2020-04-29 21:47:30 +02:00
|
|
|
import pygame
|
|
|
|
import numpy as np
|
|
|
|
import math
|
|
|
|
|
|
|
|
########################
|
|
|
|
### WS ###
|
|
|
|
########################
|
|
|
|
# For CNN:
|
|
|
|
|
|
|
|
import keras
|
|
|
|
from keras.preprocessing import image
|
2020-04-30 09:42:18 +02:00
|
|
|
from keras.models import Sequential
|
|
|
|
from keras.layers import Convolution2D
|
|
|
|
from keras.layers import MaxPooling2D
|
|
|
|
from keras.layers import Flatten
|
|
|
|
from keras.layers import Dense
|
2020-04-29 21:47:30 +02:00
|
|
|
|
2020-04-30 09:42:18 +02:00
|
|
|
|
|
|
|
#initializing:
|
|
|
|
classifier = Sequential()
|
|
|
|
#Convolution:
|
|
|
|
classifier.add(Convolution2D(32, (3, 3), input_shape =(256, 256, 3), activation = "relu"))
|
|
|
|
#Pooling:
|
|
|
|
classifier.add(MaxPooling2D(pool_size = (2,2)))
|
|
|
|
|
|
|
|
# Adding a second convolutional layer
|
|
|
|
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
|
|
|
|
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
|
|
|
|
|
|
|
#Flattening:
|
|
|
|
classifier.add(Flatten())
|
|
|
|
|
|
|
|
#Fully connected layers::
|
|
|
|
classifier.add(Dense(units = 128, activation = "relu"))
|
|
|
|
classifier.add(Dense(units = 3, activation = "softmax"))
|
|
|
|
|
|
|
|
# loading weigjts:
|
|
|
|
classifier.load_weights('s444523/best_model_weights2.h5')
|
|
|
|
#Making CNN:
|
|
|
|
classifier.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
|
|
|
|
|
2020-04-29 21:47:30 +02:00
|
|
|
|
|
|
|
########################
|
|
|
|
### WS ###
|
|
|
|
########################
|
|
|
|
# Colors:
|
|
|
|
# Define some colors
|
|
|
|
BLACK = (0, 0, 0)
|
|
|
|
WHITE = (255, 255, 255)
|
|
|
|
GREEN = (0, 255, 0)
|
|
|
|
RED = (255, 0, 0)
|
|
|
|
BLUE = (0, 0, 240)
|
|
|
|
|
|
|
|
#Width and Height of each square:
|
|
|
|
WIDTH = 20
|
|
|
|
HEIGHT = 20
|
|
|
|
|
|
|
|
#Margin:
|
|
|
|
MARGIN = 5
|
|
|
|
grid = [[0 for x in range(16)] for y in range(16)]
|
|
|
|
|
|
|
|
def change_value(i, j, width, n):
|
|
|
|
for r in range (i, i+width):
|
|
|
|
for c in range (j, j+width):
|
|
|
|
grid[r][c] = n
|
|
|
|
|
|
|
|
# the class "Table"
|
|
|
|
class Table:
|
|
|
|
def __init__(self, coordinate_i, coordinate_j, state = 0):
|
|
|
|
self.coordinate_i = coordinate_i
|
|
|
|
self.coordinate_j = coordinate_j
|
|
|
|
self.state = state
|
|
|
|
change_value(coordinate_i, coordinate_j, 2, 1)
|
|
|
|
def get_destination_coor(self):
|
|
|
|
return [self.coordinate_i, self.coordinate_j-1]
|
|
|
|
|
|
|
|
########################
|
|
|
|
### WS ###
|
|
|
|
########################
|
|
|
|
|
|
|
|
# The finction "state of meal" chooses a photo of a plate at the given table.
|
|
|
|
def state_of_meal(self):
|
2020-04-30 09:42:18 +02:00
|
|
|
## !!!!!!###
|
|
|
|
num = np.random.randint(67, 100)
|
|
|
|
## !!!!!!###
|
|
|
|
|
2020-04-29 21:47:30 +02:00
|
|
|
if num<=67:
|
|
|
|
img_name = 'plates/{}.png'.format(num)
|
|
|
|
else:
|
|
|
|
img_name = 'plates/{}.jpg'.format(num)
