Pracownia_programowania/venv/Lib/site-packages/Cython/Utility/Complex.c

292 lines
9.8 KiB
C
Raw Normal View History

2020-02-01 19:54:00 +01:00
/////////////// Header.proto ///////////////
//@proto_block: h_code
#if !defined(CYTHON_CCOMPLEX)
#if defined(__cplusplus)
#define CYTHON_CCOMPLEX 1
#elif defined(_Complex_I)
#define CYTHON_CCOMPLEX 1
#else
#define CYTHON_CCOMPLEX 0
#endif
#endif
#if CYTHON_CCOMPLEX
#ifdef __cplusplus
#include <complex>
#else
#include <complex.h>
#endif
#endif
#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__)
#undef _Complex_I
#define _Complex_I 1.0fj
#endif
/////////////// RealImag.proto ///////////////
#if CYTHON_CCOMPLEX
#ifdef __cplusplus
#define __Pyx_CREAL(z) ((z).real())
#define __Pyx_CIMAG(z) ((z).imag())
#else
#define __Pyx_CREAL(z) (__real__(z))
#define __Pyx_CIMAG(z) (__imag__(z))
#endif
#else
#define __Pyx_CREAL(z) ((z).real)
#define __Pyx_CIMAG(z) ((z).imag)
#endif
#if defined(__cplusplus) && CYTHON_CCOMPLEX \
&& (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103)
#define __Pyx_SET_CREAL(z,x) ((z).real(x))
#define __Pyx_SET_CIMAG(z,y) ((z).imag(y))
#else
#define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x)
#define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y)
#endif
/////////////// Declarations.proto ///////////////
//@proto_block: complex_type_declarations
#if CYTHON_CCOMPLEX
#ifdef __cplusplus
typedef ::std::complex< {{real_type}} > {{type_name}};
#else
typedef {{real_type}} _Complex {{type_name}};
#endif
#else
typedef struct { {{real_type}} real, imag; } {{type_name}};
#endif
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}}, {{real_type}});
/////////////// Declarations ///////////////
#if CYTHON_CCOMPLEX
#ifdef __cplusplus
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) {
return ::std::complex< {{real_type}} >(x, y);
}
#else
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) {
return x + y*({{type}})_Complex_I;
}
#endif
#else
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) {
{{type}} z;
z.real = x;
z.imag = y;
return z;
}
#endif
/////////////// ToPy.proto ///////////////
#define __pyx_PyComplex_FromComplex(z) \
PyComplex_FromDoubles((double)__Pyx_CREAL(z), \
(double)__Pyx_CIMAG(z))
/////////////// FromPy.proto ///////////////
static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject*);
/////////////// FromPy ///////////////
static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) {
Py_complex cval;
#if !CYTHON_COMPILING_IN_PYPY
if (PyComplex_CheckExact(o))
cval = ((PyComplexObject *)o)->cval;
else
#endif
cval = PyComplex_AsCComplex(o);
return {{type_name}}_from_parts(
({{real_type}})cval.real,
({{real_type}})cval.imag);
}
/////////////// Arithmetic.proto ///////////////
#if CYTHON_CCOMPLEX
#define __Pyx_c_eq{{func_suffix}}(a, b) ((a)==(b))
#define __Pyx_c_sum{{func_suffix}}(a, b) ((a)+(b))
#define __Pyx_c_diff{{func_suffix}}(a, b) ((a)-(b))
#define __Pyx_c_prod{{func_suffix}}(a, b) ((a)*(b))
#define __Pyx_c_quot{{func_suffix}}(a, b) ((a)/(b))
#define __Pyx_c_neg{{func_suffix}}(a) (-(a))
#ifdef __cplusplus
#define __Pyx_c_is_zero{{func_suffix}}(z) ((z)==({{real_type}})0)
#define __Pyx_c_conj{{func_suffix}}(z) (::std::conj(z))
#if {{is_float}}
#define __Pyx_c_abs{{func_suffix}}(z) (::std::abs(z))
#define __Pyx_c_pow{{func_suffix}}(a, b) (::std::pow(a, b))
#endif
#else
#define __Pyx_c_is_zero{{func_suffix}}(z) ((z)==0)
#define __Pyx_c_conj{{func_suffix}}(z) (conj{{m}}(z))
#if {{is_float}}
#define __Pyx_c_abs{{func_suffix}}(z) (cabs{{m}}(z))
#define __Pyx_c_pow{{func_suffix}}(a, b) (cpow{{m}}(a, b))
#endif
#endif
#else
static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}}, {{type}});
static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}}, {{type}});
static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}}, {{type}});
static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}}, {{type}});
