861 lines
38 KiB
C#
861 lines
38 KiB
C#
|
using System.Collections;
|
||
|
using System.Collections.Generic;
|
||
|
using UnityEngine;
|
||
|
using System.Globalization;
|
||
|
#if UNITY_EDITOR
|
||
|
using UnityEditor;
|
||
|
using System.Linq;
|
||
|
|
||
|
public class CommentAttribute : PropertyAttribute {
|
||
|
public readonly string tooltip;
|
||
|
public readonly string comment;
|
||
|
|
||
|
public CommentAttribute( string comment, string tooltip ) {
|
||
|
this.tooltip = tooltip;
|
||
|
this.comment = comment;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
[CustomPropertyDrawer(typeof(CommentAttribute))]
|
||
|
public class CommentDrawer : PropertyDrawer {
|
||
|
const int textHeight = 20;
|
||
|
|
||
|
CommentAttribute commentAttribute { get { return (CommentAttribute)attribute; } }
|
||
|
|
||
|
public override float GetPropertyHeight(SerializedProperty prop, GUIContent label) {
|
||
|
return textHeight;
|
||
|
}
|
||
|
|
||
|
public override void OnGUI(Rect position, SerializedProperty prop, GUIContent label) {
|
||
|
EditorGUI.LabelField(position,new GUIContent(commentAttribute.comment,commentAttribute.tooltip));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif
|
||
|
|
||
|
public class LeafGrow : MonoBehaviour
|
||
|
{
|
||
|
Vector3[] newVertices;
|
||
|
Vector2[] newUV;
|
||
|
int[] newTriangles;
|
||
|
float[] _widthCurve_; //widthCurve
|
||
|
float[] _foldCurve_; //foldCurve
|
||
|
int frame = 0;
|
||
|
|
||
|
[Header("Leaf shape")]
|
||
|
public float length = 0.06f;
|
||
|
public float width = 1.0f;
|
||
|
public float thickness = 0.01f;
|
||
|
public AnimationCurve widthCurve = AnimationCurve.Linear(0, 0, 1, 1);
|
||
|
public AnimationCurve foldCurve = AnimationCurve.Linear(0, 0, 1, 1);
|
||
|
public float infold = 0.03f;
|
||
|
float startInfold = 0.03f;
|
||
|
|
||
|
|
||
|
[Header("Animation and resolution")]
|
||
|
public float framesBetweenSteps = 30.0f;
|
||
|
public int numberOfAnimationSteps = 30;
|
||
|
public bool constantResolution = true;
|
||
|
[Comment("The number of animation steps also affects the resolution of the model", "8 * numberOfAnimationSteps = number of vertices")]
|
||
|
public bool commentSpace = true;
|
||
|
|
||
|
[HideInInspector]
|
||
|
[Range(0.000f,0.01f)]
|
||
|
public float simplification = 0.000f;
|
||
|
// EditorGUILayout.HelpBox("Number of animation steps also affects resolution of the model" , MessageType.Info);
|
||
|
|
||
|
//[Header("Special features")]
|
||
|
[HideInInspector]
|
||
|
public bool roughEdges = false;
|
||
|
[HideInInspector]
|
||
|
public int roughEdgesSize = 10;
|
||
|
[HideInInspector]
|
||
|
public int numberOfBranchesPairs = 10;
|
||
|
[HideInInspector]
|
||
|
public bool showBranches = false;
|
||
|
[HideInInspector]
|
||
|
public bool colision = false;
|
||
|
[HideInInspector]
|
||
|
public Rigidbody colisionJoint;
|
||
|
float infoldch;
|
||
|
[HideInInspector]
|
||
|
public int maxNumberOfSteps = 0;
|
||
|
int maxNumberOfStepsB = 0;
|
||
|
|
||
|
|
||
|
// Start is called before the first frame update
|
||
|
void Start() {
|
||
|
startInfold = infold;
|
||
|
if (numberOfBranchesPairs * 5 > numberOfAnimationSteps) {
|
||
|
numberOfBranchesPairs = numberOfAnimationSteps / 10;
|
||
|
}
|
||
|
// _widthCurve_ = new float[] {0.0f, 0.25f, 0.5f, 0.55f, 0.54f, 0.53f, 0.52f, 0.50f, 0.48f, 0.45f, 0.41f, 0.36f, 0.31f, 0.26f, 0.21f, 0.16f, 0.11f, 0.06f, 0.03f, 0.0f};
|
||
|
// _foldCurve_ = new float[] {0.0f, 0.02f, 0.03f, 0.035f, 0.04f, 0.04f, 0.037f, 0.035f, 0.031f, 0.027f, 0.024f, 0.021f, 0.019f, 0.016f, 0.013f, 0.010f, 0.007f, 0.004f, 0.001f, 0.0f};
|
||
|
float numberOfAnimationStepsf = (float)numberOfAnimationSteps;
|
||
|
_widthCurve_ = new float[numberOfAnimationSteps + 1];
|
||
|
_foldCurve_ = new float[numberOfAnimationSteps + 1];
|
||
|
float i = 0;
|
||
|
for (i = 0; i < numberOfAnimationStepsf; i += 1.0f) {
|
||
|
_widthCurve_[(int)i] = (float)widthCurve.Evaluate(i / (numberOfAnimationStepsf));