|
|
|
|
return img_name
|
|
|
|
|
|
|
|
# The function "change state" changes the value of the state variable.
|
|
|
|
# It informs, whether the client are waiting for the waiter to make an order
|
|
|
|
# (0 - empty plates) are eating (2 - full plates) or are waiting for the
|
|
|
|
# waiter to get a recipt (1 - dirty plates)
|
|
|
|
|
|
|
|
def change_state(self, st):
|
|
|
|
self.state = st
|
|
|
|
|
|
|
|
########################
|
|
|
|
### /WS ###
|
|
|
|
########################
|
|
|
|
|
|
|
|
|
|
|
|
class Kitchen:
|
|
|
|
def __init__(self, coordinate_i, coordinate_j):
|
|
|
|
self.coordinate_i = coordinate_i
|
|
|
|
self.coordinate_j = coordinate_j
|
|
|
|
change_value(coordinate_i, coordinate_j, 3, 2)
|
|
|
|
|
|
|
|
class Agent:
|
|
|
|
def __init__(self,orig_coordinate_i, orig_coordinate_j):
|
|
|
|
self.orig_coordinate_i = orig_coordinate_i
|
|
|
|
self.orig_coordinate_j = orig_coordinate_j
|
|
|
|
self.state = np.array([1,2])
|
|
|
|
change_value(orig_coordinate_j, orig_coordinate_j, 1, 3)
|
|
|
|
self.state_update(orig_coordinate_i, orig_coordinate_j)
|
|
|
|
self.previous_grid = np.array([-1, -1])
|
|
|
|
|
|
|
|
def state_update(self, c1, c2):
|
|
|
|
self.state[0] = c1
|
|
|
|
self.state[1] = c2
|
|
|
|
|
|
|
|
def leave(self):
|
|
|
|
change_value(self.state[0], self.state[1], 1, 0)
|
|
|
|
|
|
|
|
def previous_grid_update(self):
|
|
|
|
self.previous_grid[0] = self.state[0]
|
|
|
|
self.previous_grid[1] = self.state[1]
|
|
|
|
|
|
|
|
def move_to(self, nextPos):
|
|
|
|
self.previous_grid_update()
|
|
|
|
self.leave()
|
|
|
|
self.state_update(x + nextPos[0], y + nextPos[1])
|
|
|
|
change_value(self.state[0], self.state[1], 1, 3)
|
|
|
|
|
|
|
|
########################
|
|
|
|
### WS ###
|
|
|
|
########################
|
|
|
|
|
|
|
|
#The function "define_table" serches for the apropriate table in the
|
|
|
|
# table_dict (to enable the usage of class attributes and methods)
|
|
|
|
def define_table(self, t_num):
|
|
|
|
t_num = 'table{}'.format(t_num)
|
|
|
|
t_num = table_dict[t_num]
|
|
|
|
return t_num
|
|
|
|
|
|
|
|
# The function "check_plates" uses the pretrained CNN model to classify
|
|
|
|
# the plate on the table as empty(0), full(2) or dirty(1)
|
|
|
|
def check_plates(self, table_number):
|
|
|
|
table = self.define_table(table_number)
|
|
|
|
plate = table.state_of_meal()
|
2020-04-30 09:42:18 +02:00
|
|
|
plate= image.load_img(plate, target_size = (256, 256))
|
|
|
|
plate = image.img_to_array(plate)
|
|
|
|
plate = np.expand_dims(plate, axis = 0)
|
|
|
|
result = classifier.predict(plate)[0]
|
|
|
|
print (result)
|
|
|
|
if result[1] == 1:
|
|
|
|
result[1] = 0
|
|
|
|
x = int(input("Excuse me, have You done eating? 1=Yes, 2 = No \n"))
|
|
|
|
result[x] = 1
|
|
|
|
for i, x in enumerate(result):
|
|
|
|
if result[i] == 1:
|
|
|
|
table.change_state(i)
|
|
|
|
|
2020-04-29 21:47:30 +02:00
|
|
|
########################
|
|
|
|
### /WS ###
|
|
|
|
########################
|
|
|
|
# check the next grid is not the previous grid to prevent the loop
|
|
|
|
def next_is_previous(self, x, y):
|
|
|
|
return np.array_equal(self.previous_grid, np.array([x, y]))
|
|
|
|
|
|
|
|
def check_done():
|
|
|
|
for event in pygame.event.get(): # Checking for the event
|
|
|
|
if event.type == pygame.QUIT: # If the program is closed:
|
|
|
|
return True # To exit the loop
|
|
|
|
|
|
|
|
def draw_grid():
|
|
|
|
for row in range(16): # Drawing the grid
|
|
|
|
for column in range(16):
|
|
|
|
color = WHITE
|
|
|
|
if grid[row][column] == 1:
|
|
|
|
color = GREEN
|
|
|
|
if grid[row][column] == 2:
|
|
|
|
color = RED
|
|
|
|
if grid[row][column] == 3:
|
|
|
|
color = BLUE
|
|
|
|
pygame.draw.rect(screen,
|
|
|
|
color,
|
|
|
|
[(MARGIN + WIDTH) * column + MARGIN,
|
|
|
|
(MARGIN + HEIGHT) * row + MARGIN,
|
|
|
|
WIDTH,
|
|
|
|
HEIGHT])
|
|
|
|
|
|
|
|
# calculate the distance between two points
|
|
|
|
def distance(point1, point2):
|
|
|
|
return math.sqrt((point2[0] - point1[0])**2 + (point2[1] - point1[1])**2)
|
|
|
|
|
|
|
|
## default positions of the agent:
|
|
|
|
x = 12
|
|
|
|
y = 12
|
|
|
|
agent = Agent(x, y)
|
|
|
|
|
|
|
|
table1 = Table(2, 2)
|
|
|
|
table2 = Table (2,7)
|
|
|
|
table3 = Table(2, 12)
|
|
|
|
table4 = Table(7, 2)
|
|
|
|
table5 = Table(7, 7)
|
|
|
|
table6 = Table(7, 12)
|
|
|
|
table7 = Table(12, 2)
|
|
|
|
table8 = Table(12, 7)
