#!/usr/bin/env python # coding: utf-8 # In[3]: from sklearn.model_selection import train_test_split from sklearn.datasets import fetch_20newsgroups # https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score # In[71]: import numpy as np import gensim import torch import pandas as pd from gensim.test.utils import common_texts from gensim.models import Word2Vec import csv # In[84]: train_x = pd.read_csv('train/in.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False) train_y = pd.read_csv('train/expected.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False) dev_x = pd.read_csv('dev-0/in.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False) dev_y = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False) test_x = pd.read_csv('test-A/in.tsv', header=None, sep='\t',quoting=csv.QUOTE_NONE, error_bad_lines=False) # In[85]: print(len(train_x)) # In[86]: print(len(train_y)) # In[87]: train_y = train_y[0] # In[100]: dev_y = dev_y[0] # In[88]: print(type(train_y)) # In[89]: train_y = train_y.to_numpy() # In[102]: dev_y = dev_y.to_numpy() # In[90]: train_x.head # In[91]: dev_x.head() # In[92]: train_x = train_x[0] # In[93]: vec_model = Word2Vec(train_x, vector_size=100, window=5, min_count=1, workers=4) # In[ ]: def w2v(model, data): return np.array([np.mean([model.wv[word] if word in model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in data]) # In[ ]: w2v() # In[96]: dev_x = dev_x[0] test_x = test_x[0] # In[95]: vec_x_train = np.array([np.mean([vec_model.wv[word] if word in vec_model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in train_x]) # In[97]: vec_x_dev = np.array([np.mean([vec_model.wv[word] if word in vec_model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in dev_x]) vec_x_test = np.array([np.mean([vec_model.wv[word] if word in vec_model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in test_x]) # In[36]: X_dev0_w2v = vectorize(vec_model,dev_x) X_test_w2v = vectorize(vec_model,test_x) # In[7]: class NeuralNetworkModel(torch.nn.Module): def __init__(self): super(NeuralNetworkModel, self).__init__() self.fc1 = torch.nn.Linear(FEAUTERES,500) self.fc2 = torch.nn.Linear(500,1) def forward(self, x): x = self.fc1(x) x = torch.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x # In[37]: criterion = torch.nn.BCELoss() optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1) # In[8]: def get_loss_acc(model, X_dataset, Y_dataset): loss_score = 0 acc_score = 0 items_total = 0 model.eval() for i in range(0, Y_dataset.shape[0], BATCH_SIZE): X = np.array(X_dataset[i:i+BATCH_SIZE]).astype(np.float32) X = torch.tensor(X) Y = Y_dataset[i:i+BATCH_SIZE] Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1) Y_predictions = model(X) acc_score += torch.sum((Y_predictions > 0.5) == Y).item() items_total += Y.shape[0] loss = criterion(Y_predictions, Y) loss_score += loss.item() * Y.shape[0] return (loss_score / items_total), (acc_score / items_total) # In[9]: def predict(model, data): model.eval() predictions = [] for x in data: X = torch.tensor(np.array(x).astype(np.float32)) Y_predictions = model(X) if Y_predictions[0] > 0.5: predictions.append("1") else: predictions.append("0") return predictions # In[18]: FEAUTERES = 100 # In[62]: BATCH_SIZE = 5 # In[58]: nn_model = NeuralNetworkModel() # In[103]: for epoch in range(7): loss_score = 0 acc_score = 0 items_total = 0 nn_model.train() for i in range(0, train_y.shape[0], BATCH_SIZE): X = vec_x_train[i:i+BATCH_SIZE] X = torch.tensor(X) Y = train_y[i:i+BATCH_SIZE] Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1) Y_predictions = nn_model(X) acc_score += torch.sum((Y_predictions > 0.5) == Y).item() items_total += Y.shape[0] optimizer.zero_grad() loss = criterion(Y_predictions, Y) loss.backward() optimizer.step() loss_score += loss.item() * Y.shape[0] display(epoch) display(get_loss_acc(nn_model,vec_x_train, train_y)) display(get_loss_acc(nn_model, vec_x_dev, dev_y)) # In[104]: dev_pred = predict(nn_model, vec_x_dev) test_pred = predict(nn_model, vec_x_test) # In[105]: dev_pred # In[119]: dev_pred = [int(i) for i in dev_pred] test_pred = [int(i) for i in test_pred] # In[120]: dev_pred = np.array(dev_pred) test_pred = np.array(test_pred) # In[117]: dev_pred # In[121]: np.savetxt("dev-0/out.tsv",dev_pred, delimiter="\t", fmt='%d') # In[122]: np.savetxt("test-A/out.tsv",test_pred, delimiter="\t", fmt='%d') # In[ ]: