diff --git a/cw/08_regresja_logistyczna.ipynb b/cw/08_regresja_logistyczna.ipynb
new file mode 100644
index 0000000..efcec1b
--- /dev/null
+++ b/cw/08_regresja_logistyczna.ipynb
@@ -0,0 +1,1050 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Regresja logistyczna"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## import bibliotek"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/media/kuba/ssdsam/anaconda3/lib/python3.8/site-packages/gensim/similarities/__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning.\n",
+ " warnings.warn(msg)\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import gensim\n",
+ "import torch\n",
+ "import pandas as pd\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "from sklearn.datasets import fetch_20newsgroups\n",
+ "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
+ "\n",
+ "from sklearn.feature_extraction.text import TfidfVectorizer\n",
+ "from sklearn.metrics import accuracy_score"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "CATEGORIES = ['soc.religion.christian', 'alt.atheism']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "newsgroups_train_dev = fetch_20newsgroups(subset = 'train', categories=CATEGORIES)\n",
+ "newsgroups_test = fetch_20newsgroups(subset = 'test', categories=CATEGORIES)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "newsgroups_train_dev_text = newsgroups_train_dev['data']\n",
+ "newsgroups_test_text = newsgroups_test['data']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Y_train_dev = newsgroups_train_dev['target']\n",
+ "Y_test = newsgroups_test['target']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "newsgroups_train_text, newsgroups_dev_text, Y_train, Y_dev = train_test_split(newsgroups_train_dev_text, Y_train_dev, random_state=42)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Y_names = newsgroups_train_dev['target_names']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['alt.atheism', 'soc.religion.christian']"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y_names"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## baseline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## zadanie (5 minut)\n",
+ "\n",
+ "- stworzyć baseline "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### PYTANIE: co jest nie tak z regresją liniową?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Regresja logistyczna"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### wektoryzacja"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## zadanie (5 minut)\n",
+ "\n",
+ "- na podstawie newsgroups_train_text stworzyć tfidf wektoryzer ze słownikiem max 10_000\n",
+ "- wygenerować wektory: X_train, X_dev, X_test"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### model - inicjalizacja "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class LogisticRegressionModel(torch.nn.Module):\n",
+ "\n",
+ " def __init__(self):\n",
+ " super(LogisticRegressionModel, self).__init__()\n",
+ " self.fc = torch.nn.Linear(FEAUTERES,1)\n",
+ "\n",
+ " def forward(self, x):\n",
+ " x = self.fc(x)\n",
+ " x = torch.sigmoid(x)\n",
+ " return x"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lr_model = LogisticRegressionModel()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tensor([[0.4978],\n",
+ " [0.5009],\n",
+ " [0.4998],\n",
+ " [0.4990],\n",
+ " [0.5018]], grad_fn=)"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "lr_model(torch.Tensor(X_train[0:5].astype(np.float32).todense()))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "LogisticRegressionModel(\n",
+ " (fc): Linear(in_features=10000, out_features=1, bias=True)\n",
+ ")"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "lr_model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Parameter containing:\n",
+ " tensor([[-0.0059, 0.0035, 0.0021, ..., -0.0042, -0.0057, -0.0049]],\n",
+ " requires_grad=True),\n",
+ " Parameter containing:\n",
+ " tensor([-0.0023], requires_grad=True)]"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "list(lr_model.parameters())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## model - trenowanie"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BATCH_SIZE = 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "criterion = torch.nn.BCELoss()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "optimizer = torch.optim.SGD(lr_model.parameters(), lr = 0.1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "809"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y_train.shape[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "loss_score = 0\n",
+ "acc_score = 0\n",
+ "items_total = 0\n",
+ "lr_model.train()\n",
+ "for i in range(0, Y_train.shape[0], BATCH_SIZE):\n",
+ " X = X_train[i:i+BATCH_SIZE]\n",
+ " X = torch.tensor(X.astype(np.float32).todense())\n",
+ " Y = Y_train[i:i+BATCH_SIZE]\n",
+ " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
+ " Y_predictions = lr_model(X)\n",
+ " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
+ " items_total += Y.shape[0] \n",
+ " \n",
+ " optimizer.zero_grad()\n",
+ " loss = criterion(Y_predictions, Y)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ " \n",
+ "\n",