|
|
|
|
|
|
|
|
|
|
|
|
################### WS #####################
|
|
|
|
# I added the dict to loop through tables.
|
|
|
|
table_dict = {"table1":table1, "table2":table2, "table3":table3,"table4":table4,
|
|
|
|
"table5":table5,"table6":table6,"table7":table7,"table8":table8
|
|
|
|
}
|
|
|
|
################### WS #####################
|
|
|
|
|
|
|
|
#class Kitchen:
|
|
|
|
kitchen = Kitchen(13, 13)
|
|
|
|
|
|
|
|
# destination array
|
|
|
|
destination_tables = []
|
|
|
|
|
|
|
|
|
|
|
|
pygame.init()
|
|
|
|
WINDOW_SIZE = [405, 405]
|
|
|
|
screen = pygame.display.set_mode(WINDOW_SIZE)
|
|
|
|
|
|
|
|
pygame.display.set_caption("Waiter_Grid3")
|
|
|
|
|
|
|
|
done = False
|
|
|
|
|
|
|
|
clock = pygame.time.Clock()
|
|
|
|
|
|
|
|
# -------- Main Program Loop -----------
|
|
|
|
while not done:
|
|
|
|
screen.fill(BLACK) # Background color
|
|
|
|
|
|
|
|
draw_grid()
|
|
|
|
done = check_done()
|
|
|
|
for value in table_dict.values(): destination_tables.append(value.get_destination_coor())
|
|
|
|
# We need to define the number of the table by which we are in:
|
|
|
|
|
|
|
|
num_of_table = 1
|
|
|
|
while len(destination_tables) != 0:
|
|
|
|
|
|
|
|
# set the first element(table) in array as currDestination
|
|
|
|
currDestination = destination_tables[0]
|
|
|
|
# from kitchen to table
|
|
|
|
while agent.state[0] != currDestination[0] or agent.state[1] != currDestination[1]:
|
|
|
|
|
|
|
|
#///////////////////////////////////////
|
|
|
|
x = agent.state[0]
|
|
|
|
y = agent.state[1]
|
|
|
|
|
|
|
|
# set a huge default number
|
|
|
|
minDis = 9999
|
|
|
|
nextPos = []
|
|
|
|
# check whether the agent goes left
|
|
|
|
if y-1 >= 0 and grid[x][y-1] != 1 and not agent.next_is_previous(x, y-1):
|
|
|
|
minDis = distance([x, y-1], currDestination)
|
|
|
|
nextPos = [0, -1] # means go left
|
|
|
|
|
|
|
|
# check whether the agent goes right
|
|
|
|
if y+1 <= 15 and grid[x][y+1] != 1 and grid[x][y+1] != 2 and not agent.next_is_previous(x, y+1):
|
|
|
|
d = distance([x, y+1], currDestination)
|
|
|
|
if d < minDis:
|
|
|
|
minDis = d
|
|
|
|
nextPos = [0, 1] # means go right
|
|
|
|
|
|
|
|
# check whether the agent goes up
|
|
|
|
if x-1 >= 0 and grid[x-1][y] != 1 and not agent.next_is_previous(x-1, y):
|
|
|
|
d = distance([x-1, y], currDestination)
|
|
|
|
if d < minDis:
|
|
|
|
minDis = d
|
|
|
|
nextPos = [-1, 0] # means go up
|
|
|
|
|
|
|
|
# check whether the agent goes down
|
|
|
|
if x+1 <= 15 and grid[x+1][y] != 1 and grid[x+1][y] != 2 and not agent.next_is_previous(x+1, y):
|
|
|
|
d = distance([x+1, y], currDestination)
|
|
|
|
if d < minDis:
|
|
|
|
minDis = d
|
|
|
|
nextPos = [1, 0] # means go down
|
|
|
|
|
|
|
|
# print(agent.previous_grid)
|
|
|
|
agent.move_to(nextPos)
|
|
|
|
#////////////////////////////////////////////////
|
|
|
|
|
|
|
|
pygame.time.delay(100)
