654 lines
20 KiB
Python
654 lines
20 KiB
Python
|
"""Test inter-conversion of different polynomial classes.
|
||
|
|
||
|
This tests the convert and cast methods of all the polynomial classes.
|
||
|
|
||
|
"""
|
||
|
from __future__ import division, absolute_import, print_function
|
||
|
|
||
|
import operator as op
|
||
|
from numbers import Number
|
||
|
|
||
|
import pytest
|
||
|
import numpy as np
|
||
|
from numpy.polynomial import (
|
||
|
Polynomial, Legendre, Chebyshev, Laguerre, Hermite, HermiteE)
|
||
|
from numpy.testing import (
|
||
|
assert_almost_equal, assert_raises, assert_equal, assert_,
|
||
|
)
|
||
|
from numpy.compat import long
|
||
|
from numpy.polynomial.polyutils import RankWarning
|
||
|
|
||
|
#
|
||
|
# fixtures
|
||
|
#
|
||
|
|
||
|
classes = (
|
||
|
Polynomial, Legendre, Chebyshev, Laguerre,
|
||
|
Hermite, HermiteE
|
||
|
)
|
||
|
classids = tuple(cls.__name__ for cls in classes)
|
||
|
|
||
|
@pytest.fixture(params=classes, ids=classids)
|
||
|
def Poly(request):
|
||
|
return request.param
|
||
|
|
||
|
#
|
||
|
# helper functions
|
||
|
#
|
||
|
random = np.random.random
|
||
|
|
||
|
|
||
|
def assert_poly_almost_equal(p1, p2, msg=""):
|
||
|
try:
|
||
|
assert_(np.all(p1.domain == p2.domain))
|
||
|
assert_(np.all(p1.window == p2.window))
|
||
|
assert_almost_equal(p1.coef, p2.coef)
|
||
|
except AssertionError:
|
||
|
msg = "Result: %s\nTarget: %s", (p1, p2)
|
||
|
raise AssertionError(msg)
|
||
|
|
||
|
|
||
|
#
|
||
|
# Test conversion methods that depend on combinations of two classes.
|
||
|
#
|
||
|
|
||
|
Poly1 = Poly
|
||
|
Poly2 = Poly
|
||
|
|
||
|
|
||
|
def test_conversion(Poly1, Poly2):
|
||
|
x = np.linspace(0, 1, 10)
|
||
|
coef = random((3,))
|
||
|
|
||
|
d1 = Poly1.domain + random((2,))*.25
|
||
|
w1 = Poly1.window + random((2,))*.25
|
||
|
p1 = Poly1(coef, domain=d1, window=w1)
|
||
|
|
||
|
d2 = Poly2.domain + random((2,))*.25
|
||
|
w2 = Poly2.window + random((2,))*.25
|
||
|
p2 = p1.convert(kind=Poly2, domain=d2, window=w2)
|
||
|
|
||
|
assert_almost_equal(p2.domain, d2)
|
||
|
assert_almost_equal(p2.window, w2)
|
||
|
assert_almost_equal(p2(x), p1(x))
|
||
|
|
||
|
|
||
|
def test_cast(Poly1, Poly2):
|
||
|
x = np.linspace(0, 1, 10)
|
||
|
coef = random((3,))
|
||
|
|
||
|
d1 = Poly1.domain + random((2,))*.25
|
||
|
w1 = Poly1.window + random((2,))*.25
|
||
|
p1 = Poly1(coef, domain=d1, window=w1)
|
||
|
|
||
|
d2 = Poly2.domain + random((2,))*.25
|
||
|
w2 = Poly2.window + random((2,))*.25
|
||
|
p2 = Poly2.cast(p1, domain=d2, window=w2)
|
||
|
|
||
|
assert_almost_equal(p2.domain, d2)
|
||
|
assert_almost_equal(p2.window, w2)
|
||
|
assert_almost_equal(p2(x), p1(x))
|
||
|
|
||
|
|
||
|
#
|
||
|
# test methods that depend on one class
|
||
|
#
|
||
|
|
||
|
|
||
|
def test_identity(Poly):
|
||
|
d = Poly.domain + random((2,))*.25
|
||
|
w = Poly.window + random((2,))*.25
|
||
|
x = np.linspace(d[0], d[1], 11)
|
||
|
p = Poly.identity(domain=d, window=w)
|
||
|
assert_equal(p.domain, d)
|
||
|
assert_equal(p.window, w)
|
||
|
assert_almost_equal(p(x), x)
|
||
|
|
||
|
|
||
|
def test_basis(Poly):
|
||
|
d = Poly.domain + random((2,))*.25
|
||
|
w = Poly.window + random((2,))*.25
|
||
|
p = Poly.basis(5, domain=d, window=w)
|
||
|
assert_equal(p.domain, d)
|
||
|
assert_equal(p.window, w)
|
||
|
assert_equal(p.coef, [0]*5 + [1])
|
||
|
|
||
|
|
||
|
def test_fromroots(Poly):
|
||
|
# check that requested roots are zeros of a polynomial
|
||
|
# of correct degree, domain, and window.
|
||
|
d = Poly.domain + random((2,))*.25
|
||
|
w = Poly.window + random((2,))*.25
|
||
|
r = random((5,))
|
||
|
p1 = Poly.fromroots(r, domain=d, window=w)
|
||
|
assert_equal(p1.degree(), len(r))
|
||
|
assert_equal(p1.domain, d)
|
||
|
assert_equal(p1.window, w)
|
||
|
assert_almost_equal(p1(r), 0)
|
||
|
|
||
|
# check that polynomial is monic
|
||
|
pdom = Polynomial.domain
|
||
|
pwin = Polynomial.window
|
||
|
p2 = Polynomial.cast(p1, domain=pdom, window=pwin)
|
||
|
assert_almost_equal(p2.coef[-1], 1)
|
||
|
|
||
|
|
||
|
def test_bad_conditioned_fit(Poly):
|
||
|
|
||
|
x = [0., 0., 1.]
|
||
|
y = [1., 2., 3.]
|
||
|
|
||
|
# check RankWarning is raised
|
||
|
with pytest.warns(RankWarning) as record:
|
||
|
Poly.fit(x, y, 2)
|
||
|
assert record[0].message.args[0] == "The fit may be poorly conditioned"
|
||
|
|
||
|
|
||
|
def test_fit(Poly):
|
||
|
|
||
|
def f(x):
|
||
|
return x*(x - 1)*(x - 2)
|
||
|
x = np.linspace(0, 3)
|
||
|
y = f(x)
|
||
|
|
||
|
# check default value of domain and window
|
||
|
p = Poly.fit(x, y, 3)
|
||
|
assert_almost_equal(p.domain, [0, 3])
|
||
|
assert_almost_equal(p(x), y)
|
||
|
assert_equal(p.degree(), 3)
|
||
|
|
||
|
# check with given domains and window
|
||
|
d = Poly.domain + random((2,))*.25
|
||
|
w = Poly.window + random((2,))*.25
|
||
|
p = Poly.fit(x, y, 3, domain=d, window=w)
|
||
|
assert_almost_equal(p(x), y)
|
||
|
assert_almost_equal(p.domain, d)
|
||
|
assert_almost_equal(p.window, w)
|
||
|
p = Poly.fit(x, y, [0, 1, 2, 3], domain=d, window=w)
|
||
|
assert_almost_equal(p(x), y)
|
||
|
assert_almost_equal(p.domain, d)
|
||
|
assert_almost_equal(p.window, w)
|
||
|
|
||
|
# check with class domain default
|
||
|
p = Poly.fit(x, y, 3, [])
|
||
|
assert_equal(p.domain, Poly.domain)
|
||
|
assert_equal(p.window, Poly.window)
|
||
|
p = Poly.fit(x, y, [0, 1, 2, 3], [])
|
||
|
assert_equal(p.domain, Poly.domain)
|
||
|
assert_equal(p.window, Poly.window)