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}}, {{type}});
static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}});
static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}});
static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}});
#if {{is_float}}
static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}});
static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}}, {{type}});
#endif
#endif
/////////////// Arithmetic ///////////////
#if CYTHON_CCOMPLEX
#else
static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}} a, {{type}} b) {
return (a.real == b.real) && (a.imag == b.imag);
}
static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}} a, {{type}} b) {
{{type}} z;
z.real = a.real + b.real;
z.imag = a.imag + b.imag;
return z;
}
static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}} a, {{type}} b) {
{{type}} z;
z.real = a.real - b.real;
z.imag = a.imag - b.imag;
return z;
}
static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}} a, {{type}} b) {
{{type}} z;
z.real = a.real * b.real - a.imag * b.imag;
z.imag = a.real * b.imag + a.imag * b.real;
return z;
}
#if {{is_float}}
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) {
if (b.imag == 0) {
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real);
} else if (fabs{{m}}(b.real) >= fabs{{m}}(b.imag)) {
if (b.real == 0 && b.imag == 0) {
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.imag);
} else {
{{real_type}} r = b.imag / b.real;
{{real_type}} s = ({{real_type}})(1.0) / (b.real + b.imag * r);
return {{type_name}}_from_parts(
(a.real + a.imag * r) * s, (a.imag - a.real * r) * s);
}
} else {
{{real_type}} r = b.real / b.imag;
{{real_type}} s = ({{real_type}})(1.0) / (b.imag + b.real * r);
return {{type_name}}_from_parts(
(a.real * r + a.imag) * s, (a.imag * r - a.real) * s);
}
}
#else
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) {
if (b.imag == 0) {
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real);
} else {
{{real_type}} denom = b.real * b.real + b.imag * b.imag;
return {{type_name}}_from_parts(
(a.real * b.real + a.imag * b.imag) / denom,
(a.imag * b.real - a.real * b.imag) / denom);
}
}
#endif
static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}} a) {
{{type}} z;
z.real = -a.real;
z.imag = -a.imag;
return z;
}
static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}} a) {
return (a.real == 0) && (a.imag == 0);
}
static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}} a) {
{{type}} z;
z.real = a.real;
z.imag = -a.imag;
return z;
}
#if {{is_float}}
static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}} z) {
#if !defined(HAVE_HYPOT) || defined(_MSC_VER)
return sqrt{{m}}(z.real*z.real + z.imag*z.imag);
#else
return hypot{{m}}(z.real, z.imag);
#endif
}
static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}} a, {{type}} b) {
{{type}} z;
{{real_type}} r, lnr, theta, z_r, z_theta;
if (b.imag == 0 && b.real == (int)b.real) {
if (b.real < 0) {
{{real_type}} denom = a.real * a.real + a.imag * a.imag;
a.real = a.real / denom;
a.imag = -a.imag / denom;
b.real = -b.real;
}
switch ((int)b.real) {
case 0:
z.real = 1;
z.imag = 0;
return z;
case 1:
return a;
case 2:
return __Pyx_c_prod{{func_suffix}}(a, a);
case 3:
z = __Pyx_c_prod{{func_suffix}}(a, a);
return __Pyx_c_prod{{func_suffix}}(z, a);
case 4:
z = __Pyx_c_prod{{func_suffix}}(a, a);
return __Pyx_c_prod{{func_suffix}}(z, z);
}
}
if (a.imag == 0) {
if (a.real == 0) {
return a;
} else if (b.imag == 0) {
z.real = pow{{m}}(a.real, b.real);
z.imag = 0;
return z;
} else if (a.real > 0) {
r = a.real;
theta = 0;
} else {
r = -a.real;
theta = atan2{{m}}(0.0, -1.0);
}
} else {
r = __Pyx_c_abs{{func_suffix}}(a);
theta = atan2{{m}}(a.imag, a.real);
}
lnr = log{{m}}(r);
z_r = exp{{m}}(lnr * b.real - theta * b.imag);
z_theta = theta * b.real + lnr * b.imag;
z.real = z_r * cos{{m}}(z_theta);
z.imag = z_r * sin{{m}}(z_theta);
return z;
}
#endif
#endif