|
|
|
|
screen.fill(BLACK) # Background color
|
|
|
|
draw_grid() # Drawing the grid
|
|
|
|
clock.tick(60) # Limit to 60 frames per second
|
|
|
|
pygame.display.flip() # Updating the screen
|
|
|
|
|
|
|
|
|
|
|
|
########################
|
|
|
|
### WS ###
|
|
|
|
########################
|
|
|
|
#pygame.time.delay(100)
|
|
|
|
print("I'm at a table no. {}".format(num_of_table))
|
|
|
|
## Checking at what state are the plates:
|
|
|
|
agent.check_plates(num_of_table)
|
|
|
|
num_of_table +=1
|
|
|
|
|
|
|
|
########################
|
|
|
|
### /WS ###
|
|
|
|
########################
|
|
|
|
# set the kitchen as currDestination
|
|
|
|
currDestination = [13, 12]
|
|
|
|
# from table to kitchen
|
|
|
|
while agent.state[0] != currDestination[0] or agent.state[1] != currDestination[1]:
|
|
|
|
|
|
|
|
#///////////////////////////////////////
|
|
|
|
x = agent.state[0]
|
|
|
|
y = agent.state[1]
|
|
|
|
|
|
|
|
# set a huge default number
|
|
|
|
minDis = 9999
|
|
|
|
nextPos = []
|
|
|
|
# check whether the agent goes left
|
|
|
|
if y-1 >= 0 and grid[x][y-1] != 1 and not agent.next_is_previous(x, y-1):
|
|
|
|
minDis = distance([x, y-1], currDestination)
|
|
|
|
nextPos = [0, -1] # means go left
|
|
|
|
|
|
|
|
# check whether the agent goes right
|
|
|
|
if y+1 <= 15 and grid[x][y+1] != 1 and grid[x][y+1] != 2 and not agent.next_is_previous(x, y+1):
|
|
|
|
d = distance([x, y+1], currDestination)
|
|
|
|
if d < minDis:
|
|
|
|
minDis = d
|
|
|
|
nextPos = [0, 1] # means go right
|
|
|
|
|
|
|
|
# check whether the agent goes up
|
|
|
|
if x-1 >= 0 and grid[x-1][y] != 1 and grid[x-1][y] != 2 and not agent.next_is_previous(x-1, y):
|
|
|
|
d = distance([x-1, y], currDestination)
|
|
|
|
if d < minDis:
|
|
|
|
minDis = d
|
|
|
|
nextPos = [-1, 0] # means go up
|
|
|
|
|
|
|
|
# check whether the agent goes down
|
|
|
|
if x+1 <= 15 and grid[x+1][y] != 1 and grid[x+1][y] != 2 and not agent.next_is_previous(x+1, y):
|
|
|
|
d = distance([x+1, y], currDestination)
|
|
|
|
if d < minDis:
|
|
|
|
minDis = d
|
|
|
|
nextPos = [1, 0] # means go down
|
|
|
|
|
|
|
|
agent.move_to(nextPos)
|
|
|
|
#////////////////////////////////////////////////
|
|
|
|
|
|
|
|
pygame.time.delay(100)
|
|
|
|
screen.fill(BLACK) # Background color
|
|
|
|
draw_grid() # Drawing the grid
|
|
|
|
clock.tick(60) # Limit to 60 frames per second
|
|
|
|
pygame.display.flip() # Updating the screen
|
|
|
|
|
|
|
|
|
|
|
|
destination_tables = destination_tables[1:] # remove the first element in the list
|
|
|
|
# After each fool loop, we can quit the program:.
|
|
|
|
if len(destination_tables) == 0:
|
|
|
|
play_again = 1
|
2020-04-30 09:42:18 +02:00
|
|
|
play_again = int(input("Exit? 0=No, 1=Yes \n"))
|
2020-04-29 21:47:30 +02:00
|
|
|
if play_again:
|
|
|
|
pygame.quit()
|
|
|
|
|
|
|
|
|
|
|
|
pygame.quit()
|