from __future__ import absolute_import import cython cython.declare(PyrexTypes=object, Naming=object, ExprNodes=object, Nodes=object, Options=object, UtilNodes=object, LetNode=object, LetRefNode=object, TreeFragment=object, EncodedString=object, error=object, warning=object, copy=object, _unicode=object) import copy import hashlib from . import PyrexTypes from . import Naming from . import ExprNodes from . import Nodes from . import Options from . import Builtin from . import Errors from .Visitor import VisitorTransform, TreeVisitor from .Visitor import CythonTransform, EnvTransform, ScopeTrackingTransform from .UtilNodes import LetNode, LetRefNode from .TreeFragment import TreeFragment from .StringEncoding import EncodedString, _unicode from .Errors import error, warning, CompileError, InternalError from .Code import UtilityCode class SkipDeclarations(object): """ Variable and function declarations can often have a deep tree structure, and yet most transformations don't need to descend to this depth. Declaration nodes are removed after AnalyseDeclarationsTransform, so there is no need to use this for transformations after that point. """ def visit_CTypeDefNode(self, node): return node def visit_CVarDefNode(self, node): return node def visit_CDeclaratorNode(self, node): return node def visit_CBaseTypeNode(self, node): return node def visit_CEnumDefNode(self, node): return node def visit_CStructOrUnionDefNode(self, node): return node class NormalizeTree(CythonTransform): """ This transform fixes up a few things after parsing in order to make the parse tree more suitable for transforms. a) After parsing, blocks with only one statement will be represented by that statement, not by a StatListNode. When doing transforms this is annoying and inconsistent, as one cannot in general remove a statement in a consistent way and so on. This transform wraps any single statements in a StatListNode containing a single statement. b) The PassStatNode is a noop and serves no purpose beyond plugging such one-statement blocks; i.e., once parsed a ` "pass" can just as well be represented using an empty StatListNode. This means less special cases to worry about in subsequent transforms (one always checks to see if a StatListNode has no children to see if the block is empty). """ def __init__(self, context): super(NormalizeTree, self).__init__(context) self.is_in_statlist = False self.is_in_expr = False def visit_ExprNode(self, node): stacktmp = self.is_in_expr self.is_in_expr = True self.visitchildren(node) self.is_in_expr = stacktmp return node def visit_StatNode(self, node, is_listcontainer=False): stacktmp = self.is_in_statlist self.is_in_statlist = is_listcontainer self.visitchildren(node) self.is_in_statlist = stacktmp if not self.is_in_statlist and not self.is_in_expr: return Nodes.StatListNode(pos=node.pos, stats=[node]) else: return node def visit_StatListNode(self, node): self.is_in_statlist = True self.visitchildren(node) self.is_in_statlist = False return node def visit_ParallelAssignmentNode(self, node): return self.visit_StatNode(node, True) def visit_CEnumDefNode(self, node): return self.visit_StatNode(node, True) def visit_CStructOrUnionDefNode(self, node): return self.visit_StatNode(node, True) def visit_PassStatNode(self, node): """Eliminate PassStatNode""" if not self.is_in_statlist: return Nodes.StatListNode(pos=node.pos, stats=[]) else: return [] def visit_ExprStatNode(self, node): """Eliminate useless string literals""" if node.expr.is_string_literal: return self.visit_PassStatNode(node) else: return self.visit_StatNode(node) def visit_CDeclaratorNode(self, node): return node class PostParseError(CompileError): pass # error strings checked by unit tests, so define them ERR_CDEF_INCLASS = 'Cannot assign default value to fields in cdef classes, structs or unions' ERR_BUF_DEFAULTS = 'Invalid buffer defaults specification (see docs)' ERR_INVALID_SPECIALATTR_TYPE = 'Special attributes must not have a type declared' class PostParse(ScopeTrackingTransform): """ Basic interpretation of the parse tree, as well as validity checking that can be done on a very basic level on the parse tree (while still not being a problem with the basic syntax, as such). Specifically: - Default values to cdef assignments are turned into single assignments following the declaration (everywhere but in class bodies, where they raise a compile error) - Interpret some node structures into Python runtime values. Some nodes take compile-time arguments (currently: TemplatedTypeNode[args] and __cythonbufferdefaults__ = {args}), which should be interpreted. This happens in a general way and other steps should be taken to ensure validity. Type arguments cannot be interpreted in this way. - For __cythonbufferdefaults__ the arguments are checked for validity. TemplatedTypeNode has its directives interpreted: Any first positional argument goes into the "dtype" attribute, any "ndim" keyword argument goes into the "ndim" attribute and so on. Also it is checked that the directive combination is valid. - __cythonbufferdefaults__ attributes are parsed and put into the type information. Note: Currently Parsing.py does a lot of interpretation and reorganization that can be refactored into this transform if a more pure Abstract Syntax Tree is wanted. """ def __init__(self, context): super(PostParse, self).__init__(context) self.specialattribute_handlers = { '__cythonbufferdefaults__' : self.handle_bufferdefaults } def visit_LambdaNode(self, node): # unpack a lambda expression into the corresponding DefNode collector = YieldNodeCollector() collector.visitchildren(node.result_expr) if collector.has_yield or collector.has_await or isinstance(node.result_expr, ExprNodes.YieldExprNode): body = Nodes.ExprStatNode( node.result_expr.pos, expr=node.result_expr) else: body = Nodes.ReturnStatNode( node.result_expr.pos, value=node.result_expr) node.def_node = Nodes.DefNode( node.pos, name=node.name, args=node.args, star_arg=node.star_arg, starstar_arg=node.starstar_arg, body=body, doc=None) self.visitchildren(node) return node def visit_GeneratorExpressionNode(self, node): # unpack a generator expression into the corresponding DefNode collector = YieldNodeCollector() collector.visitchildren(node.loop) node.def_node = Nodes.DefNode( node.pos, name=node.name, doc=None, args=[], star_arg=None, starstar_arg=None, body=node.loop, is_async_def=collector.has_await) self.visitchildren(node) return node def visit_ComprehensionNode(self, node): # enforce local scope also in Py2 for async generators (seriously, that's a Py3.6 feature...) if not node.has_local_scope: collector = YieldNodeCollector() collector.visitchildren(node.loop) if collector.has_await: node.has_local_scope = True self.visitchildren(node) return node # cdef variables def handle_bufferdefaults(self, decl): if not isinstance(decl.default, ExprNodes.DictNode): raise PostParseError(decl.pos, ERR_BUF_DEFAULTS) self.scope_node.buffer_defaults_node = decl.default self.scope_node.buffer_defaults_pos = decl.pos def visit_CVarDefNode(self, node): # This assumes only plain names and pointers are assignable on # declaration. Also, it makes use of the fact that a cdef decl # must appear before the first use, so we don't have to deal with # "i = 3; cdef int i = i" and can simply move the nodes around. try: self.visitchildren(node) stats = [node] newdecls = [] for decl in node.declarators: declbase = decl while isinstance(declbase, Nodes.CPtrDeclaratorNode): declbase = declbase.base if isinstance(declbase, Nodes.CNameDeclaratorNode): if declbase.default is not None: if self.scope_type in ('cclass', 'pyclass', 'struct'): if isinstance(self.scope_node, Nodes.CClassDefNode): handler = self.specialattribute_handlers.get(decl.name) if handler: if decl is not declbase: raise PostParseError(decl.pos, ERR_INVALID_SPECIALATTR_TYPE) handler(decl) continue # Remove declaration raise PostParseError(decl.pos, ERR_CDEF_INCLASS) first_assignment = self.scope_type != 'module' stats.append(Nodes.SingleAssignmentNode(node.pos, lhs=ExprNodes.NameNode(node.pos, name=declbase.name), rhs=declbase.default, first=first_assignment)) declbase.default = None newdecls.append(decl) node.declarators = newdecls return stats except PostParseError as e: # An error in a cdef clause is ok, simply remove the declaration # and try to move on to report more errors self.context.nonfatal_error(e) return None # Split parallel assignments (a,b = b,a) into separate partial # assignments that are executed rhs-first using temps. This # restructuring must be applied before type analysis so that known # types on rhs and lhs can be matched directly. It is required in # the case that the types cannot be coerced to a Python type in # order to assign from a tuple. def visit_SingleAssignmentNode(self, node): self.visitchildren(node) return self._visit_assignment_node(node, [node.lhs, node.rhs]) def visit_CascadedAssignmentNode(self, node): self.visitchildren(node) return self._visit_assignment_node(node, node.lhs_list + [node.rhs]) def _visit_assignment_node(self, node, expr_list): """Flatten