|
||
|
|
||
|
# check that fit accepts weights.
|
||
|
w = np.zeros_like(x)
|
||
|
z = y + random(y.shape)*.25
|
||
|
w[::2] = 1
|
||
|
p1 = Poly.fit(x[::2], z[::2], 3)
|
||
|
p2 = Poly.fit(x, z, 3, w=w)
|
||
|
p3 = Poly.fit(x, z, [0, 1, 2, 3], w=w)
|
||
|
assert_almost_equal(p1(x), p2(x))
|
||
|
assert_almost_equal(p2(x), p3(x))
|
||
|
|
||
|
|
||
|
def test_equal(Poly):
|
||
|
p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3])
|
||
|
p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3])
|
||
|
p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3])
|
||
|
p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2])
|
||
|
assert_(p1 == p1)
|
||
|
assert_(not p1 == p2)
|
||
|
assert_(not p1 == p3)
|
||
|
assert_(not p1 == p4)
|
||
|
|
||
|
|
||
|
def test_not_equal(Poly):
|
||
|
p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3])
|
||
|
p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3])
|
||
|
p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3])
|
||
|
p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2])
|
||
|
assert_(not p1 != p1)
|
||
|
assert_(p1 != p2)
|
||
|
assert_(p1 != p3)
|
||
|
assert_(p1 != p4)
|
||
|
|
||
|
|
||
|
def test_add(Poly):
|
||
|
# This checks commutation, not numerical correctness
|
||
|
c1 = list(random((4,)) + .5)
|
||
|
c2 = list(random((3,)) + .5)
|
||
|
p1 = Poly(c1)
|
||
|
p2 = Poly(c2)
|
||
|
p3 = p1 + p2
|
||
|
assert_poly_almost_equal(p2 + p1, p3)
|
||
|
assert_poly_almost_equal(p1 + c2, p3)
|
||
|
assert_poly_almost_equal(c2 + p1, p3)
|
||
|
assert_poly_almost_equal(p1 + tuple(c2), p3)
|
||
|
assert_poly_almost_equal(tuple(c2) + p1, p3)
|
||
|
assert_poly_almost_equal(p1 + np.array(c2), p3)
|
||
|
assert_poly_almost_equal(np.array(c2) + p1, p3)
|
||
|
assert_raises(TypeError, op.add, p1, Poly([0], domain=Poly.domain + 1))
|
||
|
assert_raises(TypeError, op.add, p1, Poly([0], window=Poly.window + 1))
|
||
|
if Poly is Polynomial:
|
||
|
assert_raises(TypeError, op.add, p1, Chebyshev([0]))
|
||
|
else:
|
||
|
assert_raises(TypeError, op.add, p1, Polynomial([0]))
|
||
|
|
||
|
|
||
|
def test_sub(Poly):
|
||
|
# This checks commutation, not numerical correctness
|
||
|
c1 = list(random((4,)) + .5)
|
||
|
c2 = list(random((3,)) + .5)
|
||
|
p1 = Poly(c1)
|
||
|
p2 = Poly(c2)
|
||
|
p3 = p1 - p2
|
||
|
assert_poly_almost_equal(p2 - p1, -p3)
|
||
|
assert_poly_almost_equal(p1 - c2, p3)
|
||
|
assert_poly_almost_equal(c2 - p1, -p3)
|
||
|
assert_poly_almost_equal(p1 - tuple(c2), p3)
|
||
|
assert_poly_almost_equal(tuple(c2) - p1, -p3)
|
||
|
assert_poly_almost_equal(p1 - np.array(c2), p3)
|
||
|
assert_poly_almost_equal(np.array(c2) - p1, -p3)
|
||
|
assert_raises(TypeError, op.sub, p1, Poly([0], domain=Poly.domain + 1))
|
||
|