+ " loss_score += loss.item() * Y.shape[0] "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tensor([[0.5667],\n",
+ " [0.5802],\n",
+ " [0.5757],\n",
+ " [0.5670]], grad_fn=)"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y_predictions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tensor([[0.],\n",
+ " [1.],\n",
+ " [1.],\n",
+ " [0.]])"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "452"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "acc_score"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "809"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "items_total"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "accuracy: 0.5587144622991347\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f'accuracy: {acc_score / items_total}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "BCE loss: 0.6745463597170355\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f'BCE loss: {loss_score / items_total}')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### model - ewaluacja"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_loss_acc(model, X_dataset, Y_dataset):\n",
+ " loss_score = 0\n",
+ " acc_score = 0\n",
+ " items_total = 0\n",
+ " model.eval()\n",
+ " for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n",
+ " X = X_dataset[i:i+BATCH_SIZE]\n",
+ " X = torch.tensor(X.astype(np.float32).todense())\n",
+ " Y = Y_dataset[i:i+BATCH_SIZE]\n",
+ " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
+ " Y_predictions = model(X)\n",
+ " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
+ " items_total += Y.shape[0] \n",
+ "\n",
+ " optimizer.zero_grad()\n",
+ " loss = criterion(Y_predictions, Y)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ "\n",
+ "\n",
+ " loss_score += loss.item() * Y.shape[0] \n",
+ " return (loss_score / items_total), (acc_score / items_total)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.6443227143826974, 0.622991347342398)"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "get_loss_acc(lr_model, X_train, Y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.6369243131743537, 0.6037037037037037)"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "get_loss_acc(lr_model, X_dev, Y_dev)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.6323775731785694, 0.6499302649930265)"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "get_loss_acc(lr_model, X_test, Y_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### wagi modelu"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Parameter containing:\n",
+ " tensor([[ 0.0314, -0.0375, 0.0131, ..., -0.0057, -0.0008, -0.0089]],\n",
+ " requires_grad=True),\n",
+ " Parameter containing:\n",
+ " tensor([0.0563], requires_grad=True)]"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "list(lr_model.parameters())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tensor([ 0.0314, -0.0375, 0.0131, ..., -0.0057, -0.0008, -0.0089],\n",
+ " grad_fn=)"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "list(lr_model.parameters())[0][0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.return_types.topk(\n",
+ "values=tensor([0.3753, 0.2305, 0.2007, 0.2006, 0.1993, 0.1952, 0.1930, 0.1898, 0.1831,\n",
+ " 0.1731, 0.1649, 0.1647, 0.1543, 0.1320, 0.1314, 0.1303, 0.1296, 0.1261,\n",
+ " 0.1245, 0.1243], grad_fn=),\n",
+ "indices=tensor([8942, 6336, 1852, 9056, 1865, 4039, 7820, 5002, 8208, 1857, 9709, 803,\n",
+ " 1046, 130, 4306, 6481, 4370, 4259, 4285, 1855]))"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "torch.topk(list(lr_model.parameters())[0][0], 20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the\n",
+ "of\n",
+ "christ\n",
+ "to\n",
+ "church\n",
+ "god\n",
+ "rutgers\n",
+ "jesus\n",
+ "sin\n",
+ "christians\n",
+ "we\n",
+ "and\n",
+ "athos\n",
+ "1993\n",
+ "hell\n",
+ "our\n",
+ "his\n",
+ "he\n",
+ "heaven\n",
+ "christian\n"
+ ]
+ }
+ ],
+ "source": [
+ "for i in torch.topk(list(lr_model.parameters())[0][0], 20)[1]:\n",
+ " print(vectorizer.get_feature_names()[i])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.return_types.topk(\n",
+ "values=tensor([-0.3478, -0.2578, -0.2455, -0.2347, -0.2330, -0.2265, -0.2205, -0.2050,\n",
+ " -0.2044, -0.1979, -0.1876, -0.1790, -0.1747, -0.1745, -0.1734, -0.1647,\n",
+ " -0.1639, -0.1617, -0.1601, -0.1592], grad_fn=),\n",
+ "indices=tensor([5119, 8096, 5420, 4436, 6194, 1627, 6901, 5946, 9970, 3116, 1036, 9906,\n",
+ " 5654, 8329, 7869, 1039, 1991, 4926, 5035, 4925]))"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "keith\n",
+ "sgi\n",
+ "livesey\n",
+ "host\n",
+ "nntp\n",
+ "caltech\n",
+ "posting\n",
+ "morality\n",
+ "you\n",
+ "edu\n",
+ "atheism\n",
+ "wpd\n",
+ "mathew\n",
+ "solntze\n",
+ "sandvik\n",
+ "atheists\n",
+ "com\n",
+ "islamic\n",
+ "jon\n",
+ "islam\n"
+ ]
+ }
+ ],
+ "source": [
+ "for i in torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)[1]:\n",
+ " print(vectorizer.get_feature_names()[i])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### sieć neuronowa"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class NeuralNetworkModel(torch.nn.Module):\n",
+ "\n",
+ " def __init__(self):\n",
+ " super(NeuralNetworkModel, self).__init__()\n",