parallel assignments into separate single assignments or cascaded assignments. """ if sum([ 1 for expr in expr_list if expr.is_sequence_constructor or expr.is_string_literal ]) < 2: # no parallel assignments => nothing to do return node expr_list_list = [] flatten_parallel_assignments(expr_list, expr_list_list) temp_refs = [] eliminate_rhs_duplicates(expr_list_list, temp_refs) nodes = [] for expr_list in expr_list_list: lhs_list = expr_list[:-1] rhs = expr_list[-1] if len(lhs_list) == 1: node = Nodes.SingleAssignmentNode(rhs.pos, lhs = lhs_list[0], rhs = rhs) else: node = Nodes.CascadedAssignmentNode(rhs.pos, lhs_list = lhs_list, rhs = rhs) nodes.append(node) if len(nodes) == 1: assign_node = nodes[0] else: assign_node = Nodes.ParallelAssignmentNode(nodes[0].pos, stats = nodes) if temp_refs: duplicates_and_temps = [ (temp.expression, temp) for temp in temp_refs ] sort_common_subsequences(duplicates_and_temps) for _, temp_ref in duplicates_and_temps[::-1]: assign_node = LetNode(temp_ref, assign_node) return assign_node def _flatten_sequence(self, seq, result): for arg in seq.args: if arg.is_sequence_constructor: self._flatten_sequence(arg, result) else: result.append(arg) return result def visit_DelStatNode(self, node): self.visitchildren(node) node.args = self._flatten_sequence(node, []) return node def visit_ExceptClauseNode(self, node): if node.is_except_as: # except-as must delete NameNode target at the end del_target = Nodes.DelStatNode( node.pos, args=[ExprNodes.NameNode( node.target.pos, name=node.target.name)], ignore_nonexisting=True) node.body = Nodes.StatListNode( node.pos, stats=[Nodes.TryFinallyStatNode( node.pos, body=node.body, finally_clause=Nodes.StatListNode( node.pos, stats=[del_target]))]) self.visitchildren(node) return node def eliminate_rhs_duplicates(expr_list_list, ref_node_sequence): """Replace rhs items by LetRefNodes if they appear more than once. Creates a sequence of LetRefNodes that set up the required temps and appends them to ref_node_sequence. The input list is modified in-place. """ seen_nodes = set() ref_nodes = {} def find_duplicates(node): if node.is_literal or node.is_name: # no need to replace those; can't include attributes here # as their access is not necessarily side-effect free return if node in seen_nodes: if node not in ref_nodes: ref_node = LetRefNode(node) ref_nodes[node] = ref_node ref_node_sequence.append(ref_node) else: seen_nodes.add(node) if node.is_sequence_constructor: for item in node.args: find_duplicates(item) for expr_list in expr_list_list: rhs = expr_list[-1] find_duplicates(rhs) if not ref_nodes: return def substitute_nodes(node): if node in ref_nodes: return ref_nodes[node] elif node.is_sequence_constructor: node.args = list(map(substitute_nodes, node.args)) return node # replace nodes inside of the common subexpressions for node in ref_nodes: if node.is_sequence_constructor: node.args = list(map(substitute_nodes, node.args)) # replace common subexpressions on all rhs items for expr_list in expr_list_list: expr_list[-1] = substitute_nodes(expr_list[-1]) def sort_common_subsequences(items): """Sort items/subsequences so that all items and subsequences that an item contains appear before the item itself. This is needed because each rhs item must only be evaluated once, so its value must be evaluated first and then reused when packing sequences that contain it. This implies a partial order, and the sort must be stable to preserve the original order as much as possible, so we use a simple insertion sort (which is very fast for short sequences, the normal case in practice). """ def contains(seq, x): for item in seq: if item is x: return True elif item.is_sequence_constructor and contains(item.args, x): return True return False def lower_than(a,b): return b.is_sequence_constructor and contains(b.args, a) for pos, item in enumerate(items): key = item[1] # the ResultRefNode which has already been injected into the sequences new_pos = pos for i in range(pos-1, -1, -1): if lower_than(key, items[i][0]): new_pos = i if new_pos != pos: for i in range(pos, new_pos, -1): items[i] = items[i-1] items[new_pos] = item def unpack_string_to_character_literals(literal): chars = [] pos = literal.pos stype = literal.__class__ sval = literal.value sval_type = sval.__class__ for char in sval: cval = sval_type(char) chars.append(stype(pos, value=cval, constant_result=cval)) return chars def flatten_parallel_assignments(input, output): # The input is a list of expression nodes, representing the LHSs # and RHS of one (possibly cascaded) assignment statement. For # sequence constructors, rearranges the matching parts of both # sides into a list of equivalent assignments between the # individual elements. This transformation is applied # recursively, so that nested structures get matched as well. rhs = input[-1] if (not (rhs.is_sequence_constructor or isinstance(rhs, ExprNodes.UnicodeNode)) or not sum([lhs.is_sequence_constructor for lhs in input[:-1]])): output.append(input) return complete_assignments = [] if rhs.is_sequence_constructor: rhs_args = rhs.args elif rhs.is_string_literal: rhs_args = unpack_string_to_character_literals(rhs) rhs_size = len(rhs_args) lhs_targets = [[] for _ in range(rhs_size)] starred_assignments = [] for lhs in input[:-1]: if not lhs.is_sequence_constructor: if lhs.is_starred: error(lhs.pos, "starred assignment target must be in a list or tuple") complete_assignments.append(lhs) continue lhs_size = len(lhs.args) starred_targets = sum([1 for expr in lhs.args if expr.is_starred]) if starred_targets > 1: error(lhs.pos, "more than 1 starred expression in assignment") output.append([lhs,rhs]) continue elif lhs_size - starred_targets > rhs_size: error(lhs.pos, "need more than %d value%s to unpack" % (rhs_size, (rhs_size != 1) and 's' or '')) output.append([lhs,rhs]) continue elif starred_targets: map_starred_assignment(lhs_targets, starred_assignments, lhs.args, rhs_args) elif lhs_size < rhs_size: error(lhs.pos, "too many values to unpack (expected %d, got %d)" % (lhs_size, rhs_size)) output.append([lhs,rhs]) continue else: for targets, expr in zip(lhs_targets, lhs.args): targets.append(expr) if complete_assignments: complete_assignments.append(rhs) output.append(complete_assignments) # recursively flatten partial assignments for cascade, rhs in zip(lhs_targets, rhs_args): if cascade: cascade.append(rhs) flatten_parallel_assignments(cascade, output) # recursively flatten starred assignments for cascade in starred_assignments: if cascade[0].is_sequence_constructor: flatten_parallel_assignments(cascade, output) else: output.append(cascade) def map_starred_assignment(lhs_targets, starred_assignments, lhs_args, rhs_args): # Appends the fixed-position LHS targets to the target list that # appear left and right of the starred argument. # # The starred_assignments list receives a new tuple # (lhs_target, rhs_values_list) that maps the remaining arguments # (those that match the starred target) to a list. # left side of the starred target for i, (targets, expr) in enumerate(zip(lhs_targets, lhs_args)): if expr.is_starred: starred = i lhs_remaining = len(lhs_args) - i - 1 break targets.append(expr) else: raise InternalError("no starred arg found when splitting starred assignment") # right side of the starred target for i, (targets, expr) in enumerate(zip(lhs_targets[-lhs_remaining:], lhs_args[starred + 1:])): targets.append(expr) # the starred target itself, must be assigned a (potentially empty) list target = lhs_args[starred].target # unpack starred node starred_rhs = rhs_args[starred:] if lhs_remaining: starred_rhs = starred_rhs[:-lhs_remaining] if starred_rhs: pos = starred_rhs[0].pos else: pos = target.pos starred_assignments.append([ target, ExprNodes.ListNode(pos=pos, args=starred_rhs)]) class PxdPostParse(CythonTransform, SkipDeclarations): """ Basic interpretation/validity checking that should only be done on pxd trees. A lot of this checking currently happens in the parser; but what is listed below happens here. - "def" functions are let through only if they fill the getbuffer/releasebuffer slots - cdef functions are let through only if they are on the top level and are declared "inline" """ ERR_INLINE_ONLY = "function definition in pxd file must be declared 'cdef inline'" ERR_NOGO_WITH_INLINE = "inline function definition in pxd file cannot be '%s'" def __call__(self, node): self.scope_type = 'pxd' return super(PxdPostParse, self).__call__(node) def visit_CClassDefNode(self, node): old = self.scope_type self.scope_type = 'cclass' self.visitchildren(node) self.scope_type = old return node def visit_FuncDefNode(self, node): # FuncDefNode always come with an implementation (without # an imp they are CVarDefNodes..) err = self.ERR_INLINE_ONLY if (isinstance(node, Nodes.DefNode) and self.scope_type == 'cclass' and node.name in ('__getbuffer__', '__releasebuffer__')): err = None # allow these slots if isinstance(node, Nodes.CFuncDefNode): if (u'inline' in node.modifiers and self.scope_type in ('pxd', 'cclass')): node.inline_in_pxd = True if node.visibility != 'private': err = self.ERR_NOGO_WITH_INLINE % node.visibility elif node.api: err = self.ERR_NOGO_WITH_INLINE % 'api' else: err = None # allow inline function else: err = self.ERR_INLINE_ONLY if err: self.context.nonfatal_error(PostParseError(node.pos, err)) return None else: return node class TrackNumpyAttributes(VisitorTransform, SkipDeclarations): # TODO: Make name handling as good as in InterpretCompilerDirectives() below - probably best to merge the two. def __init__(self): super(TrackNumpyAttributes, self).