|
||
|
_foldCurve_[(int)i] = (float)foldCurve.Evaluate(i / (numberOfAnimationStepsf));
|
||
|
}
|
||
|
float foldMin = _foldCurve_.Min();
|
||
|
float widthMin = _widthCurve_.Min();
|
||
|
float widthMax = _widthCurve_.Max();
|
||
|
for (i = 0; i < numberOfAnimationStepsf; i += 1.0f) {
|
||
|
_widthCurve_[(int)i] = (_widthCurve_[(int)i] - widthMin) / (widthMax - widthMin);
|
||
|
_foldCurve_[(int)i] = (_foldCurve_[(int)i]- _foldCurve_[0])*length;
|
||
|
}
|
||
|
if (maxNumberOfSteps == 0.0) {
|
||
|
maxNumberOfStepsB = _widthCurve_.Length - 1;
|
||
|
}
|
||
|
else {
|
||
|
maxNumberOfStepsB = maxNumberOfSteps;
|
||
|
}
|
||
|
maxNumberOfSteps = _widthCurve_.Length - 1;
|
||
|
// }
|
||
|
|
||
|
}
|
||
|
|
||
|
// Update is called once per frame
|
||
|
void Update() {
|
||
|
frame += 1;
|
||
|
if (frame <= framesBetweenSteps * maxNumberOfSteps) {
|
||
|
UpdateLeafMesh();
|
||
|
}
|
||
|
|
||
|
if (frame == framesBetweenSteps * maxNumberOfSteps + 3 && colision) {
|
||
|
gameObject.GetComponent<MeshCollider>().sharedMesh = null;
|
||
|
}
|
||
|
}
|
||
|
public void DrawLeaf() {
|
||
|
Start();
|
||
|
frame = (int)(framesBetweenSteps * maxNumberOfSteps);
|
||
|
UpdateLeafMesh();
|
||
|
infold = startInfold;
|
||
|
}
|
||
|
void UpdateLeafMesh() {
|
||
|
float frameScaled = (float)frame / framesBetweenSteps;
|
||
|
float[] _widthCurve = new float[(int)frameScaled + 1];
|
||
|
float[] _foldCurve = new float[(int)frameScaled + 1];
|
||
|
if (constantResolution) {
|
||
|
_widthCurve = new float[_widthCurve_.Length];
|
||
|
_foldCurve = new float[_foldCurve_.Length];
|
||
|
}
|
||
|
|
||
|
float scale = frameScaled / (float)maxNumberOfSteps;
|
||
|
float scaleB = frameScaled / (float)maxNumberOfStepsB;
|
||
|
int j = 0;
|
||
|
for (j = 0; j < frameScaled; j++) {
|
||
|
_widthCurve[j] = _widthCurve_[(int)((float)j / scale)] * scaleB;
|
||
|
_foldCurve[j] = _foldCurve_[(int)((float)j / scale)] * scaleB;
|
||
|
|
||
|
}
|
||
|
if (frame == framesBetweenSteps * maxNumberOfSteps || constantResolution) {
|
||
|
if (frame == framesBetweenSteps * maxNumberOfSteps) {
|
||
|
scaleB = (frameScaled - 1.0f) / (float)maxNumberOfStepsB;
|
||
|
}
|
||
|
for (j = 0; j < _widthCurve_.Length; j++) {
|
||
|
_widthCurve[j] = _widthCurve_[j] * scaleB;
|
||
|
}
|
||
|
for (j = 0; j < _foldCurve_.Length; j++) {
|
||
|
_foldCurve[j] = _foldCurve_[j] * scaleB;
|
||
|
}
|
||
|
// _widthCurve = _widthCurve_;
|
||
|
// _foldCurve = _foldCurve_;
|
||
|
// scaleB = 1.0f;
|
||
|
infold = startInfold;
|
||
|
}
|
||
|
else {
|
||
|
infold = (_widthCurve_[(int)frameScaled] / 10.0f) + startInfold;
|
||
|
}
|
||
|
infoldch = 2.0f * infold / _widthCurve.Length;
|
||
|
float infoldFrame = infold;
|
||
|
if (constantResolution) {
|
||
|
float scaleLboost = 1.0f;
|
||
|
if (frameScaled * 3.0f < numberOfAnimationSteps) {
|
||
|
scaleLboost = frameScaled * 3.0f / numberOfAnimationSteps;
|
||
|
}
|
||
|
scaleL = (scaleLboost + scaleB) / 2.0f;
|
||
|
}
|
||
|
|
||
|
if (showBranches) {
|
||
|
|
||
|
branchesMargin = (int)((float)numberOfAnimationSteps * 0.15f);
|
||
|
branchesDistance = 0;
|
||
|
if (numberOfBranchesPairs > 0) {
|
||
|
branchesDistance = (numberOfAnimationSteps - (branchesMargin * 2)) / numberOfBranchesPairs;
|
||
|
}
|
||
|
}
|
||
|
// // float version (constant distance between vertices groups)
|
||
|
// Mesh mesh = createSweepSufraceMesh(lengthScale, infold, _widthCurve, _foldCurve);
|
||
|
// GetComponent<MeshFilter>().mesh = mesh;
|
||
|
//
|
||
|
|
||
|
|
||
|
// Vector2 version (distance between vertices groups can be defined (last parameter is Vector2 x=fold, y=distance from start (lenght of leaf from the begining to this point)))
|
||
|
CurvesContainer newSimpleCurves = simplifyCurves(_widthCurve, _foldCurve, simplification);
|
||
|
Mesh mesh = createSweepSufraceMeshVector(length, width, newSimpleCurves._widthCurve, newSimpleCurves._foldCurve);
|
||
|