+ " self.fc1 = torch.nn.Linear(FEAUTERES,500)\n",
+ " self.fc2 = torch.nn.Linear(500,1)\n",
+ "\n",
+ " def forward(self, x):\n",
+ " x = self.fc1(x)\n",
+ " x = self.fc2(x)\n",
+ " x = torch.sigmoid(x)\n",
+ " return x"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "nn_model = NeuralNetworkModel()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BATCH_SIZE = 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "criterion = torch.nn.BCELoss()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.6605833534551934, 0.5908529048207664)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.6379233609747004, 0.6481481481481481)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "1"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.4341224195120214, 0.896168108776267)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.3649017943276299, 0.9074074074074074)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "2"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.18619558424660096, 0.9765142150803461)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.16293201995668588, 0.9888888888888889)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "3"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.09108264647580784, 0.9962917181705809)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.08985773311858927, 0.9962962962962963)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "4"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.053487053708540566, 0.9987639060568603)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.05794332528279887, 1.0)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "for epoch in range(5):\n",
+ " loss_score = 0\n",
+ " acc_score = 0\n",
+ " items_total = 0\n",
+ " nn_model.train()\n",
+ " for i in range(0, Y_train.shape[0], BATCH_SIZE):\n",
+ " X = X_train[i:i+BATCH_SIZE]\n",
+ " X = torch.tensor(X.astype(np.float32).todense())\n",
+ " Y = Y_train[i:i+BATCH_SIZE]\n",
+ " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
+ " Y_predictions = nn_model(X)\n",
+ " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
+ " items_total += Y.shape[0] \n",
+ "\n",
+ " optimizer.zero_grad()\n",
+ " loss = criterion(Y_predictions, Y)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ "\n",
+ "\n",
+ " loss_score += loss.item() * Y.shape[0] \n",
+ "\n",
+ " display(epoch)\n",
+ " display(get_loss_acc(nn_model, X_train, Y_train))\n",
+ " display(get_loss_acc(nn_model, X_dev, Y_dev))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.16834938257537793, 0.9428172942817294)"
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "get_loss_acc(nn_model, X_test, Y_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Zadanie domowe\n",
+ "\n",
+ "- wybrać jedno z poniższych repozytoriów i je sforkować:\n",
+ " - https://git.wmi.amu.edu.pl/kubapok/paranormal-or-skeptic-ISI-public\n",
+ " - https://git.wmi.amu.edu.pl/kubapok/sport-text-classification-ball-ISI-public\n",
+ "- stworzyć klasyfikator bazujący na prostej sieci neuronowej feed forward w pytorchu (można bazować na tym jupyterze). Zamiast tfidf proszę skorzystać z jakieś reprezentacji gęstej (np. word2vec).\n",
+ "- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
+ "- wynik accuracy sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.67\n",
+ "- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
+ "termin 25.05, 70 punktów\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/cw/08_regresja_logistyczna_ODPOWIEDZI.ipynb b/cw/08_regresja_logistyczna_ODPOWIEDZI.ipynb
new file mode 100644
index 0000000..dba395f
--- /dev/null
+++ b/cw/08_regresja_logistyczna_ODPOWIEDZI.ipynb
@@ -0,0 +1,1242 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Regresja logistyczna"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## import bibliotek"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/media/kuba/ssdsam/anaconda3/lib/python3.8/site-packages/gensim/similarities/__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning.\n",
+ " warnings.warn(msg)\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import gensim\n",
+ "import torch\n",
+ "import pandas as pd\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "from sklearn.datasets import fetch_20newsgroups\n",
+ "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
+ "\n",
+ "from sklearn.feature_extraction.text import TfidfVectorizer\n",
+ "from sklearn.metrics import accuracy_score"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "CATEGORIES = ['soc.religion.christian', 'alt.atheism']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "newsgroups_train_dev = fetch_20newsgroups(subset = 'train', categories=CATEGORIES)\n",
+ "newsgroups_test = fetch_20newsgroups(subset = 'test', categories=CATEGORIES)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "newsgroups_train_dev_text = newsgroups_train_dev['data']\n",
+ "newsgroups_test_text = newsgroups_test['data']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Y_train_dev = newsgroups_train_dev['target']\n",