__init__() self.numpy_module_names = set() def visit_CImportStatNode(self, node): if node.module_name == u"numpy": self.numpy_module_names.add(node.as_name or u"numpy") return node def visit_AttributeNode(self, node): self.visitchildren(node) obj = node.obj if (obj.is_name and obj.name in self.numpy_module_names) or obj.is_numpy_attribute: node.is_numpy_attribute = True return node visit_Node = VisitorTransform.recurse_to_children class InterpretCompilerDirectives(CythonTransform): """ After parsing, directives can be stored in a number of places: - #cython-comments at the top of the file (stored in ModuleNode) - Command-line arguments overriding these - @cython.directivename decorators - with cython.directivename: statements This transform is responsible for interpreting these various sources and store the directive in two ways: - Set the directives attribute of the ModuleNode for global directives. - Use a CompilerDirectivesNode to override directives for a subtree. (The first one is primarily to not have to modify with the tree structure, so that ModuleNode stay on top.) The directives are stored in dictionaries from name to value in effect. Each such dictionary is always filled in for all possible directives, using default values where no value is given by the user. The available directives are controlled in Options.py. Note that we have to run this prior to analysis, and so some minor duplication of functionality has to occur: We manually track cimports and which names the "cython" module may have been imported to. """ unop_method_nodes = { 'typeof': ExprNodes.TypeofNode, 'operator.address': ExprNodes.AmpersandNode, 'operator.dereference': ExprNodes.DereferenceNode, 'operator.preincrement' : ExprNodes.inc_dec_constructor(True, '++'), 'operator.predecrement' : ExprNodes.inc_dec_constructor(True, '--'), 'operator.postincrement': ExprNodes.inc_dec_constructor(False, '++'), 'operator.postdecrement': ExprNodes.inc_dec_constructor(False, '--'), 'operator.typeid' : ExprNodes.TypeidNode, # For backwards compatibility. 'address': ExprNodes.AmpersandNode, } binop_method_nodes = { 'operator.comma' : ExprNodes.c_binop_constructor(','), } special_methods = set(['declare', 'union', 'struct', 'typedef', 'sizeof', 'cast', 'pointer', 'compiled', 'NULL', 'fused_type', 'parallel']) special_methods.update(unop_method_nodes) valid_parallel_directives = set([ "parallel", "prange", "threadid", #"threadsavailable", ]) def __init__(self, context, compilation_directive_defaults): super(InterpretCompilerDirectives, self).__init__(context) self.cython_module_names = set() self.directive_names = {'staticmethod': 'staticmethod'} self.parallel_directives = {} directives = copy.deepcopy(Options.get_directive_defaults()) for key, value in compilation_directive_defaults.items(): directives[_unicode(key)] = copy.deepcopy(value) self.directives = directives def check_directive_scope(self, pos, directive, scope): legal_scopes = Options.directive_scopes.get(directive, None) if legal_scopes and scope not in legal_scopes: self.context.nonfatal_error(PostParseError(pos, 'The %s compiler directive ' 'is not allowed in %s scope' % (directive, scope))) return False else: if directive not in Options.directive_types: error(pos, "Invalid directive: '%s'." % (directive,)) return True # Set up processing and handle the cython: comments. def visit_ModuleNode(self, node): for key in sorted(node.directive_comments): if not self.check_directive_scope(node.pos, key, 'module'): self.wrong_scope_error(node.pos, key, 'module') del node.directive_comments[key] self.module_scope = node.scope self.directives.update(node.directive_comments) node.directives = self.directives node.parallel_directives = self.parallel_directives self.visitchildren(node) node.cython_module_names = self.cython_module_names return node # The following four functions track imports and cimports that # begin with "cython" def is_cython_directive(self, name): return (name in Options.directive_types or name in self.special_methods or PyrexTypes.parse_basic_type(name)) def is_parallel_directive(self, full_name, pos): """ Checks to see if fullname (e.g. cython.parallel.prange) is a valid parallel directive. If it is a star import it also updates the parallel_directives. """ result = (full_name + ".").startswith("cython.parallel.") if result: directive = full_name.split('.') if full_name == u"cython.parallel": self.parallel_directives[u"parallel"] = u"cython.parallel" elif full_name == u"cython.parallel.*": for name in self.valid_parallel_directives: self.parallel_directives[name] = u"cython.parallel.%s" % name elif (len(directive) != 3 or directive[-1] not in self.valid_parallel_directives): error(pos, "No such directive: %s" % full_name) self.module_scope.use_utility_code( UtilityCode.load_cached("InitThreads", "ModuleSetupCode.c")) return result def visit_CImportStatNode(self, node): if node.module_name == u"cython": self.cython_module_names.add(node.as_name or u"cython") elif node.module_name.startswith(u"cython."): if node.module_name.startswith(u"cython.parallel."): error(node.pos, node.module_name + " is not a module") if node.module_name == u"cython.parallel": if node.as_name and node.as_name != u"cython": self.parallel_directives[node.as_name] = node.module_name else: self.cython_module_names.add(u"cython") self.parallel_directives[ u"cython.parallel"] = node.module_name self.module_scope.use_utility_code( UtilityCode.load_cached("InitThreads", "ModuleSetupCode.c")) elif node.as_name: self.directive_names[node.as_name] = node.module_name[7:] else: self.cython_module_names.add(u"cython") # if this cimport was a compiler directive, we don't # want to leave the cimport node sitting in the tree return None return node def visit_FromCImportStatNode(self, node): if not node.relative_level and ( node.module_name == u"cython" or node.module_name.startswith(u"cython.")): submodule = (node.module_name + u".")[7:] newimp = [] for pos, name, as_name, kind in node.imported_names: full_name = submodule + name qualified_name = u"cython." + full_name if self.is_parallel_directive(qualified_name, node.pos): # from cython cimport parallel, or # from cython.parallel cimport parallel, prange, ... self.parallel_directives[as_name or name] = qualified_name elif self.is_cython_directive(full_name): self.directive_names[as_name or name] = full_name if kind is not None: self.context.nonfatal_error(PostParseError(pos, "Compiler directive imports must be plain imports")) else: newimp.append((pos, name, as_name, kind)) if not newimp: return None node.imported_names = newimp return node def visit_FromImportStatNode(self, node): if (node.module.module_name.value == u"cython") or \ node.module.module_name.value.startswith(u"cython."): submodule = (node.module.module_name.value + u".")[7:] newimp = [] for name, name_node in node.items: full_name = submodule + name qualified_name = u"cython." + full_name if self.is_parallel_directive(qualified_name, node.pos): self.parallel_directives[name_node.name] = qualified_name elif self.is_cython_directive(full_name): self.directive_names[name_node.name] = full_name else: newimp.append((name, name_node)) if not newimp: return None node.items = newimp return node def visit_SingleAssignmentNode(self, node): if isinstance(node.rhs, ExprNodes.ImportNode): module_name = node.rhs.module_name.value is_parallel = (module_name + u".").startswith(u"cython.parallel.") if module_name != u"cython" and not is_parallel: return node module_name = node.rhs.module_name.value as_name = node.lhs.name node = Nodes.CImportStatNode(node.pos, module_name = module_name, as_name = as_name) node = self.visit_CImportStatNode(node) else: self.visitchildren(node) return node def visit_NameNode(self, node): if node.name in self.cython_module_names: node.is_cython_module = True else: directive = self.directive_names.get(node.name) if directive is not None: node.cython_attribute = directive return node def visit_NewExprNode(self, node): self.visit(node.cppclass) self.visitchildren(node) return node def try_to_parse_directives(self, node): # If node is the contents of an directive (in a with statement or # decorator), returns a list of (directivename, value) pairs. # Otherwise, returns None if isinstance(node, ExprNodes.CallNode): self.visit(node.function) optname = node.function.as_cython_attribute() if optname: directivetype = Options.directive_types.get(optname) if directivetype: args, kwds = node.explicit_args_kwds() directives = [] key_value_pairs = [] if kwds is not None and directivetype is not dict: for keyvalue in kwds.key_value_pairs: key, value = keyvalue sub_optname = "%s.