assert_raises(TypeError, op.sub, p1, Poly([0], window=Poly.window + 1))
|
||
|
if Poly is Polynomial:
|
||
|
assert_raises(TypeError, op.sub, p1, Chebyshev([0]))
|
||
|
else:
|
||
|
assert_raises(TypeError, op.sub, p1, Polynomial([0]))
|
||
|
|
||
|
|
||
|
def test_mul(Poly):
|
||
|
c1 = list(random((4,)) + .5)
|
||
|
c2 = list(random((3,)) + .5)
|
||
|
p1 = Poly(c1)
|
||
|
p2 = Poly(c2)
|
||
|
p3 = p1 * p2
|
||
|
assert_poly_almost_equal(p2 * p1, p3)
|
||
|
assert_poly_almost_equal(p1 * c2, p3)
|
||
|
assert_poly_almost_equal(c2 * p1, p3)
|
||
|
assert_poly_almost_equal(p1 * tuple(c2), p3)
|
||
|
assert_poly_almost_equal(tuple(c2) * p1, p3)
|
||
|
assert_poly_almost_equal(p1 * np.array(c2), p3)
|
||
|
assert_poly_almost_equal(np.array(c2) * p1, p3)
|
||
|
assert_poly_almost_equal(p1 * 2, p1 * Poly([2]))
|
||
|
assert_poly_almost_equal(2 * p1, p1 * Poly([2]))
|
||
|
assert_raises(TypeError, op.mul, p1, Poly([0], domain=Poly.domain + 1))
|
||
|
assert_raises(TypeError, op.mul, p1, Poly([0], window=Poly.window + 1))
|
||
|
if Poly is Polynomial:
|
||
|
assert_raises(TypeError, op.mul, p1, Chebyshev([0]))
|
||
|
else:
|
||
|
assert_raises(TypeError, op.mul, p1, Polynomial([0]))
|
||
|
|
||
|
|
||
|
def test_floordiv(Poly):
|
||
|
c1 = list(random((4,)) + .5)
|
||
|
c2 = list(random((3,)) + .5)
|
||
|
c3 = list(random((2,)) + .5)
|
||
|
p1 = Poly(c1)
|
||
|
p2 = Poly(c2)
|
||
|
p3 = Poly(c3)
|
||
|
p4 = p1 * p2 + p3
|
||
|
c4 = list(p4.coef)
|
||
|
assert_poly_almost_equal(p4 // p2, p1)
|
||
|
assert_poly_almost_equal(p4 // c2, p1)
|
||
|
assert_poly_almost_equal(c4 // p2, p1)
|
||
|
assert_poly_almost_equal(p4 // tuple(c2), p1)
|
||
|
assert_poly_almost_equal(tuple(c4) // p2, p1)
|
||
|
assert_poly_almost_equal(p4 // np.array(c2), p1)
|
||
|
assert_poly_almost_equal(np.array(c4) // p2, p1)
|
||
|
assert_poly_almost_equal(2 // p2, Poly([0]))
|
||
|
assert_poly_almost_equal(p2 // 2, 0.5*p2)
|
||
|
assert_raises(
|
||
|
TypeError, op.floordiv, p1, Poly([0], domain=Poly.domain + 1))
|
||
|
assert_raises(
|
||
|
TypeError, op.floordiv, p1, Poly([0], window=Poly.window + 1))
|
||
|
if Poly is Polynomial:
|
||
|
assert_raises(TypeError, op.floordiv, p1, Chebyshev([0]))
|
||
|
else:
|
||
|
assert_raises(TypeError, op.floordiv, p1, Polynomial([0]))
|
||
|
|
||
|
|
||
|
def test_truediv(Poly):
|
||
|
# true division is valid only if the denominator is a Number and
|
||
|
# not a python bool.
|
||
|
p1 = Poly([1,2,3])
|
||
|
p2 = p1 * 5
|
||
|
|
||
|
for stype in np.ScalarType:
|
||
|
if not issubclass(stype, Number) or issubclass(stype, bool):
|
||
|
continue
|
||
|
s = stype(5)
|
||
|
assert_poly_almost_equal(op.truediv(p2, s), p1)
|
||
|
assert_raises(TypeError, op.truediv, s, p2)
|
||
|
for stype in (int, long, float):
|
||
|
s = stype(5)
|
||
|