GetComponent<MeshFilter>().mesh = mesh;
|
||
|
|
||
|
|
||
|
if (frame == framesBetweenSteps * maxNumberOfSteps && colision) {
|
||
|
gameObject.AddComponent<Rigidbody>();
|
||
|
gameObject.GetComponent<Rigidbody>().useGravity = false;
|
||
|
gameObject.AddComponent<SpringJoint>();
|
||
|
gameObject.GetComponent<SpringJoint>().connectedBody = colisionJoint;
|
||
|
// gameObject.GetComponent<Rigidbody>().isKinematic = true;
|
||
|
gameObject.AddComponent<MeshCollider>();
|
||
|
gameObject.GetComponent<MeshCollider>().convex = true;
|
||
|
gameObject.GetComponent<MeshCollider>().sharedMesh = mesh;
|
||
|
}
|
||
|
}
|
||
|
int branchesMargin = 0;
|
||
|
int branchesDistance = 0;
|
||
|
float scaleL = 1.0f;
|
||
|
Mesh createSweepSufraceMesh(float length, float width, float[] _widthCurve, float[] _foldCurve)//Vector2[] foldCurve)
|
||
|
{
|
||
|
Mesh mesh = new Mesh();
|
||
|
int j = 0;
|
||
|
Vector3[] newVertices = new Vector3[_widthCurve.Length * 6];
|
||
|
Vector3[] newnormals = new Vector3[_widthCurve.Length * 6];
|
||
|
float i = 0.0f;
|
||
|
float re = 0.0f;
|
||
|
int al = _widthCurve.Length * 3;
|
||
|
for (i = 0.0f; i < _widthCurve.Length; i++) {
|
||
|
float thicknessThisRow = thickness;
|
||
|
infold = (float)gauss(((double)i) / ((_widthCurve.Length)), 0.5, 0.0, 1.0) * startInfold;
|
||
|
if (i == _widthCurve.Length - 1) {
|
||
|
infold = 0;
|
||
|
thicknessThisRow = 0.0001f;
|
||
|
_widthCurve[(int)i] = 0.00001f;
|
||
|
Debug.Log("last Frame");
|
||
|
}
|
||
|
|
||
|
Debug.Log("#infold = " + infold);
|
||
|
if (roughEdges && i > roughEdgesSize * 4.0f) {
|
||
|
re = 0.005f * (float)(i % roughEdgesSize);
|
||
|
if (re > _widthCurve[(int)i] / 4.0f) {
|
||
|
re = _widthCurve[(int)i] / 4.0f;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
re = 0.0f;
|
||
|
}
|
||
|
// ------- downside of the leaf --------
|
||
|
Vector3 newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, _widthCurve[(int)i] * width + re, _foldCurve[(int)i] - infold * (0.3f + _widthCurve[(int)i]));
|
||
|
newVertices[(int)i * 3 + 0] = newVer;
|
||
|
newnormals[(int)i * 3 + 0] = new Vector3(0, 0, 1);
|
||
|
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, 0.0f, _foldCurve[(int)i] + thicknessThisRow);
|
||
|
newVertices[(int)i * 3 + 1] = newVer;
|
||
|
newnormals[(int)i * 3 + 1] = new Vector3(0, 0, 1);
|
||
|
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, -1.0f * _widthCurve[(int)i] * width + re, _foldCurve[(int)i] - infold * (0.3f + _widthCurve[(int)i]));
|
||
|
newVertices[(int)i * 3 + 2] = newVer;
|
||
|
newnormals[(int)i * 3 + 2] = new Vector3(0, 0, 1);
|
||
|
|
||
|
// ------- upside of the leaf --------
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, _widthCurve[(int)i] * width + re, _foldCurve[(int)i] - infold * (0.3f + _widthCurve[(int)i]));
|
||
|
newVertices[(int)i * 3 + 0 + al] = newVer;
|
||
|
newnormals[(int)i * 3 + 0 + al] = new Vector3(0, 0, -1);
|
||
|
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, 0.0f, _foldCurve[(int)i]);
|
||
|
newVertices[(int)i * 3 + 1 + al] = newVer;
|
||
|
newnormals[(int)i * 3 + 1 + al] = new Vector3(0, 0, -1);
|
||
|
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, -1.0f * _widthCurve[(int)i] * width + re, _foldCurve[(int)i] - infold * (0.3f + _widthCurve[(int)i]));
|
||
|
newVertices[(int)i * 3 + 2 + al] = newVer;
|
||
|
newnormals[(int)i * 3 + 2 + al] = new Vector3(0, 0, -1);
|
||
|
|
||
|
// newVer = new Vector3((length/numberOfAnimationSteps)*i*scaleL, 0.0f, _foldCurve[(int)i]);
|
||
|
// newVertices[(int)i + al] = newVer;
|
||
|
// newnormals[(int)i + al] = new Vector3(0, 0, -1);
|
||
|
}
|
||
|
|
||
|
if (branchesDistance == 0 || !showBranches) {
|
||
|
newTriangles = new int[(_widthCurve.Length - 1) * (24 * 2)];
|
||
|
}
|
||
|
else {
|
||
|
newTriangles = new int[(_widthCurve.Length - 1) * (24 * 2) + 24 * ((_widthCurve.Length / branchesDistance))];
|
||
|
}
|
||
|
|
||
|
int ti = 0;
|
||
|
for (j = 1; j < _widthCurve.Length; j++) {