%s" % (optname, key.value) if Options.directive_types.get(sub_optname): directives.append(self.try_to_parse_directive(sub_optname, [value], None, keyvalue.pos)) else: key_value_pairs.append(keyvalue) if not key_value_pairs: kwds = None else: kwds.key_value_pairs = key_value_pairs if directives and not kwds and not args: return directives directives.append(self.try_to_parse_directive(optname, args, kwds, node.function.pos)) return directives elif isinstance(node, (ExprNodes.AttributeNode, ExprNodes.NameNode)): self.visit(node) optname = node.as_cython_attribute() if optname: directivetype = Options.directive_types.get(optname) if directivetype is bool: arg = ExprNodes.BoolNode(node.pos, value=True) return [self.try_to_parse_directive(optname, [arg], None, node.pos)] elif directivetype is None: return [(optname, None)] else: raise PostParseError( node.pos, "The '%s' directive should be used as a function call." % optname) return None def try_to_parse_directive(self, optname, args, kwds, pos): if optname == 'np_pythran' and not self.context.cpp: raise PostParseError(pos, 'The %s directive can only be used in C++ mode.' % optname) elif optname == 'exceptval': # default: exceptval(None, check=True) arg_error = len(args) > 1 check = True if kwds and kwds.key_value_pairs: kw = kwds.key_value_pairs[0] if (len(kwds.key_value_pairs) == 1 and kw.key.is_string_literal and kw.key.value == 'check' and isinstance(kw.value, ExprNodes.BoolNode)): check = kw.value.value else: arg_error = True if arg_error: raise PostParseError( pos, 'The exceptval directive takes 0 or 1 positional arguments and the boolean keyword "check"') return ('exceptval', (args[0] if args else None, check)) directivetype = Options.directive_types.get(optname) if len(args) == 1 and isinstance(args[0], ExprNodes.NoneNode): return optname, Options.get_directive_defaults()[optname] elif directivetype is bool: if kwds is not None or len(args) != 1 or not isinstance(args[0], ExprNodes.BoolNode): raise PostParseError(pos, 'The %s directive takes one compile-time boolean argument' % optname) return (optname, args[0].value) elif directivetype is int: if kwds is not None or len(args) != 1 or not isinstance(args[0], ExprNodes.IntNode): raise PostParseError(pos, 'The %s directive takes one compile-time integer argument' % optname) return (optname, int(args[0].value)) elif directivetype is str: if kwds is not None or len(args) != 1 or not isinstance( args[0], (ExprNodes.StringNode, ExprNodes.UnicodeNode)): raise PostParseError(pos, 'The %s directive takes one compile-time string argument' % optname) return (optname, str(args[0].value)) elif directivetype is type: if kwds is not None or len(args) != 1: raise PostParseError(pos, 'The %s directive takes one type argument' % optname) return (optname, args[0]) elif directivetype is dict: if len(args) != 0: raise PostParseError(pos, 'The %s directive takes no prepositional arguments' % optname) return optname, dict([(key.value, value) for key, value in kwds.key_value_pairs]) elif directivetype is list: if kwds and len(kwds.key_value_pairs) != 0: raise PostParseError(pos, 'The %s directive takes no keyword arguments' % optname) return optname, [ str(arg.value) for arg in args ] elif callable(directivetype): if kwds is not None or len(args) != 1 or not isinstance( args[0], (ExprNodes.StringNode, ExprNodes.UnicodeNode)): raise PostParseError(pos, 'The %s directive takes one compile-time string argument' % optname) return (optname, directivetype(optname, str(args[0].value))) else: assert False def visit_with_directives(self, node, directives): if not directives: return self.visit_Node(node) old_directives = self.directives new_directives = dict(old_directives) new_directives.update(directives) if new_directives == old_directives: return self.visit_Node(node) self.directives = new_directives retbody = self.visit_Node(node) self.directives = old_directives if not isinstance(retbody, Nodes.StatListNode): retbody = Nodes.StatListNode(node.pos, stats=[retbody]) return Nodes.CompilerDirectivesNode( pos=retbody.pos, body=retbody, directives=new_directives) # Handle decorators def visit_FuncDefNode(self, node): directives = self._extract_directives(node, 'function') return self.visit_with_directives(node, directives) def visit_CVarDefNode(self, node): directives = self._extract_directives(node, 'function') for name, value in directives.items(): if name == 'locals': node.directive_locals = value elif name not in ('final', 'staticmethod'): self.context.nonfatal_error(PostParseError( node.pos, "Cdef functions can only take cython.locals(), " "staticmethod, or final decorators, got %s." % name)) return self.visit_with_directives(node, directives) def visit_CClassDefNode(self, node): directives = self._extract_directives(node, 'cclass') return self.visit_with_directives(node, directives) def visit_CppClassNode(self, node): directives = self._extract_directives(node, 'cppclass') return self.visit_with_directives(node, directives) def visit_PyClassDefNode(self, node): directives = self._extract_directives(node, 'class') return self.visit_with_directives(node, directives) def _extract_directives(self, node, scope_name): if not node.decorators: return {} # Split the decorators into two lists -- real decorators and directives directives = [] realdecs = [] both = [] # Decorators coming first take precedence. for dec in node.decorators[::-1]: new_directives = self.try_to_parse_directives(dec.decorator) if new_directives is not None: for directive in new_directives: if self.check_directive_scope(node.pos, directive[0], scope_name): name, value = directive if self.directives.get(name, object()) != value: directives.append(directive) if directive[0] == 'staticmethod': both.append(dec) # Adapt scope type based on decorators that change it. if directive[0] == 'cclass' and scope_name == 'class': scope_name = 'cclass' else: realdecs.append(dec) if realdecs and (scope_name == 'cclass' or isinstance(node, (Nodes.CFuncDefNode, Nodes.CClassDefNode, Nodes.CVarDefNode))): raise PostParseError(realdecs[0].pos, "Cdef functions/classes cannot take arbitrary decorators.") node.decorators = realdecs[::-1] + both[::-1] # merge or override repeated directives optdict = {} for directive in directives: name, value = directive if name in optdict: old_value = optdict[name] # keywords and arg lists can be merged, everything # else overrides completely if isinstance(old_value, dict): old_value.update(value) elif isinstance(old_value, list): old_value.extend(value) else: optdict[name] = value else: optdict[name] = value return optdict # Handle with-statements def visit_WithStatNode(self, node): directive_dict = {} for directive in self.try_to_parse_directives(node.manager) or []: if directive is not None: if node.target is not None: self.context.nonfatal_error( PostParseError(node.pos, "Compiler directive with statements cannot contain 'as'")) else: name, value = directive if name in ('nogil', 'gil'): # special case: in pure mode, "with nogil" spells "with cython.nogil" node = Nodes.GILStatNode(node.pos, state = name, body = node.body) return self.visit_Node(node) if self.check_directive_scope(node.pos, name, 'with statement'): directive_dict[name] = value if directive_dict: return self.visit_with_directives(node.body, directive_dict) return self.visit_Node(node) class ParallelRangeTransform(CythonTransform, SkipDeclarations): """ Transform cython.parallel stuff. The parallel_directives come from the module node, set there by InterpretCompilerDirectives. x = cython.parallel.threadavailable() -> ParallelThreadAvailableNode with nogil, cython.parallel.parallel(): -> ParallelWithBlockNode print cython.parallel.threadid() -> ParallelThreadIdNode for i in cython.parallel.prange(...): -> ParallelRangeNode ... """ # a list of names, maps 'cython.parallel.prange' in the code to # ['cython', 'parallel', 'prange'] parallel_directive = None # Indicates whether a namenode in an expression is the cython module namenode_is_cython_module = False # Keep track of whether we are the context manager of a 'with' statement in_context_manager_section = False # One of 'prange' or 'with parallel'. This is used to disallow closely # nested 'with parallel:' blocks state = None directive_to_node = { u"cython.parallel.parallel": Nodes.ParallelWithBlockNode, # u"cython.parallel.threadsavailable": ExprNodes.ParallelThreadsAvailableNode, u"cython.parallel.threadid": ExprNodes.ParallelThreadIdNode, u"cython.parallel.prange": Nodes.ParallelRangeNode, } def node_is_parallel_directive(self, node): return node.name in self.parallel_directives or node.is_cython_module def get_directive_class_node(self, node): """ Figure out which parallel directive was used and return the associated Node class. E.g. for a cython.parallel.prange() call we return ParallelRangeNode """ if self.namenode_is_cython_module: directive = '.'.join(self.parallel_directive) else: directive = self.parallel_directives[self.parallel_directive[0]] directive = '%s.%s' % (directive, '.'