assert_poly_almost_equal(op.truediv(p2, s), p1)
|
||
|
assert_raises(TypeError, op.truediv, s, p2)
|
||
|
for stype in [complex]:
|
||
|
s = stype(5, 0)
|
||
|
assert_poly_almost_equal(op.truediv(p2, s), p1)
|
||
|
assert_raises(TypeError, op.truediv, s, p2)
|
||
|
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
|
||
|
assert_raises(TypeError, op.truediv, p2, s)
|
||
|
assert_raises(TypeError, op.truediv, s, p2)
|
||
|
for ptype in classes:
|
||
|
assert_raises(TypeError, op.truediv, p2, ptype(1))
|
||
|
|
||
|
|
||
|
def test_mod(Poly):
|
||
|
# This checks commutation, not numerical correctness
|
||
|
c1 = list(random((4,)) + .5)
|
||
|
c2 = list(random((3,)) + .5)
|
||
|
c3 = list(random((2,)) + .5)
|
||
|
p1 = Poly(c1)
|
||
|
p2 = Poly(c2)
|
||
|
p3 = Poly(c3)
|
||
|
p4 = p1 * p2 + p3
|
||
|
c4 = list(p4.coef)
|
||
|
assert_poly_almost_equal(p4 % p2, p3)
|
||
|
assert_poly_almost_equal(p4 % c2, p3)
|
||
|
assert_poly_almost_equal(c4 % p2, p3)
|
||
|
assert_poly_almost_equal(p4 % tuple(c2), p3)
|
||
|
assert_poly_almost_equal(tuple(c4) % p2, p3)
|
||
|
assert_poly_almost_equal(p4 % np.array(c2), p3)
|
||
|
assert_poly_almost_equal(np.array(c4) % p2, p3)
|
||
|
assert_poly_almost_equal(2 % p2, Poly([2]))
|
||
|
assert_poly_almost_equal(p2 % 2, Poly([0]))
|
||
|
assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
|
||
|
assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
|
||
|
if Poly is Polynomial:
|
||
|
assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
|
||
|
else:
|
||
|
assert_raises(TypeError, op.mod, p1, Polynomial([0]))
|
||
|
|
||
|
|
||
|
def test_divmod(Poly):
|
||
|
# This checks commutation, not numerical correctness
|
||
|
c1 = list(random((4,)) + .5)
|
||
|
c2 = list(random((3,)) + .5)
|
||
|
c3 = list(random((2,)) + .5)
|
||
|
p1 = Poly(c1)
|
||
|
p2 = Poly(c2)
|
||
|
p3 = Poly(c3)
|
||
|
p4 = p1 * p2 + p3
|
||
|
c4 = list(p4.coef)
|
||
|
quo, rem = divmod(p4, p2)
|
||
|
assert_poly_almost_equal(quo, p1)
|
||
|
assert_poly_almost_equal(rem, p3)
|
||
|
quo, rem = divmod(p4, c2)
|
||
|
assert_poly_almost_equal(quo, p1)
|
||
|
assert_poly_almost_equal(rem, p3)
|
||
|
quo, rem = divmod(c4, p2)
|
||
|
assert_poly_almost_equal(quo, p1)
|
||
|
assert_poly_almost_equal(rem, p3)
|
||
|
quo, rem = divmod(p4, tuple(c2))
|
||
|
assert_poly_almost_equal(quo, p1)
|
||
|
assert_poly_almost_equal(rem, p3)
|
||
|
quo, rem = divmod(tuple(c4), p2)
|
||
|
assert_poly_almost_equal(quo, p1)
|
||
|
assert_poly_almost_equal(rem, p3)
|
||
|
quo, rem = divmod(p4, np.array(c2))
|
||
|
assert_poly_almost_equal(quo, p1)
|
||
|
assert_poly_almost_equal(rem, p3)
|
||
|
quo, rem = divmod(np.array(c4), p2)
|
||
|
assert_poly_almost_equal(quo, p1)
|
||
|
assert_poly_almost_equal(rem, p3)
|
||
|
quo, rem = divmod(p2, 2)
|
||
|