+ "Y_test = newsgroups_test['target']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "newsgroups_train_text, newsgroups_dev_text, Y_train, Y_dev = train_test_split(newsgroups_train_dev_text, Y_train_dev, random_state=42)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Y_names = newsgroups_train_dev['target_names']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['alt.atheism', 'soc.religion.christian']"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y_names"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## baseline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1,\n",
+ " 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,\n",
+ " 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n",
+ " 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n",
+ " 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1,\n",
+ " 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0,\n",
+ " 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,\n",
+ " 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,\n",
+ " 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1,\n",
+ " 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,\n",
+ " 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0,\n",
+ " 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0,\n",
+ " 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,\n",
+ " 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0,\n",
+ " 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1,\n",
+ " 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,\n",
+ " 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,\n",
+ " 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0,\n",
+ " 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0,\n",
+ " 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1,\n",
+ " 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,\n",
+ " 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n",
+ " 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,\n",
+ " 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,\n",
+ " 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0,\n",
+ " 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0,\n",
+ " 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,\n",
+ " 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n",
+ " 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0,\n",
+ " 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0,\n",
+ " 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,\n",
+ " 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n",
+ " 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1,\n",
+ " 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1,\n",
+ " 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,\n",
+ " 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n",
+ " 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0])"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y_train"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 450\n",
+ "0 359\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.value_counts(Y_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### train"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.5562422744128553"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "accuracy_score(np.ones_like(Y_train) * 1, Y_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### dev"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.5518518518518518"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "accuracy_score(np.ones_like(Y_dev) * 1, Y_dev)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.5550906555090656"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "accuracy_score(np.ones_like(Y_test) * 1, Y_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### PYTANIE: co jest nie tak z regresją liniową?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Regresja logistyczna"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### wektoryzacja"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "FEAUTERES = 10_000"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "vectorizer = TfidfVectorizer(max_features=10_000)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "X_train = vectorizer.fit_transform(newsgroups_train_text)\n",
+ "X_dev = vectorizer.transform(newsgroups_dev_text)\n",
+ "X_test = vectorizer.transform(newsgroups_test_text)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "<717x10000 sparse matrix of type ''\n",
+ "\twith 120739 stored elements in Compressed Sparse Row format>"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X_test"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### model - inicjalizacja "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class LogisticRegressionModel(torch.nn.Module):\n",
+ "\n",
+ " def __init__(self):\n",
+ " super(LogisticRegressionModel, self).__init__()\n",
+ " self.fc = torch.nn.Linear(FEAUTERES,1)\n",
+ "\n",
+ " def forward(self, x):\n",
+ " x = self.fc(x)\n",
+ " x = torch.sigmoid(x)\n",
+ " return x"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lr_model = LogisticRegressionModel()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tensor([[0.4978],\n",
+ " [0.5009],\n",
+ " [0.4998],\n",
+ " [0.4990],\n",