.join(self.parallel_directive[1:])) directive = directive.rstrip('.') cls = self.directive_to_node.get(directive) if cls is None and not (self.namenode_is_cython_module and self.parallel_directive[0] != 'parallel'): error(node.pos, "Invalid directive: %s" % directive) self.namenode_is_cython_module = False self.parallel_directive = None return cls def visit_ModuleNode(self, node): """ If any parallel directives were imported, copy them over and visit the AST """ if node.parallel_directives: self.parallel_directives = node.parallel_directives return self.visit_Node(node) # No parallel directives were imported, so they can't be used :) return node def visit_NameNode(self, node): if self.node_is_parallel_directive(node): self.parallel_directive = [node.name] self.namenode_is_cython_module = node.is_cython_module return node def visit_AttributeNode(self, node): self.visitchildren(node) if self.parallel_directive: self.parallel_directive.append(node.attribute) return node def visit_CallNode(self, node): self.visit(node.function) if not self.parallel_directive: return node # We are a parallel directive, replace this node with the # corresponding ParallelSomethingSomething node if isinstance(node, ExprNodes.GeneralCallNode): args = node.positional_args.args kwargs = node.keyword_args else: args = node.args kwargs = {} parallel_directive_class = self.get_directive_class_node(node) if parallel_directive_class: # Note: in case of a parallel() the body is set by # visit_WithStatNode node = parallel_directive_class(node.pos, args=args, kwargs=kwargs) return node def visit_WithStatNode(self, node): "Rewrite with cython.parallel.parallel() blocks" newnode = self.visit(node.manager) if isinstance(newnode, Nodes.ParallelWithBlockNode): if self.state == 'parallel with': error(node.manager.pos, "Nested parallel with blocks are disallowed") self.state = 'parallel with' body = self.visit(node.body) self.state = None newnode.body = body return newnode elif self.parallel_directive: parallel_directive_class = self.get_directive_class_node(node) if not parallel_directive_class: # There was an error, stop here and now return None if parallel_directive_class is Nodes.ParallelWithBlockNode: error(node.pos, "The parallel directive must be called") return None node.body = self.visit(node.body) return node def visit_ForInStatNode(self, node): "Rewrite 'for i in cython.parallel.prange(...):'" self.visit(node.iterator) self.visit(node.target) in_prange = isinstance(node.iterator.sequence, Nodes.ParallelRangeNode) previous_state = self.state if in_prange: # This will replace the entire ForInStatNode, so copy the # attributes parallel_range_node = node.iterator.sequence parallel_range_node.target = node.target parallel_range_node.body = node.body parallel_range_node.else_clause = node.else_clause node = parallel_range_node if not isinstance(node.target, ExprNodes.NameNode): error(node.target.pos, "Can only iterate over an iteration variable") self.state = 'prange' self.visit(node.body) self.state = previous_state self.visit(node.else_clause) return node def visit(self, node): "Visit a node that may be None" if node is not None: return super(ParallelRangeTransform, self).visit(node) class WithTransform(CythonTransform, SkipDeclarations): def visit_WithStatNode(self, node): self.visitchildren(node, 'body') pos = node.pos is_async = node.is_async body, target, manager = node.body, node.target, node.manager node.enter_call = ExprNodes.SimpleCallNode( pos, function=ExprNodes.AttributeNode( pos, obj=ExprNodes.CloneNode(manager), attribute=EncodedString('__aenter__' if is_async else '__enter__'), is_special_lookup=True), args=[], is_temp=True) if is_async: node.enter_call = ExprNodes.AwaitExprNode(pos, arg=node.enter_call) if target is not None: body = Nodes.StatListNode( pos, stats=[ Nodes.WithTargetAssignmentStatNode( pos, lhs=target, with_node=node), body]) excinfo_target = ExprNodes.TupleNode(pos, slow=True, args=[ ExprNodes.ExcValueNode(pos) for _ in range(3)]) except_clause = Nodes.ExceptClauseNode( pos, body=Nodes.IfStatNode( pos, if_clauses=[ Nodes.IfClauseNode( pos, condition=ExprNodes.NotNode( pos, operand=ExprNodes.WithExitCallNode( pos, with_stat=node, test_if_run=False, args=excinfo_target, await_expr=ExprNodes.AwaitExprNode(pos, arg=None) if is_async else None)), body=Nodes.ReraiseStatNode(pos), ), ], else_clause=None), pattern=None, target=None, excinfo_target=excinfo_target, ) node.body = Nodes.TryFinallyStatNode( pos, body=Nodes.TryExceptStatNode( pos, body=body, except_clauses=[except_clause], else_clause=None, ), finally_clause=Nodes.ExprStatNode( pos, expr=ExprNodes.WithExitCallNode( pos, with_stat=node, test_if_run=True, args=ExprNodes.TupleNode( pos, args=[ExprNodes.NoneNode(pos) for _ in range(3)]), await_expr=ExprNodes.AwaitExprNode(pos, arg=None) if is_async else None)), handle_error_case=False, ) return node def visit_ExprNode(self, node): # With statements are never inside expressions. return node class DecoratorTransform(ScopeTrackingTransform, SkipDeclarations): """ Transforms method decorators in cdef classes into nested calls or properties. Python-style decorator properties are transformed into a PropertyNode with up to the three getter, setter and deleter DefNodes. The functional style isn't supported yet. """ _properties = None _map_property_attribute = { 'getter': '__get__', 'setter': '__set__', 'deleter': '__del__', }.get def visit_CClassDefNode(self, node): if self._properties is None: self._properties = [] self._properties.append({}) super(DecoratorTransform, self).visit_CClassDefNode(node) self._properties.pop() return node def visit_PropertyNode(self, node): # Low-level warning for other code until we can convert all our uses over. level = 2 if isinstance(node.pos[0], str) else 0 warning(node.pos, "'property %s:' syntax is deprecated, use '@property'" % node.name, level) return node def visit_DefNode(self, node): scope_type = self.scope_type node = self.visit_FuncDefNode(node) if scope_type != 'cclass' or not node.decorators: return node # transform @property decorators properties = self._properties[-1] for decorator_node in node.decorators[::-1]: decorator = decorator_node.decorator if decorator.is_name and decorator.name == 'property': if len(node.decorators) > 1: return self._reject_decorated_property(node, decorator_node) name = node.name node.name = EncodedString('__get__') node.decorators.remove(decorator_node) stat_list = [node] if name in properties: prop = properties[name] prop.pos = node.pos prop.doc = node.doc prop.body.stats = stat_list return [] prop = Nodes.PropertyNode(node.pos, name=name) prop.doc = node.doc prop.body = Nodes.StatListNode(node.pos, stats=stat_list) properties[name] = prop return [prop] elif decorator.is_attribute and decorator.obj.name in properties: handler_name = self._map_property_attribute(decorator.attribute) if handler_name: if decorator.obj.name != node.name: # CPython does not generate an error or warning, but not something useful either. error(decorator_node.pos, "Mismatching property names, expected '%s', got '%s'" % ( decorator.obj.name, node.name)) elif len(node.decorators) > 1: return self._reject_decorated_property(node, decorator_node) else: return self._add_to_property(properties, node, handler_name, decorator_node) # we clear node.decorators, so we need to set the # is_staticmethod/is_classmethod attributes now for decorator in node.decorators: func = decorator.decorator if func.is_name: node.is_classmethod |= func.name == 'classmethod' node.is_staticmethod |= func.name == 'staticmethod' # transform normal decorators decs = node.decorators node.decorators = None return self.chain_decorators(node, decs, node.name) @staticmethod def _reject_decorated_property(node, decorator_node): # restrict transformation to outermost decorator as wrapped properties will probably not work for deco in node.decorators: if deco != decorator_node: error(deco.pos, "Property methods with additional decorators are not supported") return node @staticmethod def _add_to_property(properties, node, name, decorator): prop = properties[node.name] node.name = name node.decorators.remove(decorator) stats = prop.body.stats for i, stat in enumerate(stats): if stat.name == name: stats[i] = node break else: stats.append(node) return [] @staticmethod def chain_decorators(node, decorators, name): """ Decorators are applied directly in DefNode and PyClassDefNode to avoid reassignments to the function/class name - except for cdef class methods. For those, the reassignment is required as methods are originally defined in the PyMethodDef struct. The IndirectionNode allows DefNode to override the decorator. """ decorator_result = ExprNodes.NameNode(node.pos, name=name) for decorator in decorators[::-1]: decorator_result = ExprNodes.SimpleCallNode( decorator.pos, function=decorator.decorator, args=[decorator_result]) name_node = ExprNodes.NameNode(node.pos, name=name) reassignment = Nodes.SingleAssignmentNode( node.pos, lhs=name_node, rhs=decorator_result) reassignment = Nodes.IndirectionNode([reassignment]) node.decorator_indirection = reassignment return [node, reassignment] class CnameDirectivesTransform(CythonTransform, SkipDeclarations): """ Only part of the CythonUtilityCode pipeline. Must be run before DecoratorTransform in case this is a decorator for a cdef class. It filters out @cname('my_cname') decorators and rewrites them to CnameDecoratorNodes. """ def handle_function(self, node): if not getattr(node, 'decorators', None): return self.visit_Node(node) for i, decorator in enumerate(node.decorators): decorator = decorator.decorator if (isinstance(decorator, ExprNodes.CallNode) and decorator.function.is_name and decorator.function.name == 'cname'): args, kwargs = decorator.explicit_args_kwds() if kwargs: raise AssertionError( "cname decorator does not take keyword arguments") if len(args) != 1: raise AssertionError( "cname decorator takes exactly one argument") if not (args[0].is_literal and args[0].type == Builtin.str_type): raise AssertionError( "argument to cname decorator must be a string literal") cname = args[0].compile_time_value(None) del node.decorators[i] node = Nodes.CnameDecoratorNode(pos=node.pos, node=node, cname=cname) break return self.visit_Node(node) visit_FuncDefNode = handle_function visit_CClassDefNode = handle_function visit_CEnumDefNode = handle_function visit_CStructOrUnionDefNode = handle_function class ForwardDeclareTypes(CythonTransform): def visit_CompilerDirectivesNode(self, node): env = self.module_scope old = env.directives env.directives = node.directives self.visitchildren(node) env.directives = old return node def visit_ModuleNode(self, node): self.module_scope = node.scope self.module_scope.directives = node.directives self.visitchildren(node) return node def visit_CDefExternNode(self, node): old_cinclude_flag = self.module_scope.in_cinclude self.module_scope.in_cinclude = 1 self.visitchildren(node) self.module_scope.in_cinclude = old_cinclude_flag return node def visit_CEnumDefNode(self, node): node.declare(self.module_scope) return node def visit_CStructOrUnionDefNode(self, node): if node.name not in self.module_scope.entries: node.declare(self.module_scope) return node def visit_CClassDefNode(self, node): if node.class_name not in self.module_scope.entries: node.declare(self.module_scope) # Expand fused methods of .pxd declared types to construct the final vtable order. type = self.module_scope.entries[node.class_name].type if type is not None and type.is_extension_type and not type.is_builtin_type and type.scope: scope = type.scope for entry in scope.cfunc_entries: if entry.type and entry.type.is_fused: entry.type.get_all_specialized_function_types() return node class AnalyseDeclarationsTransform(EnvTransform): basic_property = TreeFragment(u""" property NAME: def __get__(self): return ATTR def __set__(self, value): ATTR = value """, level='c_class', pipeline=[NormalizeTree(None)]) basic_pyobject_property = TreeFragment(u""" property NAME: def __get__(self): return ATTR def __set__(self, value): ATTR = value def __del__(self): ATTR = None """, level='c_class', pipeline=[NormalizeTree(None)]) basic_property_ro = TreeFragment(u""" property NAME: def __get__(self): return ATTR """, level='c_class', pipeline=[NormalizeTree(None)]) struct_or_union_wrapper = TreeFragment(u""" cdef class NAME: cdef TYPE value def __init__(self, MEMBER=None): cdef int count count = 0 INIT_ASSIGNMENTS if IS_UNION and count > 1: raise ValueError, "At most one union member should be specified." def __str__(self): return STR_FORMAT % MEMBER_TUPLE def __repr__(self): return REPR_FORMAT % MEMBER_TUPLE """, pipeline=[NormalizeTree(None)]) init_assignment = TreeFragment(u""" if VALUE is not None: ATTR = VALUE count += 1 """, pipeline=[NormalizeTree(None)]) fused_function = None in_lambda = 0 def __call__(self, root): # needed to determine if a cdef var is declared after it's used. self.seen_vars_stack = [] self.fused_error_funcs = set() super_class = super(AnalyseDeclarationsTransform, self) self._super_visit_FuncDefNode = super_class.visit_FuncDefNode return super_class.__call__(root) def visit_NameNode(self, node): self.seen_vars_stack[-1].add(node.name) return node def visit_ModuleNode(self, node): # Pickling support requires injecting module-level nodes. self.extra_module_declarations = [] self.seen_vars_stack.append(set()) node.analyse_declarations(self.current_env()) self.visitchildren(node) self.seen_vars_stack.pop() node.body.stats.extend(self.extra_module_declarations) return node def visit_LambdaNode(self, node): self.in_lambda += 1 node.analyse_declarations(self.current_env()) self.visitchildren(node) self.in_lambda -= 1 return node def visit_CClassDefNode(self, node): node = self.visit_ClassDefNode(node) if node.scope and node.scope.implemented and node.body: stats = [] for entry in node.scope.var_entries: if entry.needs_property: property = self.create_Property(entry) property.analyse_declarations(node.scope) self.visit(property) stats.append(property) if stats: node.body.stats += stats if (node.visibility != 'extern' and not node.scope.lookup('__reduce__') and not node.scope.lookup('__reduce_ex__')): self._inject_pickle_methods(node) return node def _inject_pickle_methods(self, node): env = self.current_env() if node.scope.directives['auto_pickle'] is False: # None means attempt it. # Old behavior of not doing anything. return auto_pickle_forced = node.scope.directives['auto_pickle'] is True all_members = [] cls = node.entry.type cinit = None inherited_reduce = None while cls is not None: all_members.extend(e for e in cls.scope.var_entries if e.name not in ('__weakref__', '__dict__')) cinit = cinit or cls.scope.lookup('__cinit__') inherited_reduce = inherited_reduce or cls.scope.lookup('__reduce__') or cls.scope.lookup('__reduce_ex__') cls = cls.base_type all_members.sort(key=lambda e: e.name) if inherited_reduce: # This is not failsafe, as we may not know whether a cimported class defines a __reduce__. # This is why we define __reduce_cython__ and only replace __reduce__ # (via ExtensionTypes.SetupReduce utility code) at runtime on class creation. return non_py = [ e for e in all_members if not e.type.is_pyobject and (not e.type.can_coerce_to_pyobject(env) or not e.type.can_coerce_from_pyobject(env)) ] structs = [e for e in all_members if e.type.is_struct_or_union] if cinit or non_py or (structs and not auto_pickle_forced): if cinit: # TODO(robertwb): We could allow this if __cinit__ has no require arguments. msg = 'no default __reduce__ due to non-trivial __cinit__' elif non_py: msg = "%s cannot be converted to a Python object for pickling" % ','.join("self.%s" % e.name for e in non_py) else: # Extern structs may be only partially defined. # TODO(robertwb): Limit the restriction to extern # (and recursively extern-containing) structs. msg = ("Pickling of struct members such as %s must be explicitly requested " "with @auto_pickle(True)" % ','.join("self.%s" % e.name for e in structs)) if auto_pickle_forced: error(node.pos, msg) pickle_func = TreeFragment(u""" def __reduce_cython__(self): raise TypeError("%(msg)s") def __setstate_cython__(self, __pyx_state): raise TypeError("%(msg)s") """ % {'msg': msg}, level='c_class', pipeline=[NormalizeTree(None)]).substitute({}) pickle_func.analyse_declarations(node.scope) self.visit(pickle_func) node.body.stats.append(pickle_func) else: for e in all_members: if not e.type.is_pyobject: e.type.create_to_py_utility_code(env) e.type.create_from_py_utility_code(env) all_members_names = sorted([e.name for e in all_members]) checksum = '0x%s' % hashlib.md5(' '.join(all_members_names).encode('utf-8')).hexdigest()[:7] unpickle_func_name = '__pyx_unpickle_%s' % node.class_name # TODO(robertwb): Move the state into the third argument # so it can be pickled *after* self is memoized. unpickle_func = TreeFragment(u""" def %(unpickle_func_name)s(__pyx_type, long __pyx_checksum, __pyx_state): cdef object __pyx_PickleError cdef object __pyx_result if __pyx_checksum != %(checksum)s: from pickle import PickleError as __pyx_PickleError raise __pyx_PickleError("Incompatible checksums (%%s vs %(checksum)s = (%(members)s))" %% __pyx_checksum) __pyx_result = %(class_name)s.__new__(__pyx_type) if __pyx_state is not None: %(unpickle_func_name)s__set_state(<%(class_name)s> __pyx_result, __pyx_state) return __pyx_result cdef %(unpickle_func_name)s__set_state(%(class_name)s __pyx_result, tuple __pyx_state): %(assignments)s if len(__pyx_state) > %(num_members)d and hasattr(__pyx_result, '__dict__'): __pyx_result.__dict__.update(__pyx_state[%(num_members)d]) """ % { 'unpickle_func_name': unpickle_func_name, 'checksum': checksum, 'members': ', '.join(all_members_names), 'class_name': node.class_name, 'assignments': '; '.join( '__pyx_result.