assert_poly_almost_equal(quo, 0.5*p2)
|
||
|
assert_poly_almost_equal(rem, Poly([0]))
|
||
|
quo, rem = divmod(2, p2)
|
||
|
assert_poly_almost_equal(quo, Poly([0]))
|
||
|
assert_poly_almost_equal(rem, Poly([2]))
|
||
|
assert_raises(TypeError, divmod, p1, Poly([0], domain=Poly.domain + 1))
|
||
|
assert_raises(TypeError, divmod, p1, Poly([0], window=Poly.window + 1))
|
||
|
if Poly is Polynomial:
|
||
|
assert_raises(TypeError, divmod, p1, Chebyshev([0]))
|
||
|
else:
|
||
|
assert_raises(TypeError, divmod, p1, Polynomial([0]))
|
||
|
|
||
|
|
||
|
def test_roots(Poly):
|
||
|
d = Poly.domain * 1.25 + .25
|
||
|
w = Poly.window
|
||
|
tgt = np.linspace(d[0], d[1], 5)
|
||
|
res = np.sort(Poly.fromroots(tgt, domain=d, window=w).roots())
|
||
|
assert_almost_equal(res, tgt)
|
||
|
# default domain and window
|
||
|
res = np.sort(Poly.fromroots(tgt).roots())
|
||
|
assert_almost_equal(res, tgt)
|
||
|
|
||
|
|
||
|
def test_degree(Poly):
|
||
|
p = Poly.basis(5)
|
||
|
assert_equal(p.degree(), 5)
|
||
|
|
||
|
|
||
|
def test_copy(Poly):
|
||
|
p1 = Poly.basis(5)
|
||
|
p2 = p1.copy()
|
||
|
assert_(p1 == p2)
|
||
|
assert_(p1 is not p2)
|
||
|
assert_(p1.coef is not p2.coef)
|
||
|
assert_(p1.domain is not p2.domain)
|
||
|
assert_(p1.window is not p2.window)
|
||
|
|
||
|
|
||
|
def test_integ(Poly):
|
||
|
P = Polynomial
|
||
|
# Check defaults
|
||
|
p0 = Poly.cast(P([1*2, 2*3, 3*4]))
|
||
|
p1 = P.cast(p0.integ())
|
||
|
p2 = P.cast(p0.integ(2))
|
||
|
assert_poly_almost_equal(p1, P([0, 2, 3, 4]))
|
||
|
assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1]))
|
||
|
# Check with k
|
||
|
p0 = Poly.cast(P([1*2, 2*3, 3*4]))
|
||
|
p1 = P.cast(p0.integ(k=1))
|
||
|
p2 = P.cast(p0.integ(2, k=[1, 1]))
|
||
|
assert_poly_almost_equal(p1, P([1, 2, 3, 4]))
|
||
|
assert_poly_almost_equal(p2, P([1, 1, 1, 1, 1]))
|
||
|
# Check with lbnd
|
||
|
p0 = Poly.cast(P([1*2, 2*3, 3*4]))
|
||
|
p1 = P.cast(p0.integ(lbnd=1))
|
||
|
p2 = P.cast(p0.integ(2, lbnd=1))
|
||
|
assert_poly_almost_equal(p1, P([-9, 2, 3, 4]))
|
||
|
assert_poly_almost_equal(p2, P([6, -9, 1, 1, 1]))
|
||
|
# Check scaling
|
||
|
d = 2*Poly.domain
|
||
|
p0 = Poly.cast(P([1*2, 2*3, 3*4]), domain=d)
|
||
|
p1 = P.cast(p0.integ())
|
||
|
p2 = P.cast(p0.integ(2))
|
||
|
assert_poly_almost_equal(p1, P([0, 2, 3, 4]))
|
||
|
assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1]))
|
||
|
|
||
|
|
||
|
def test_deriv(Poly):
|
||
|
# Check that the derivative is the inverse of integration. It is
|
||
|
# assumes that the integration has been checked elsewhere.
|
||
|
d = Poly.domain + random((2,))*.25
|
||
|
w = Poly.window + random((2,))*.25
|
||
|
p1 = Poly([1, 2, 3], domain=d, window=w)
|
||
|
p2 = p1.integ(2, k=[1, 2])
|
||
|
p3 = p1.integ(1, k=[1])
|
||
|
assert_almost_equal(p2.deriv(1).coef, p3.coef)
|
||
|
assert_almost_equal(p2.deriv(2).coef, p1.coef)
|
||
|
# default domain and window
|
||
|
p1 = Poly([1, 2, 3])
|
||
|
p2 = p1.integ(2, k=[1, 2])
|
||
|
p3 = p1.integ(1, k=[1])
|
||
|
assert_almost_equal(p2.deriv(1).coef, p3.coef)
|
||
|
assert_almost_equal(p2.deriv(2).coef, p1.coef)
|
||
|
|
||
|
|
||
|
def test_linspace(Poly):
|
||
|
d = Poly.domain + random((2,))*.25
|
||
|
w = Poly.window + random((2,))*.25
|
||
|
p = Poly([1, 2, 3], domain=d, window=w)
|
||
|
# check default domain
|
||
|
xtgt = np.linspace(d[0], d[1], 20)
|
||
|
ytgt = p(xtgt)
|
||
|
xres, yres = p.linspace(20)
|
||
|
assert_almost_equal(xres, xtgt)
|
||
|
assert_almost_equal(yres, ytgt)
|
||
|
# check specified domain
|
||
|
xtgt = np.linspace(0, 2, 20)
|
||
|
ytgt = p(xtgt)
|
||
|
xres, yres = p.linspace(20, domain=[0, 2])
|
||
|
assert_almost_equal(xres, xtgt)
|
||
|
assert_almost_equal(yres, ytgt)
|
||
|
|
||
|
|
||
|
def test_pow(Poly):
|
||
|
d = Poly.domain + random((2,))*.25
|
||
|
w = Poly.window + random((2,))*.25
|
||
|
tgt = Poly([1], domain=d, window=w)
|
||
|
tst = Poly([1, 2, 3], domain=d, window=w)
|
||
|
for i in range(5):
|
||
|
assert_poly_almost_equal(tst**i, tgt)
|
||
|
tgt = tgt * tst
|
||
|
# default domain and window
|
||
|
tgt = Poly([1])
|
||
|
tst = Poly([1, 2, 3])
|
||
|
for i in range(5):
|
||
|
assert_poly_almost_equal(tst**i, tgt)
|
||
|
tgt = tgt * tst
|
||
|
# check error for invalid powers
|
||
|
assert_raises(ValueError, op.pow, tgt, 1.5)
|
||
|
assert_raises(ValueError, op.pow, tgt, -1)
|
||
|
|
||
|
|
||
|
def test_call(Poly):
|
||
|
P = Polynomial
|
||
|
d = Poly.domain
|
||
|
x = np.linspace(d[0], d[1], 11)
|
||
|
|
||
|
# Check defaults
|
||
|
p = Poly.cast(P([1, 2, 3]))
|
||
|
tgt = 1 + x*(2 + 3*x)
|
||
|
res = p(x)
|
||
|
assert_almost_equal(res, tgt)
|
||
|
|
||
|
|
||
|
def test_cutdeg(Poly):
|
||
|
p = Poly([1, 2, 3])
|
||
|
assert_raises(ValueError, p.cutdeg, .5)
|
||
|
assert_raises(ValueError, p.cutdeg, -1)
|
||
|
assert_equal(len(p.cutdeg(3)), 3)
|
||
|
assert_equal(len(p.cutdeg(2)), 3)
|
||
|
assert_equal(len(p.cutdeg(1)), 2)
|
||
|
assert_equal(len(p.cutdeg(0)), 1)
|
||
|
|
||
|
|
||
|
def test_truncate(Poly):
|
||
|
p = Poly([1, 2, 3])
|
||
|
assert_raises(ValueError, p.truncate, .5)
|
||
|
assert_raises(ValueError, p.truncate, 0)
|
||
|
assert_equal(len(p.truncate(4)), 3)
|
||
|
assert_equal(len(p.truncate(3)), 3)
|
||
|
assert_equal(len(p.truncate(2)), 2)
|
||
|
assert_equal(len(p.truncate(1)), 1)
|
||
|
|
||
|
|
||
|
def test_trim(Poly):
|
||
|
c = [1, 1e-6, 1e-12, 0]
|
||
|
p = Poly(c)
|
||
|
assert_equal(p.trim().coef, c[:3])
|
||
|
assert_equal(p.trim(1e-10).coef, c[:2])
|
||
|
assert_equal(p.trim(1e-5).coef, c[:1])
|
||
|
|
||
|
|
||
|
def test_mapparms(Poly):
|
||
|
# check with defaults. Should be identity.
|
||
|
d = Poly.domain
|
||
|
w = Poly.window
|
||
|
p = Poly([1], domain=d, window=w)
|
||
|
assert_almost_equal([0, 1], p.mapparms())
|
||
|
#
|
||
|
w = 2*d + 1
|
||
|
p = Poly([1], domain=d, window=w)
|
||
|
assert_almost_equal([1, 2], p.mapparms())
|
||
|
|
||
|
|
||
|
def test_ufunc_override(Poly):
|
||
|
p = Poly([1, 2, 3])
|
||
|
x = np.ones(3)
|
||
|
assert_raises(TypeError, np.add, p, x)
|
||
|
assert_raises(TypeError, np.add, x, p)
|
||
|
|
||
|
|
||
|
|
||
|
class TestLatexRepr(object):
|
||
|
"""Test the latex repr used by ipython """
|
||
|
|
||
|
def as_latex(self, obj):
|
||
|
# right now we ignore the formatting of scalars in our tests, since
|
||
|
# it makes them too verbose. Ideally, the formatting of scalars will
|
||
|
# be fixed such that tests below continue to pass
|
||
|
obj._repr_latex_scalar = lambda x: str(x)
|
||
|
try:
|
||
|
return obj._repr_latex_()
|
||
|
finally:
|
||
|
del obj._repr_latex_scalar
|
||
|
|
||
|
def test_simple_polynomial(self):
|
||
|
# default input
|
||
|
p = Polynomial([1, 2, 3])
|
||
|
assert_equal(self.as_latex(p),
|
||
|
r'$x \mapsto 1.0 + 2.0\,x + 3.0\,x^{2}$')
|
||
|
|
||
|
# translated input
|
||
|
p = Polynomial([1, 2, 3], domain=[-2, 0])
|
||
|
assert_equal(self.as_latex(p),
|
||
|
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + x\right) + 3.0\,\left(1.0 + x\right)^{2}$')
|
||
|
|
||
|
# scaled input
|
||
|
p = Polynomial([1, 2, 3], domain=[-0.5, 0.5])
|
||
|
assert_equal(self.as_latex(p),
|
||
|
r'$x \mapsto 1.0 + 2.0\,\left(2.0x\right) + 3.0\,\left(2.0x\right)^{2}$')
|
||
|
|
||
|
# affine input
|
||
|
p = Polynomial([1, 2, 3], domain=[-1, 0])
|
||
|
assert_equal(self.as_latex(p),
|
||
|
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + 2.0x\right) + 3.0\,\left(1.0 + 2.0x\right)^{2}$')
|
||
|
|
||
|
def test_basis_func(self):
|
||
|
p = Chebyshev([1, 2, 3])
|
||
|
assert_equal(self.as_latex(p),
|
||
|
r'$x \mapsto 1.0\,{T}_{0}(x) + 2.0\,{T}_{1}(x) + 3.0\,{T}_{2}(x)$')
|
||
|
# affine input - check no surplus parens are added
|
||
|
p = Chebyshev([1, 2, 3], domain=[-1, 0])
|
||
|
assert_equal(self.as_latex(p),
|
||
|
r'$x \mapsto 1.0\,{T}_{0}(1.0 + 2.0x) + 2.0\,{T}_{1}(1.0 + 2.0x) + 3.0\,{T}_{2}(1.0 + 2.0x)$')
|
||
|
|
||
|
def test_multichar_basis_func(self):
|
||
|
p = HermiteE([1, 2, 3])
|
||
|
assert_equal(self.as_latex(p),
|
||
|
r'$x \mapsto 1.0\,{He}_{0}(x) + 2.0\,{He}_{1}(x) + 3.0\,{He}_{2}(x)$')
|
||
|
|
||
|
|
||
|
#
|
||
|
# Test class method that only exists for some classes
|
||
|
#
|
||
|
|
||
|
|
||
|
class TestInterpolate(object):
|
||
|
|
||
|
def f(self, x):
|
||
|
return x * (x - 1) * (x - 2)
|
||
|
|
||
|
def test_raises(self):
|
||
|
assert_raises(ValueError, Chebyshev.interpolate, self.f, -1)
|
||
|
assert_raises(TypeError, Chebyshev.interpolate, self.f, 10.)
|
||
|
|
||
|
def test_dimensions(self):
|
||
|
for deg in range(1, 5):
|
||
|
assert_(Chebyshev.interpolate(self.f, deg).degree() == deg)
|
||
|
|
||
|
def test_approximation(self):
|
||
|
|
||
|
def powx(x, p):
|
||
|
return x**p
|
||
|
|
||
|
x = np.linspace(0, 2, 10)
|
||
|
for deg in range(0, 10):
|
||
|
for t in range(0, deg + 1):
|
||
|
p = Chebyshev.interpolate(powx, deg, domain=[0, 2], args=(t,))
|
||
|
assert_almost_equal(p(x), powx(x, t), decimal=12)
|