|
||
|
int k = j - 1;
|
||
|
if (showBranches || j != _widthCurve.Length - 1) {
|
||
|
|
||
|
// ------- downside of the leaf --------
|
||
|
newTriangles[ti++] = k * 3 + 1;
|
||
|
newTriangles[ti++] = k * 3;
|
||
|
newTriangles[ti++] = j * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1;
|
||
|
newTriangles[ti++] = j * 3;
|
||
|
newTriangles[ti++] = j * 3 + 1;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1;
|
||
|
newTriangles[ti++] = j * 3 + 2;
|
||
|
newTriangles[ti++] = k * 3 + 2;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1;
|
||
|
newTriangles[ti++] = j * 3 + 1;
|
||
|
newTriangles[ti++] = j * 3 + 2;
|
||
|
|
||
|
// ------- upside of the leaf --------
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1 + al;
|
||
|
newTriangles[ti++] = j * 3 + 0 + al;
|
||
|
newTriangles[ti++] = k * 3 + 0 + al;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1 + al;
|
||
|
newTriangles[ti++] = j * 3 + 1 + al;
|
||
|
newTriangles[ti++] = j * 3 + 0 + al;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1 + al;
|
||
|
newTriangles[ti++] = k * 3 + 2 + al;
|
||
|
newTriangles[ti++] = j * 3 + 2 + al;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1 + al;
|
||
|
newTriangles[ti++] = j * 3 + 2 + al;
|
||
|
newTriangles[ti++] = j * 3 + 1 + al;
|
||
|
|
||
|
|
||
|
// newTriangles[ti++] = k * 3;
|
||
|
// newTriangles[ti++] = k + al;
|
||
|
// newTriangles[ti++] = j * 3;
|
||
|
//
|
||
|
// newTriangles[ti++] = j * 3;
|
||
|
// newTriangles[ti++] = k + al;
|
||
|
// newTriangles[ti++] = j + al;
|
||
|
//
|
||
|
//
|
||
|
// newTriangles[ti++] = k * 3 + 2;
|
||
|
// newTriangles[ti++] = j * 3 + 2;
|
||
|
// newTriangles[ti++] = k + al;
|
||
|
//
|
||
|
//
|
||
|
// newTriangles[ti++] = j + al;
|
||
|
// newTriangles[ti++] = k + al;
|
||
|
// newTriangles[ti++] = j * 3 + 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int abr = _widthCurve.Length * 4;
|
||
|
float mz = 0.0f;
|
||
|
|
||
|
Vector2[] newUV = new Vector2[newVertices.Length];
|
||
|
|
||
|
for (j = 0; j < newUV.Length; j++) {
|
||
|
if (j < abr) {
|
||
|
newUV[j] = new Vector2(newVertices[j].x, newVertices[j].z);
|
||
|
if (mz < newVertices[j].z) {
|
||
|
mz = newVertices[j].z;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
newUV[j] = new Vector2(newVertices[j].x, newVertices[j].z + mz);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mesh.vertices = newVertices;
|
||
|
// mesh.uv = newUV;
|
||
|
mesh.triangles = newTriangles;
|
||
|
mesh.RecalculateBounds();
|
||
|
mesh.triangles = mesh.triangles.Reverse().ToArray();
|
||
|
mesh.normals = newnormals;
|
||
|
mesh.RecalculateNormals();
|
||
|
|
||
|
if (showBranches) {
|
||
|
// newTriangles = newTriangles.Reverse().ToArray();
|
||
|
for (i = 0.0f; i < _widthCurve.Length; i++) {
|
||
|
float branchThickness = 1.2f * thickness;
|
||
|
if (_widthCurve[(int)i] / 10.0f < branchThickness) {
|
||
|
branchThickness = _widthCurve[(int)i] / 10.0f;
|
||
|
}
|
||
|
Vector3 newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, 0.0f, _foldCurve[(int)i] + (branchThickness));
|
||
|
newVertices[(int)i * 4 + 0 + abr] = newVer;
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, 0.0f, _foldCurve[(int)i] - (branchThickness));
|
||
|
newVertices[(int)i * 4 + 1 + abr] = newVer;
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, branchThickness, _foldCurve[(int)i]);
|
||
|
newVertices[(int)i * 4 + 2 + abr] = newVer;
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * i * scaleL, -branchThickness, _foldCurve[(int)i]);
|
||
|
newVertices[(int)i * 4 + 3 + abr] = newVer;
|
||
|
Debug.Log("#_foldCurve[(int)i]=" + _foldCurve[(int)i]);
|
||
|
}
|
||
|
for (j = 1; j < _widthCurve.Length; j++) {
|
||
|
int k = j - 1;
|
||
|
|
||
|
// prawa i lewa patrząc od góry ODWRÓCONE
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;//góra prawa i 2 na dole
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 4 + 2 + abr;
|
||
|
|
||
|