%s = __pyx_state[%s]' % (v, ix) for ix, v in enumerate(all_members_names)), 'num_members': len(all_members_names), }, level='module', pipeline=[NormalizeTree(None)]).substitute({}) unpickle_func.analyse_declarations(node.entry.scope) self.visit(unpickle_func) self.extra_module_declarations.append(unpickle_func) pickle_func = TreeFragment(u""" def __reduce_cython__(self): cdef tuple state cdef object _dict cdef bint use_setstate state = (%(members)s) _dict = getattr(self, '__dict__', None) if _dict is not None: state += (_dict,) use_setstate = True else: use_setstate = %(any_notnone_members)s if use_setstate: return %(unpickle_func_name)s, (type(self), %(checksum)s, None), state else: return %(unpickle_func_name)s, (type(self), %(checksum)s, state) def __setstate_cython__(self, __pyx_state): %(unpickle_func_name)s__set_state(self, __pyx_state) """ % { 'unpickle_func_name': unpickle_func_name, 'checksum': checksum, 'members': ', '.join('self.%s' % v for v in all_members_names) + (',' if len(all_members_names) == 1 else ''), # Even better, we could check PyType_IS_GC. 'any_notnone_members' : ' or '.join(['self.%s is not None' % e.name for e in all_members if e.type.is_pyobject] or ['False']), }, level='c_class', pipeline=[NormalizeTree(None)]).substitute({}) pickle_func.analyse_declarations(node.scope) self.visit(pickle_func) node.body.stats.append(pickle_func) def _handle_fused_def_decorators(self, old_decorators, env, node): """ Create function calls to the decorators and reassignments to the function. """ # Delete staticmethod and classmethod decorators, this is # handled directly by the fused function object. decorators = [] for decorator in old_decorators: func = decorator.decorator if (not func.is_name or func.name not in ('staticmethod', 'classmethod') or env.lookup_here(func.name)): # not a static or classmethod decorators.append(decorator) if decorators: transform = DecoratorTransform(self.context) def_node = node.node _, reassignments = transform.chain_decorators( def_node, decorators, def_node.name) reassignments.analyse_declarations(env) node = [node, reassignments] return node def _handle_def(self, decorators, env, node): "Handle def or cpdef fused functions" # Create PyCFunction nodes for each specialization node.stats.insert(0, node.py_func) node.py_func = self.visit(node.py_func) node.update_fused_defnode_entry(env) pycfunc = ExprNodes.PyCFunctionNode.from_defnode(node.py_func, binding=True) pycfunc = ExprNodes.ProxyNode(pycfunc.coerce_to_temp(env)) node.resulting_fused_function = pycfunc # Create assignment node for our def function node.fused_func_assignment = self._create_assignment( node.py_func, ExprNodes.CloneNode(pycfunc), env) if decorators: node = self._handle_fused_def_decorators(decorators, env, node) return node def _create_fused_function(self, env, node): "Create a fused function for a DefNode with fused arguments" from . import FusedNode if self.fused_function or self.in_lambda: if self.fused_function not in self.fused_error_funcs: if self.in_lambda: error(node.pos, "Fused lambdas not allowed") else: error(node.pos, "Cannot nest fused functions") self.fused_error_funcs.add(self.fused_function) node.body = Nodes.PassStatNode(node.pos) for arg in node.args: if arg.type.is_fused: arg.type = arg.type.get_fused_types()[0] return node decorators = getattr(node, 'decorators', None) node = FusedNode.FusedCFuncDefNode(node, env) self.fused_function = node self.visitchildren(node) self.fused_function = None if node.py_func: node = self._handle_def(decorators, env, node) return node def _handle_nogil_cleanup(self, lenv, node): "Handle cleanup for 'with gil' blocks in nogil functions." if lenv.nogil and lenv.has_with_gil_block: # Acquire the GIL for cleanup in 'nogil' functions, by wrapping # the entire function body in try/finally. # The corresponding release will be taken care of by # Nodes.FuncDefNode.generate_function_definitions() node.body = Nodes.NogilTryFinallyStatNode( node.body.pos, body=node.body, finally_clause=Nodes.EnsureGILNode(node.body.pos), finally_except_clause=Nodes.EnsureGILNode(node.body.pos)) def _handle_fused(self, node): if node.is_generator and node.has_fused_arguments: node.has_fused_arguments = False error(node.pos, "Fused generators not supported") node.gbody = Nodes.StatListNode(node.pos, stats=[], body=Nodes.PassStatNode(node.pos)) return node.has_fused_arguments def visit_FuncDefNode(self, node): """ Analyse a function and its body, as that hasn't happened yet. Also analyse the directive_locals set by @cython.locals(). Then, if we are a function with fused arguments, replace the function (after it has declared itself in the symbol table!) with a FusedCFuncDefNode, and analyse its children (which are in turn normal functions). If we're a normal function, just analyse the body of the function. """ env = self.current_env() self.seen_vars_stack.append(set()) lenv = node.local_scope node.declare_arguments(lenv) # @cython.locals(...) for var, type_node in node.directive_locals.items(): if not lenv.lookup_here(var): # don't redeclare args type = type_node.analyse_as_type(lenv) if type: lenv.declare_var(var, type, type_node.pos) else: error(type_node.pos, "Not a type") if self._handle_fused(node): node = self._create_fused_function(env, node) else: node.body.analyse_declarations(lenv) self._handle_nogil_cleanup(lenv, node) self._super_visit_FuncDefNode(node) self.seen_vars_stack.pop() return node def visit_DefNode(self, node): node = self.visit_FuncDefNode(node) env = self.current_env() if isinstance(node, Nodes.DefNode) and node.is_wrapper: env = env.parent_scope if (not isinstance(node, Nodes.DefNode) or node.fused_py_func or node.is_generator_body or not node.needs_assignment_synthesis(env)): return node return [node, self._synthesize_assignment(node, env)] def visit_GeneratorBodyDefNode(self, node): return self.visit_FuncDefNode(node) def _synthesize_assignment(self, node, env): # Synthesize assignment node and put it right after defnode genv = env while genv.is_py_class_scope or genv.is_c_class_scope: genv = genv.outer_scope if genv.is_closure_scope: rhs = node.py_cfunc_node = ExprNodes.InnerFunctionNode( node.pos, def_node=node, pymethdef_cname=node.entry.pymethdef_cname, code_object=ExprNodes.CodeObjectNode(node)) else: binding = self.current_directives.get('binding') rhs = ExprNodes.PyCFunctionNode.from_defnode(node, binding) node.code_object = rhs.code_object if node.is_generator: node.gbody.code_object = node.code_object if env.is_py_class_scope: rhs.binding = True node.is_cyfunction = rhs.binding return self._create_assignment(node, rhs, env) def _create_assignment(self, def_node, rhs, env): if def_node.decorators: for decorator in def_node.decorators[::-1]: rhs = ExprNodes.SimpleCallNode( decorator.pos, function = decorator.decorator, args = [rhs]) def_node.decorators = None assmt = Nodes.SingleAssignmentNode( def_node.pos, lhs=ExprNodes.NameNode(def_node.pos, name=def_node.name), rhs=rhs) assmt.analyse_declarations(env) return assmt def visit_ScopedExprNode(self, node): env = self.current_env() node.analyse_declarations(env) # the node may or may not have a local scope if node.has_local_scope: self.seen_vars_stack.append(set(self.seen_vars_stack[-1])) self.enter_scope(node, node.expr_scope) node.analyse_scoped_declarations(node.expr_scope) self.visitchildren(node) self.exit_scope() self.seen_vars_stack.pop() else: node.analyse_scoped_declarations(env) self.visitchildren(node) return node def visit_TempResultFromStatNode(self, node): self.visitchildren(node) node.analyse_declarations(self.current_env()) return node def visit_CppClassNode(self, node): if node.visibility == 'extern': return None else: return self.visit_ClassDefNode(node) def visit_CStructOrUnionDefNode(self, node): # Create a wrapper node if needed. # We want to use the struct type information (so it can't happen # before this phase) but also create new objects to be declared # (so it can't happen later). # Note that we don't return the original node, as it is # never used after this phase. if True: # private (default) return None self_value = ExprNodes.AttributeNode( pos = node.pos, obj = ExprNodes.NameNode(pos=node.pos, name=u"self"), attribute = EncodedString(u"value")) var_entries = node.entry.type.scope.var_entries attributes = [] for entry in var_entries: attributes.append(ExprNodes.AttributeNode(pos = entry.pos, obj = self_value, attribute = entry.name)) # __init__ assignments init_assignments = [] for entry, attr in zip(var_entries, attributes): # TODO: branch on visibility init_assignments.append(self.init_assignment.substitute({ u"VALUE": ExprNodes.NameNode(entry.pos, name = entry.name), u"ATTR": attr, }, pos = entry.pos)) # create the class str_format = u"%s(%s)" % (node.entry.type.name, ("%s, " * len(attributes))[:-2]) wrapper_class = self.struct_or_union_wrapper.substitute({ u"INIT_ASSIGNMENTS": Nodes.StatListNode(node.pos, stats = init_assignments), u"IS_UNION": ExprNodes.BoolNode(node.pos, value = not node.entry.type.is_struct), u"MEMBER_TUPLE": ExprNodes.TupleNode(node.pos, args=attributes), u"STR_FORMAT": ExprNodes.StringNode(node.pos, value = EncodedString(str_format)), u"REPR_FORMAT": ExprNodes.StringNode(node.pos, value = EncodedString(str_format.replace("%s", "%r"))), }, pos = node.pos).stats[0] wrapper_class.class_name = node.name wrapper_class.shadow = True class_body = wrapper_class.body.stats # fix value type assert