+ " [0.5018]], grad_fn=)"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "lr_model(torch.Tensor(X_train[0:5].astype(np.float32).todense()))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "LogisticRegressionModel(\n",
+ " (fc): Linear(in_features=10000, out_features=1, bias=True)\n",
+ ")"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "lr_model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Parameter containing:\n",
+ " tensor([[-0.0059, 0.0035, 0.0021, ..., -0.0042, -0.0057, -0.0049]],\n",
+ " requires_grad=True),\n",
+ " Parameter containing:\n",
+ " tensor([-0.0023], requires_grad=True)]"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "list(lr_model.parameters())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## model - trenowanie"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BATCH_SIZE = 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "criterion = torch.nn.BCELoss()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "optimizer = torch.optim.SGD(lr_model.parameters(), lr = 0.1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "809"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y_train.shape[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "loss_score = 0\n",
+ "acc_score = 0\n",
+ "items_total = 0\n",
+ "lr_model.train()\n",
+ "for i in range(0, Y_train.shape[0], BATCH_SIZE):\n",
+ " X = X_train[i:i+BATCH_SIZE]\n",
+ " X = torch.tensor(X.astype(np.float32).todense())\n",
+ " Y = Y_train[i:i+BATCH_SIZE]\n",
+ " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
+ " Y_predictions = lr_model(X)\n",
+ " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
+ " items_total += Y.shape[0] \n",
+ " \n",
+ " optimizer.zero_grad()\n",
+ " loss = criterion(Y_predictions, Y)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ " \n",
+ "\n",
+ " loss_score += loss.item() * Y.shape[0] "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tensor([[0.5667],\n",
+ " [0.5802],\n",
+ " [0.5757],\n",
+ " [0.5670]], grad_fn=)"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y_predictions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tensor([[0.],\n",
+ " [1.],\n",
+ " [1.],\n",
+ " [0.]])"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "452"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "acc_score"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "809"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "items_total"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "accuracy: 0.5587144622991347\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f'accuracy: {acc_score / items_total}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "BCE loss: 0.6745463597170355\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f'BCE loss: {loss_score / items_total}')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### model - ewaluacja"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_loss_acc(model, X_dataset, Y_dataset):\n",
+ " loss_score = 0\n",
+ " acc_score = 0\n",
+ " items_total = 0\n",
+ " model.eval()\n",
+ " for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n",
+ " X = X_dataset[i:i+BATCH_SIZE]\n",
+ " X = torch.tensor(X.astype(np.float32).todense())\n",
+ " Y = Y_dataset[i:i+BATCH_SIZE]\n",
+ " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
+ " Y_predictions = model(X)\n",
+ " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
+ " items_total += Y.shape[0] \n",
+ "\n",
+ " optimizer.zero_grad()\n",
+ " loss = criterion(Y_predictions, Y)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ "\n",
+ "\n",
+ " loss_score += loss.item() * Y.shape[0] \n",
+ " return (loss_score / items_total), (acc_score / items_total)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.6443227143826974, 0.622991347342398)"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "get_loss_acc(lr_model, X_train, Y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.6369243131743537, 0.6037037037037037)"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "get_loss_acc(lr_model, X_dev, Y_dev)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.6323775731785694, 0.6499302649930265)"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "get_loss_acc(lr_model, X_test, Y_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### wagi modelu"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Parameter containing:\n",
+ " tensor([[ 0.0314, -0.0375, 0.0131, ..., -0.0057, -0.0008, -0.0089]],\n",
+ " requires_grad=True),\n",
+ " Parameter containing:\n",
+ " tensor([0.0563], requires_grad=True)]"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "list(lr_model.parameters())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tensor([ 0.0314, -0.0375, 0.0131, ..., -0.0057, -0.0008, -0.0089],\n",
+ " grad_fn=)"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "list(lr_model.parameters())[0][0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.return_types.topk(\n",
+ "values=tensor([0.3753, 0.2305, 0.2007, 0.2006, 0.1993, 0.1952, 0.1930, 0.1898, 0.1831,\n",
+ " 0.1731, 0.1649, 0.1647, 0.1543, 0.1320, 0.1314, 0.1303, 0.1296, 0.1261,\n",
+ " 0.1245, 0.1243], grad_fn=),\n",
+ "indices=tensor([8942, 6336, 1852, 9056, 1865, 4039, 7820, 5002, 8208, 1857, 9709, 803,\n",
