(x)\n", " x = torch.relu(x)\n", " x = self.fc2(x)\n", " x = torch.sigmoid(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "def predict(model, data):\n", " model.eval()\n", " predictions = []\n", " for x in data:\n", " X = torch.tensor(np.array(x).astype(np.float32))\n", " Y_predictions = model(X)\n", " if Y_predictions[0] > 0.5:\n", " predictions.append(\"1\")\n", " else:\n", " predictions.append(\"0\")\n", " return predictions" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [], "source": [ "BATCH_SIZE = 22" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [], "source": [ "FEATURES = 100" ] }, { "cell_type": "code", "execution_count": 95, "metadata": {}, "outputs": [], "source": [ "model = NeuralNetworkModelx()\n", "criterion = torch.nn.BCELoss()\n", "optimizer = torch.optim.ASGD(model.parameters(), lr=0.1)" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [], "source": [ "def get_loss_acc(model, X_dataset, Y_dataset):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " model.eval()\n", " for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n", " X = np.array(X_dataset[i:i+BATCH_SIZE]).astype(np.float32)\n", " X = torch.tensor(X)\n", " Y = Y_dataset[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n", " Y_predictions = model(X)\n", " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n", " items_total += Y.shape[0]\n", "\n", " loss = criterion(Y_predictions, Y)\n", "\n", " loss_score += loss.item() * Y.shape[0]" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5251316127311283 0.7293691876828085\n" ] }, { "data": { "text/plain": [ "1" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5236849654193508 0.7303671882284282\n" ] }, { "data": { "text/plain": [ "2" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5224315920787511 0.7310509394672956\n" ] }, { "data": { "text/plain": [ "3" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5211956211888409 0.7323010301161341\n" ] }, { "data": { "text/plain": [ "4" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5201234243425219 0.7329606083314052\n" ] }, { "data": { "text/plain": [ "5" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5192769648569354 0.7337203319301469\n" ] }, { "data": { "text/plain": [ "6" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5182789765264713 0.7341761660893918\n" ] }, { "data": { "text/plain": [ "7" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5173362161154499 0.7348944502191112\n" ] }, { "data": { "text/plain": [ "8" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5163200458762819 0.7358717310302197\n" ] }, { "data": { "text/plain": [ "9" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0.5155178654158614 0.7361583540242904\n" ] } ], "source": [ "for epoch in range(10):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " for i in range(0, train_y.shape[0], BATCH_SIZE):\n", " x = train_x_w2v[i:i+BATCH_SIZE]\n", " x = torch.tensor(np.array(x).astype(np.float32))\n", " y = train_y[i:i+BATCH_SIZE]\n", " y = torch.tensor(y.astype(np.float32)).reshape(-1, 1)\n", " y_pred = model(x)\n", " acc_score += torch.sum((y_pred > 0.5) == y).item()\n", " items_total += y.shape[0]\n", "\n", " optimizer.zero_grad()\n", " loss = criterion(y_pred, y)\n", " loss.backward()\n", " optimizer.step()\n", "\n", " loss_score += loss.item() * y.shape[0]\n", " display(epoch)\n", " #display(get_loss_acc(model, train_x_w2v, train_y))\n", " #display(get_loss_acc(model, dev_x_w2v2, dev_y))\n", " print((loss_score / items_total), (acc_score / items_total))" ] }, { "cell_type": "code", "execution_count": 119, "metadata": {}, "outputs": [], "source": [ "pred_dev = predict(model, dev_x_w2v2)\n", "pred_test = predict(model, test_x_w2v)" ] }, { "cell_type": "code", "execution_count": 120, "metadata": {}, "outputs": [], "source": [ "dev_pred = [int(i) for i in pred_dev]\n", "test_pred = [int(i) for i in pred_test]" ] }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [], "source": [ "dev_pred = np.array(dev_pred)\n", "test_pred = np.array(test_pred)" ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "numpy.ndarray" ] }, "execution_count": 122, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(dev_pred)" ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 0, ..., 0, 1, 0])" ] }, "execution_count": 123, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dev_pred" ] }, { "cell_type": "code", "execution_count": 124, "metadata": {}, "outputs": [], "source": [ "np.savetxt(\"dev-0/out.tsv\",dev_pred, delimiter=\"\\t\", fmt='%d')\n", "np.savetxt(\"test-A/out.tsv\",test_pred, delimiter=\"\\t\", fmt='%d')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "py", "language": "python", "name": "py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" } }, "nbformat": 4, "nbformat_minor": 2 }