newTriangles[ti++] = j * 4 + 2 + abr;//góra prawa i 2 u góry
|
||
|
newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
//
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;//góra lewa i 2 na dole
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
|
||
|
newTriangles[ti++] = j * 4 + 3 + abr;//góra lewa i 2 u góry
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
//
|
||
|
|
||
|
|
||
|
|
||
|
newTriangles[ti++] = j * 4 + 3 + abr;//dół lewa i 2 na dole
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
//
|
||
|
newTriangles[ti++] = j * 4 + 3 + abr;//dół lewa i 2 u góry
|
||
|
newTriangles[ti++] = j * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
//
|
||
|
newTriangles[ti++] = j * 4 + 1 + abr;//dół prawa i 2 na dole
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
//
|
||
|
newTriangles[ti++] = j * 4 + 2 + abr;//dół prawa i 2 u góry
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 4 + 1 + abr;
|
||
|
|
||
|
//// prawa i lewa patrząc od góry
|
||
|
//
|
||
|
// newTriangles[ti++] = k * 4 + 0 + abr;//góra prawa i 2 na dole
|
||
|
// newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
//
|
||
|
// newTriangles[ti++] = j * 4 + 3 + abr;//góra lewa i 2 u góry
|
||
|
// newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
////
|
||
|
// newTriangles[ti++] = k * 4 + 3 + abr;//góra lewa i 2 na dole
|
||
|
// newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
//
|
||
|
// newTriangles[ti++] = j * 4 + 3 + abr;//góra prawa i 2 u góry
|
||
|
// newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
////
|
||
|
////
|
||
|
// newTriangles[ti++] = j * 4 + 3 + abr;//dół lewa i 2 na dole
|
||
|
// newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
////
|
||
|
////
|
||
|
// newTriangles[ti++] = j * 4 + 3 + abr;//dół lewa i 2 u góry
|
||
|
// newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
// newTriangles[ti++] = j * 4 + 1 + abr;
|
||
|
////
|
||
|
// newTriangles[ti++] = j * 4 + 1 + abr;//dół prawa i 2 na dole
|
||
|
// newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
////
|
||
|
// newTriangles[ti++] = j * 4 + 2 + abr;//dół prawa i 2 u góry
|
||
|
// newTriangles[ti++] = j * 4 + 1 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
if (branchesDistance > 2) {
|
||
|
if (j % branchesDistance == 0 && j + branchesMargin < _widthCurve.Length && _widthCurve.Length > 2 * branchesMargin) {
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 2 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 0 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 2 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 0 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 2 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 0 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 2 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 0 + branchesMargin * 3;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mesh.vertices = newVertices;
|
||
|
// mesh.uv = newUV;
|
||
|
mesh.triangles = newTriangles;
|
||
|
|
||
|
mesh.triangles = mesh.triangles.Reverse().ToArray();
|
||
|
}
|
||
|
newUV = new Vector2[newVertices.Length];
|
||
|
|
||
|
mz = 0.0f;
|
||
|
|
||
|
for (j = 0; j < newUV.Length; j++) {
|
||
|
// if(j<abr)
|
||
|
// {
|
||
|
newUV[j] = new Vector2(newVertices[j].x, newVertices[j].y);
|
||
|
// }
|
||
|
// else
|
||
|
// {
|
||
|
// newUV[j] = new Vector2(newVertices[j].x, newVertices[j].z+mz);
|
||
|
// }
|
||
|
}
|
||
|
Color[] colors = new Color[newVertices.Length];
|
||
|
for (j = 0; j < newVertices.Length; j++)
|
||
|
colors[j] = new Color(0.0f, 0.26f, 0.0f);
|
||
|
|
||
|
mesh.colors = colors;
|
||
|
mesh.RecalculateBounds();
|
||
|
// mesh.RecalculateNormals();
|
||
|
mesh.uv = newUV;
|
||
|
return mesh;
|
||
|
}
|
||
|
Mesh createSweepSufraceMeshVector(float length, float width, float[] _widthCurve, Vector2[] _foldCurve) {
|
||
|
Mesh mesh = new Mesh();
|
||
|
int j = 0;
|
||
|
Vector3[] newVertices = new Vector3[_widthCurve.Length * 6];
|
||
|
Vector3[] newnormals = new Vector3[_widthCurve.Length * 6];
|
||
|
float i = 0.0f;
|
||
|
float re = 0.0f;
|
||
|
int al = _widthCurve.Length * 3;
|
||
|
for (i = 0.0f; i < _widthCurve.Length; i++) {
|
||
|
float thicknessThisRow = thickness;
|
||
|
infold = (float)gauss(((double)i) / ((_widthCurve.Length)), 0.5, 0.0, 1.0) * startInfold;
|
||
|
|
||
|
if (i > _widthCurve.Length - 3) {
|
||
|
infold = 0;
|
||
|
thicknessThisRow = 0.0001f;
|
||
|
_widthCurve[(int)i] = 0.00001f;
|
||
|
Debug.Log("last Frame");
|
||
|
}
|
||
|
Debug.Log("#infold = " + infold);
|
||
|
if (roughEdges && i > roughEdgesSize * 4.0f) {
|
||
|
re = 0.005f * (float)(i % roughEdgesSize);
|
||
|
if (re > _widthCurve[(int)i] / 4.0f) {
|
||
|
re = _widthCurve[(int)i] / 4.0f;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
re = 0.0f;
|
||
|
}
|
||
|
// ------- downside of the leaf --------
|
||
|
Vector3 newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, _widthCurve[(int)i] * width + re, _foldCurve[(int)i].x - infold * (0.3f + _widthCurve[(int)i]));
|
||
|
newVertices[(int)i * 3 + 0] = newVer;
|
||
|
newnormals[(int)i * 3 + 0] = new Vector3(0, 0, 1);
|
||
|
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, 0.0f, _foldCurve[(int)i].x + thicknessThisRow);
|
||
|
newVertices[(int)i * 3 + 1] = newVer;
|
||
|
newnormals[(int)i * 3 + 1] = new Vector3(0, 0, 1);
|
||
|
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, -1.0f * _widthCurve[(int)i] * width + re, _foldCurve[(int)i].x - infold * (0.3f + _widthCurve[(int)i]));
|
||
|
newVertices[(int)i * 3 + 2] = newVer;
|
||
|
newnormals[(int)i * 3 + 2] = new Vector3(0, 0, 1);
|
||
|
|
||
|
// ------- upside of the leaf --------
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, _widthCurve[(int)i] * width + re, _foldCurve[(int)i].x - infold * (0.3f + _widthCurve[(int)i]));
|
||
|
newVertices[(int)i * 3 + 0 + al] = newVer;
|
||
|
newnormals[(int)i * 3 + 0 + al] = new Vector3(0, 0, -1);
|
||
|
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, 0.0f, _foldCurve[(int)i].x);
|
||
|
newVertices[(int)i * 3 + 1 + al] = newVer;
|
||
|
newnormals[(int)i * 3 + 1 + al] = new Vector3(0, 0, -1);
|
||
|
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, -1.0f * _widthCurve[(int)i] * width + re, _foldCurve[(int)i].x - infold * (0.3f + _widthCurve[(int)i]));
|
||
|
newVertices[(int)i * 3 + 2 + al] = newVer;
|
||
|
newnormals[(int)i * 3 + 2 + al] = new Vector3(0, 0, -1);
|
||
|
|
||
|
}
|
||
|
|
||
|
if (branchesDistance == 0 || !showBranches) {
|
||
|
newTriangles = new int[(_widthCurve.Length - 1) * (24 * 2)];
|
||
|
}
|
||
|
else {
|
||
|
newTriangles = new int[(_widthCurve.Length - 1) * (24 * 2) + 24 * ((_widthCurve.Length / branchesDistance))];
|
||
|
}
|
||
|
|
||
|
int ti = 0;
|
||
|
for (j = 1; j < _widthCurve.Length; j++) {
|
||
|
int k = j - 1;
|
||
|
if (showBranches || j != _widthCurve.Length - 1) {
|
||
|
|
||
|
// ------- downside of the leaf --------
|
||
|
newTriangles[ti++] = k * 3 + 1;
|
||
|
newTriangles[ti++] = k * 3;
|
||
|
newTriangles[ti++] = j * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1;
|
||
|
newTriangles[ti++] = j * 3;
|
||
|
newTriangles[ti++] = j * 3 + 1;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1;
|
||
|
newTriangles[ti++] = j * 3 + 2;
|
||
|
newTriangles[ti++] = k * 3 + 2;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1;
|
||
|
newTriangles[ti++] = j * 3 + 1;
|
||
|
newTriangles[ti++] = j * 3 + 2;
|
||
|
|
||
|
// ------- upside of the leaf --------
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1 + al;
|
||
|
newTriangles[ti++] = j * 3 + 0 + al;
|
||
|
newTriangles[ti++] = k * 3 + 0 + al;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1 + al;
|
||
|
newTriangles[ti++] = j * 3 + 1 + al;
|
||
|
newTriangles[ti++] = j * 3 + 0 + al;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1 + al;
|
||
|
newTriangles[ti++] = k * 3 + 2 + al;
|
||
|
newTriangles[ti++] = j * 3 + 2 + al;
|
||
|
|
||
|
newTriangles[ti++] = k * 3 + 1 + al;
|
||
|
newTriangles[ti++] = j * 3 + 2 + al;
|
||
|
newTriangles[ti++] = j * 3 + 1 + al;
|
||
|
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int abr = _widthCurve.Length * 4;
|
||
|
float mz = 0.0f;
|
||
|
|
||
|
Vector2[] newUV = new Vector2[newVertices.Length];
|
||
|
|
||
|
for (j = 0; j < newUV.Length; j++) {
|
||
|
if (j < abr) {
|
||
|
newUV[j] = new Vector2(newVertices[j].x, newVertices[j].z);
|
||
|
if (mz < newVertices[j].z) {
|
||
|
mz = newVertices[j].z;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
newUV[j] = new Vector2(newVertices[j].x, newVertices[j].z + mz);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mesh.vertices = newVertices;
|
||
|
// mesh.uv = newUV;
|
||
|
mesh.triangles = newTriangles;
|
||
|
mesh.RecalculateBounds();
|
||
|
mesh.triangles = mesh.triangles.Reverse().ToArray();
|
||
|
mesh.normals = newnormals;
|
||
|
mesh.RecalculateNormals();
|
||
|
|
||
|
if (showBranches) {
|
||
|
// newTriangles = newTriangles.Reverse().ToArray();
|
||
|
for (i = 0.0f; i < _widthCurve.Length; i++) {
|
||
|
float branchThickness = 1.2f * thickness;
|
||
|
if (_widthCurve[(int)i] / 10.0f < branchThickness) {
|
||
|
branchThickness = _widthCurve[(int)i] / 10.0f;
|
||
|
}
|
||
|
Vector3 newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, 0.0f, _foldCurve[(int)i].x + (branchThickness));
|
||
|
newVertices[(int)i * 4 + 0 + abr] = newVer;
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, 0.0f, _foldCurve[(int)i].x - (branchThickness));
|
||
|
newVertices[(int)i * 4 + 1 + abr] = newVer;
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, branchThickness, _foldCurve[(int)i].x);
|
||
|
newVertices[(int)i * 4 + 2 + abr] = newVer;
|
||
|
newVer = new Vector3((length / numberOfAnimationSteps) * scaleL * _foldCurve[(int)i].y, -branchThickness, _foldCurve[(int)i].x);
|
||
|
newVertices[(int)i * 4 + 3 + abr] = newVer;
|
||
|
Debug.Log("#_foldCurve[(int)i]=" + _foldCurve[(int)i]);
|
||
|
}
|
||
|
for (j = 1; j < _widthCurve.Length; j++) {
|
||
|
int k = j - 1;
|
||
|
|
||
|
// prawa i lewa patrząc od góry ODWRÓCONE
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;//góra prawa i 2 na dole
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 4 + 2 + abr;
|
||
|
|
||
|
newTriangles[ti++] = j * 4 + 2 + abr;//góra prawa i 2 u góry
|
||
|
newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
//
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;//góra lewa i 2 na dole
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
|
||
|
newTriangles[ti++] = j * 4 + 3 + abr;//góra lewa i 2 u góry
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
//
|
||
|
|
||
|
|
||
|
|
||
|
newTriangles[ti++] = j * 4 + 3 + abr;//dół lewa i 2 na dole
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
//
|
||
|
newTriangles[ti++] = j * 4 + 3 + abr;//dół lewa i 2 u góry
|
||
|
newTriangles[ti++] = j * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
//
|
||
|
newTriangles[ti++] = j * 4 + 1 + abr;//dół prawa i 2 na dole
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
//
|
||
|
newTriangles[ti++] = j * 4 + 2 + abr;//dół prawa i 2 u góry
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 4 + 1 + abr;
|
||
|
|
||
|
//// prawa i lewa patrząc od góry
|
||
|
//
|
||
|
// newTriangles[ti++] = k * 4 + 0 + abr;//góra prawa i 2 na dole
|
||
|
// newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
//
|
||
|
// newTriangles[ti++] = j * 4 + 3 + abr;//góra lewa i 2 u góry
|
||
|
// newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
////
|
||
|
// newTriangles[ti++] = k * 4 + 3 + abr;//góra lewa i 2 na dole
|
||
|
// newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
//
|
||
|
// newTriangles[ti++] = j * 4 + 3 + abr;//góra prawa i 2 u góry
|
||
|
// newTriangles[ti++] = j * 4 + 0 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
////
|
||
|
////
|
||
|
// newTriangles[ti++] = j * 4 + 3 + abr;//dół lewa i 2 na dole
|
||
|
// newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
////
|
||
|
////
|
||
|
// newTriangles[ti++] = j * 4 + 3 + abr;//dół lewa i 2 u góry
|
||
|
// newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
// newTriangles[ti++] = j * 4 + 1 + abr;
|
||
|
////
|
||
|
// newTriangles[ti++] = j * 4 + 1 + abr;//dół prawa i 2 na dole
|
||
|
// newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
////
|
||
|
// newTriangles[ti++] = j * 4 + 2 + abr;//dół prawa i 2 u góry
|
||
|
// newTriangles[ti++] = j * 4 + 1 + abr;
|
||
|
// newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
if (branchesDistance > 2) {
|
||
|
if (j % branchesDistance == 0 && j + branchesMargin < _widthCurve.Length && _widthCurve.Length > 2 * branchesMargin) {
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 2 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 0 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 2 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 2 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 0 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 2 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 1 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 0 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 2 + branchesMargin * 3;
|
||
|
|
||
|
newTriangles[ti++] = k * 4 + 0 + abr;
|
||
|
newTriangles[ti++] = k * 4 + 3 + abr;
|
||
|
newTriangles[ti++] = j * 3 + 0 + branchesMargin * 3;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mesh.vertices = newVertices;
|
||
|
// mesh.uv = newUV;
|
||
|
mesh.triangles = newTriangles;
|
||
|
|
||
|
mesh.triangles = mesh.triangles.Reverse().ToArray();
|
||
|
}
|
||
|
newUV = new Vector2[newVertices.Length];
|
||
|
|
||
|
mz = 0.0f;
|
||
|
|
||
|
for (j = 0; j < newUV.Length; j++) {
|
||
|
// if(j<abr)
|
||
|
// {
|
||
|
newUV[j] = new Vector2(newVertices[j].x, newVertices[j].y);
|
||
|
// }
|
||
|
// else
|
||
|
// {
|
||
|
// newUV[j] = new Vector2(newVertices[j].x, newVertices[j].z+mz);
|
||
|
// }
|
||
|
}
|
||
|
Color[] colors = new Color[newVertices.Length];
|
||
|
for (j = 0; j < newVertices.Length; j++)
|
||
|
colors[j] = new Color(0.0f, 0.26f, 0.0f);
|
||
|
|
||
|
mesh.colors = colors;
|
||
|
mesh.RecalculateBounds();
|
||
|
// mesh.RecalculateNormals();
|
||
|
mesh.uv = newUV;
|
||
|
Debug.Log("#vert " + mesh.vertices.Length);
|
||
|
Debug.Log("#tris " + (newTriangles.Length / 3));
|
||
|
return mesh;
|
||
|
}
|
||
|
double gauss(double x, double a, double b, double c)//b = 0, a=0.5, c = 1
|
||
|
{
|
||
|
var v1 = (x - b);
|
||
|
var v2 = (v1 * v1) / (2 * (c * c));
|
||
|
var v3 = a * (double)Mathf.Exp((float)-v2);
|
||
|
return v3;
|
||
|
}
|
||
|
struct CurvesContainer {
|
||
|
public CurvesContainer(float[] x, Vector2[] y) {
|
||
|
_widthCurve = x;
|
||
|
_foldCurve = y;
|
||
|
}
|
||
|
public float[] _widthCurve;
|
||
|
public Vector2[] _foldCurve;
|
||
|
}
|
||
|
private CurvesContainer simplifyCurves(float[] _widthCurve, float[] _foldCurve, float simplification) {
|
||
|
Vector2[] _foldCurveVectorFull = new Vector2[_foldCurve.Length];
|
||
|
float[] _widthCurveNewFull = new float[_foldCurve.Length];
|
||
|
int j = 0;
|
||
|
for (int i = 0; i < _foldCurve.Length; i++) {
|
||
|
if (i > 1 && i < _foldCurve.Length - 2) {
|
||
|
if (Mathf.Abs((_widthCurve[i + 1] - _widthCurve[i]) - (_widthCurve[i] - _widthCurve[i - 1])) < simplification) {
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
_foldCurveVectorFull[j] = new Vector2(_foldCurve[i], i);
|
||
|
_widthCurveNewFull[j++] = _widthCurve[i];
|
||
|
}
|
||
|
Vector2[] _foldCurveVector = new Vector2[j];
|
||
|
float[] _widthCurveNew = new float[j];
|
||
|
for (int i = 0; i < j; i++) {
|
||
|
_foldCurveVector[i] = _foldCurveVectorFull[i];
|
||
|
_widthCurveNew[i] = _widthCurveNewFull[i];
|
||
|
}
|
||
|
return new CurvesContainer(_widthCurveNew, _foldCurveVector);
|
||
|
}
|
||
|
}
|