+ " 1046, 130, 4306, 6481, 4370, 4259, 4285, 1855]))"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "torch.topk(list(lr_model.parameters())[0][0], 20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the\n",
+ "of\n",
+ "christ\n",
+ "to\n",
+ "church\n",
+ "god\n",
+ "rutgers\n",
+ "jesus\n",
+ "sin\n",
+ "christians\n",
+ "we\n",
+ "and\n",
+ "athos\n",
+ "1993\n",
+ "hell\n",
+ "our\n",
+ "his\n",
+ "he\n",
+ "heaven\n",
+ "christian\n"
+ ]
+ }
+ ],
+ "source": [
+ "for i in torch.topk(list(lr_model.parameters())[0][0], 20)[1]:\n",
+ " print(vectorizer.get_feature_names()[i])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.return_types.topk(\n",
+ "values=tensor([-0.3478, -0.2578, -0.2455, -0.2347, -0.2330, -0.2265, -0.2205, -0.2050,\n",
+ " -0.2044, -0.1979, -0.1876, -0.1790, -0.1747, -0.1745, -0.1734, -0.1647,\n",
+ " -0.1639, -0.1617, -0.1601, -0.1592], grad_fn=),\n",
+ "indices=tensor([5119, 8096, 5420, 4436, 6194, 1627, 6901, 5946, 9970, 3116, 1036, 9906,\n",
+ " 5654, 8329, 7869, 1039, 1991, 4926, 5035, 4925]))"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "keith\n",
+ "sgi\n",
+ "livesey\n",
+ "host\n",
+ "nntp\n",
+ "caltech\n",
+ "posting\n",
+ "morality\n",
+ "you\n",
+ "edu\n",
+ "atheism\n",
+ "wpd\n",
+ "mathew\n",
+ "solntze\n",
+ "sandvik\n",
+ "atheists\n",
+ "com\n",
+ "islamic\n",
+ "jon\n",
+ "islam\n"
+ ]
+ }
+ ],
+ "source": [
+ "for i in torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)[1]:\n",
+ " print(vectorizer.get_feature_names()[i])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### sieć neuronowa"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class NeuralNetworkModel(torch.nn.Module):\n",
+ "\n",
+ " def __init__(self):\n",
+ " super(NeuralNetworkModel, self).__init__()\n",
+ " self.fc1 = torch.nn.Linear(FEAUTERES,500)\n",
+ " self.fc2 = torch.nn.Linear(500,1)\n",
+ "\n",
+ " def forward(self, x):\n",
+ " x = self.fc1(x)\n",
+ " x = self.fc2(x)\n",
+ " x = torch.sigmoid(x)\n",
+ " return x"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "nn_model = NeuralNetworkModel()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BATCH_SIZE = 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "criterion = torch.nn.BCELoss()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.6605833534551934, 0.5908529048207664)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.6379233609747004, 0.6481481481481481)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "1"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.4341224195120214, 0.896168108776267)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.3649017943276299, 0.9074074074074074)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "2"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.18619558424660096, 0.9765142150803461)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.16293201995668588, 0.9888888888888889)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "3"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.09108264647580784, 0.9962917181705809)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.08985773311858927, 0.9962962962962963)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "4"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.053487053708540566, 0.9987639060568603)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.05794332528279887, 1.0)"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "for epoch in range(5):\n",
+ " loss_score = 0\n",
+ " acc_score = 0\n",
+ " items_total = 0\n",
+ " nn_model.train()\n",
+ " for i in range(0, Y_train.shape[0], BATCH_SIZE):\n",
+ " X = X_train[i:i+BATCH_SIZE]\n",
+ " X = torch.tensor(X.astype(np.float32).todense())\n",
+ " Y = Y_train[i:i+BATCH_SIZE]\n",
+ " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n",
+ " Y_predictions = nn_model(X)\n",
+ " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n",
+ " items_total += Y.shape[0] \n",
+ "\n",
+ " optimizer.zero_grad()\n",
+ " loss = criterion(Y_predictions, Y)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ "\n",
+ "\n",
+ " loss_score += loss.item() * Y.shape[0] \n",
+ "\n",
+ " display(epoch)\n",
+ " display(get_loss_acc(nn_model, X_train, Y_train))\n",
+ " display(get_loss_acc(nn_model, X_dev, Y_dev))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.16834938257537793, 0.9428172942817294)"
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "get_loss_acc(nn_model, X_test, Y_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Zadanie domowe\n",
+ "\n",
+ "- wybrać jedno z poniższych repozytoriów i je sforkować:\n",
+ " - https://git.wmi.amu.edu.pl/kubapok/paranormal-or-skeptic-ISI-public\n",
+ " - https://git.wmi.amu.edu.pl/kubapok/sport-text-classification-ball-ISI-public\n",
+ "- stworzyć klasyfikator bazujący na prostej sieci neuronowej feed forward w pytorchu (można bazować na tym jupyterze). Zamiast tfidf proszę skorzystać z jakieś reprezentacji gęstej (np. word2vec).\n",
+ "- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
+ "- wynik accuracy sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.67\n",
+ "- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
+ "termin 25.05, 70 punktów\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}