forked from kubapok/retroc2
143 lines
2.1 KiB
Python
143 lines
2.1 KiB
Python
|
#!/usr/bin/env python
|
||
|
# coding: utf-8
|
||
|
|
||
|
# In[24]:
|
||
|
|
||
|
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import math
|
||
|
from sklearn.pipeline import make_pipeline
|
||
|
import os
|
||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||
|
from sklearn.linear_model import LinearRegression
|
||
|
from sklearn.metrics import mean_squared_error
|
||
|
import csv
|
||
|
|
||
|
|
||
|
# In[39]:
|
||
|
|
||
|
|
||
|
train = pd.read_csv('train/train.tsv', header=None, sep='\t')
|
||
|
dev_x0 = pd.read_csv('dev-0/in.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||
|
dev_y0 = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t',quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||
|
dev_x1 = pd.read_csv('dev-1/in.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||
|
dev_y1 = pd.read_csv('dev-1/expected.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||
|
test_x = pd.read_csv('test-A/in.tsv', header=None, sep='\t', quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||
|
|
||
|
|
||
|
# In[26]:
|
||
|
|
||
|
|
||
|
len(dev_y0[0])
|
||
|
|
||
|
|
||
|
# In[27]:
|
||
|
|
||
|
|
||
|
len(dev_x0[0])
|
||
|
|
||
|
|
||
|
# In[40]:
|
||
|
|
||
|
|
||
|
len(dev_y1[0])
|
||
|
|
||
|
|
||
|
# In[41]:
|
||
|
|
||
|
|
||
|
len(dev_x1[0])
|
||
|
|
||
|
|
||
|
# In[43]:
|
||
|
|
||
|
|
||
|
train_x = train[4]
|
||
|
train_y_mean = (train.iloc[:, 0] + train.iloc[:, 1])/2
|
||
|
|
||
|
|
||
|
# In[49]:
|
||
|
|
||
|
|
||
|
train_y_mean = train_y_mean[:30000]
|
||
|
train_x = train_x[:30000]
|
||
|
|
||
|
|
||
|
# In[51]:
|
||
|
|
||
|
|
||
|
vectorizer = TfidfVectorizer()
|
||
|
X_train_tfidf = vectorizer.fit_transform(train_x)
|
||
|
|
||
|
|
||
|
# In[52]:
|
||
|
|
||
|
|
||
|
lm = LinearRegression()
|
||
|
lm.fit(X_train_tfidf,train_y_mean)
|
||
|
|
||
|
X_dev0_= vectorizer.transform(dev_x0[0])
|
||
|
X_dev1_ = vectorizer.transform(dev_x1[0])
|
||
|
X_test_ = vectorizer.transform(test_x[0])
|
||
|
|
||
|
|
||
|
# In[54]:
|
||
|
|
||
|
|
||
|
dev0_y_pred = lm.predict(X_dev0_)
|
||
|
dev1_y_pred = lm.predict(X_dev1_)
|
||
|
test_y_pred = lm.predict(X_test_)
|
||
|
|
||
|
|
||
|
# In[55]:
|
||
|
|
||
|
|
||
|
print(dev_y0[:19998])
|
||
|
|
||
|
|
||
|
# In[58]:
|
||
|
|
||
|
|
||
|
rmse_dev0 = mean_squared_error(dev_y0, dev0_y_pred, squared=False)
|
||
|
rmse_dev1 = mean_squared_error(dev_y1,dev1_y_pred, squared = False)
|
||
|
|
||
|
print(rmse_dev0, rmse_dev1)
|
||
|
|
||
|
|
||
|
# In[18]:
|
||
|
|
||
|
|
||
|
print(dev_y0[:10])
|
||
|
|
||
|
|
||
|
# In[64]:
|
||
|
|
||
|
|
||
|
type(dev0_y_pred)
|
||
|
|
||
|
|
||
|
# In[65]:
|
||
|
|
||
|
|
||
|
np.savetxt("out.tsv",dev0_y_pred, delimiter="\t", fmt='%1.8f')
|
||
|
|
||
|
|
||
|
# In[66]:
|
||
|
|
||
|
|
||
|
np.savetxt("out.tsv",dev1_y_pred, delimiter="\t", fmt='%1.8f')
|
||
|
|
||
|
|
||
|
# In[67]:
|
||
|
|
||
|
|
||
|
np.savetxt("out.tsv",test_y_pred, delimiter="\t", fmt='%1.8f')
|
||
|
|
||
|
|
||
|
# In[ ]:
|
||
|
|
||
|
|
||
|
|
||
|
|