commit 9bd5acdfccade3096e5c588f7864a49e89a48020 Author: Miguel Buenache Date: Tue Oct 23 18:08:13 2018 +0200 exescises diff --git a/exercise-02-plik.pdf b/exercise-02-plik.pdf new file mode 100644 index 0000000..929bdd8 Binary files /dev/null and b/exercise-02-plik.pdf differ diff --git a/exercise-02-plik.tex b/exercise-02-plik.tex new file mode 100644 index 0000000..59952b1 --- /dev/null +++ b/exercise-02-plik.tex @@ -0,0 +1,63 @@ +\documentclass{article} +\usepackage[utf8]{inputenc} +\usepackage{polski} +\usepackage{amsmath} +\usepackage{amsthm} +\begin{document} + +\begin{enumerate} + +\newtheorem{thm}{Theorem} + +\newtheorem{df}{Definition} + +\item Properly typeset the following command and properly refere to it in the text +\begin{align*} +&\sum_{i_1,\dots,i_m} a_{i_1,\dots,i_m}^{2m}{m+1} {\frac{m+1}{2m}} \leq \\ +C \sup\Big\{ |&\sum_{i_1,\dots, i_m} a_{i_1,\dots,i_m} x^1_{i_1}\dots x^m_{i_m}|: \|(x_i^k)_{i=1}^n \|_\infty\leq1,\ 1\leq k\leq m\Big\}, +\end{align*} +\item Properly typset the expression: $\operatorname{Re} z$. + +\item Properly typeset indexes in the following sum: +\[ +f(x)=\sum_{\substack{n=0\\ k=2}}^\infty a_n^k +\] +\item Properly typeset the following theorem +\begin{thm}[Cauchy--Hadamard] + \emph{The radius of convergence $R$ of the power series} +\[ +\sum_{n=0}^\infty a_n(z-z_0)^n,\ \ \ \ \ |z-z_0|