isinstance(class_body[0].base_type, Nodes.CSimpleBaseTypeNode) class_body[0].base_type.name = node.name # fix __init__ arguments init_method = class_body[1] assert isinstance(init_method, Nodes.DefNode) and init_method.name == '__init__' arg_template = init_method.args[1] if not node.entry.type.is_struct: arg_template.kw_only = True del init_method.args[1] for entry, attr in zip(var_entries, attributes): arg = copy.deepcopy(arg_template) arg.declarator.name = entry.name init_method.args.append(arg) # setters/getters for entry, attr in zip(var_entries, attributes): # TODO: branch on visibility if entry.type.is_pyobject: template = self.basic_pyobject_property else: template = self.basic_property property = template.substitute({ u"ATTR": attr, }, pos = entry.pos).stats[0] property.name = entry.name wrapper_class.body.stats.append(property) wrapper_class.analyse_declarations(self.current_env()) return self.visit_CClassDefNode(wrapper_class) # Some nodes are no longer needed after declaration # analysis and can be dropped. The analysis was performed # on these nodes in a separate recursive process from the # enclosing function or module, so we can simply drop them. def visit_CDeclaratorNode(self, node): # necessary to ensure that all CNameDeclaratorNodes are visited. self.visitchildren(node) return node def visit_CTypeDefNode(self, node): return node def visit_CBaseTypeNode(self, node): return None def visit_CEnumDefNode(self, node): if node.visibility == 'public': return node else: return None def visit_CNameDeclaratorNode(self, node): if node.name in self.seen_vars_stack[-1]: entry = self.current_env().lookup(node.name) if (entry is None or entry.visibility != 'extern' and not entry.scope.is_c_class_scope): warning(node.pos, "cdef variable '%s' declared after it is used" % node.name, 2) self.visitchildren(node) return node def visit_CVarDefNode(self, node): # to ensure all CNameDeclaratorNodes are visited. self.visitchildren(node) return None def visit_CnameDecoratorNode(self, node): child_node = self.visit(node.node) if not child_node: return None if type(child_node) is list: # Assignment synthesized node.child_node = child_node[0] return [node] + child_node[1:] node.node = child_node return node def create_Property(self, entry): if entry.visibility == 'public': if entry.type.is_pyobject: template = self.basic_pyobject_property else: template = self.basic_property elif entry.visibility == 'readonly': template = self.basic_property_ro property = template.substitute({ u"ATTR": ExprNodes.AttributeNode(pos=entry.pos, obj=ExprNodes.NameNode(pos=entry.pos, name="self"), attribute=entry.name), }, pos=entry.pos).stats[0] property.name = entry.name property.doc = entry.doc return property class CalculateQualifiedNamesTransform(EnvTransform): """ Calculate and store the '__qualname__' and the global module name on some nodes. """ def visit_ModuleNode(self, node): self.module_name = self.global_scope().qualified_name self.qualified_name = [] _super = super(CalculateQualifiedNamesTransform, self) self._super_visit_FuncDefNode = _super.visit_FuncDefNode self._super_visit_ClassDefNode = _super.visit_ClassDefNode self.visitchildren(node) return node def _set_qualname(self, node, name=None): if name: qualname = self.qualified_name[:] qualname.append(name) else: qualname = self.qualified_name node.qualname = EncodedString('.'.join(qualname)) node.module_name = self.module_name def _append_entry(self, entry): if entry.is_pyglobal and not entry.is_pyclass_attr: self.qualified_name = [entry.name] else: self.qualified_name.append(entry.name) def visit_ClassNode(self, node): self._set_qualname(node, node.name) self.visitchildren(node) return node def visit_PyClassNamespaceNode(self, node): # class name was already added by parent node self._set_qualname(node) self.visitchildren(node) return node def visit_PyCFunctionNode(self, node): orig_qualified_name = self.qualified_name[:] if node.def_node.is_wrapper and self.qualified_name and self.qualified_name[-1] == '': self.qualified_name.pop() self._set_qualname(node) else: self._set_qualname(node, node.def_node.name) self.visitchildren(node) self.qualified_name = orig_qualified_name return node def visit_DefNode(self, node): if node.is_wrapper and self.qualified_name: assert self.qualified_name[-1] == '', self.qualified_name orig_qualified_name = self.qualified_name[:] self.qualified_name.pop() self._set_qualname(node) self._super_visit_FuncDefNode(node) self.qualified_name = orig_qualified_name else: self._set_qualname(node, node.name) self.visit_FuncDefNode(node) return node def visit_FuncDefNode(self, node): orig_qualified_name = self.qualified_name[:] if getattr(node, 'name', None) == '': self.qualified_name.append('') else: self._append_entry(node.entry) self.qualified_name.append('') self._super_visit_FuncDefNode(node) self.qualified_name = orig_qualified_name return node def visit_ClassDefNode(self, node): orig_qualified_name = self.qualified_name[:] entry = (getattr(node, 'entry', None) or # PyClass self.current_env().lookup_here(node.name)) # CClass self._append_entry(entry) self._super_visit_ClassDefNode(node) self.qualified_name = orig_qualified_name return node class AnalyseExpressionsTransform(CythonTransform): def visit_ModuleNode(self, node): node.scope.infer_types() node.body = node.body.analyse_expressions(node.scope) self.visitchildren(node) return node def visit_FuncDefNode(self, node): node.local_scope.infer_types() node.body = node.body.analyse_expressions(node.local_scope) self.visitchildren(node) return node def visit_ScopedExprNode(self, node): if node.has_local_scope: node.expr_scope.infer_types() node = node.analyse_scoped_expressions(node.expr_scope) self.visitchildren(node) return node def visit_IndexNode(self, node): """ Replace index nodes used to specialize cdef functions with fused argument types with the Attribute- or NameNode referring to the function. We then need to copy over the specialization properties to the attribute or name node. Because the indexing might be a Python indexing operation on a fused function, or (usually) a Cython indexing operation, we need to re-analyse the types. """ self.visit_Node(node) if node.is_fused_index and not node.type.is_error: node = node.base return node class FindInvalidUseOfFusedTypes(CythonTransform): def visit_FuncDefNode(self, node): # Errors related to use in functions with fused args will already # have been detected if not node.has_fused_arguments: if not node.is_generator_body and node.return_type.is_fused: error(node.pos, "Return type is not specified as argument type") else: self.visitchildren(node) return node def visit_ExprNode(self, node): if node.type and node.type.is_fused: error(node.pos, "Invalid use of fused types, type cannot be specialized") else: self.visitchildren(node) return node class ExpandInplaceOperators(EnvTransform): def visit_InPlaceAssignmentNode(self, node): lhs = node.lhs rhs = node.rhs if lhs.type.is_cpp_class: # No getting around this exact operator here. return node if isinstance(lhs, ExprNodes.BufferIndexNode): # There is code to handle this case in InPlaceAssignmentNode return node env = self.current_env() def side_effect_free_reference(node, setting=False): if node.is_name: return node, [] elif node.type.is_pyobject and not setting: node = LetRefNode(node) return node, [node] elif node.is_subscript: base, temps = side_effect_free_reference(node.base) index = LetRefNode(node.index) return ExprNodes.IndexNode(node.pos, base=base, index=index), temps + [index] elif node.is_attribute: obj, temps = side_effect_free_reference(node.obj) return ExprNodes.AttributeNode(node.pos, obj=obj, attribute=node.attribute), temps elif isinstance(node, ExprNodes.BufferIndexNode): raise ValueError("Don't allow things like attributes of buffer indexing operations") else: node = LetRefNode(node) return node, [node] try: lhs, let_ref_nodes = side_effect_free_reference(lhs, setting=True) except ValueError: return node dup = lhs.__class__(**lhs.__dict__) binop = ExprNodes.binop_node(node.pos, operator = node.operator, operand1 = dup, operand2 = rhs, inplace=True) # Manually analyse types for new node. lhs.analyse_target_types(env) dup.analyse_types(env) binop.analyse_operation(env) node = Nodes.SingleAssignmentNode( node.pos, lhs = lhs, rhs=binop.coerce_to(lhs.type, env)) # Use LetRefNode to avoid side effects. let_ref_nodes.reverse() for t in let_ref_nodes: node = LetNode(t, node) return node def visit_ExprNode(self, node): # In-place assignments can't happen within an expression. return node class AdjustDefByDirectives(CythonTransform, SkipDeclarations): """ Adjust function and class definitions by the decorator directives: @cython.cfunc @cython.cclass @cython.ccall @cython.inline @cython.nogil """ def visit_ModuleNode(self, node): self.directives = node.directives self.in_py_class = False self.visitchildren(node) return node def visit_CompilerDirectivesNode(self, node): old_directives = self.directives self.directives = node.directives self.visitchildren(node) self.directives = old_directives return node def visit_DefNode(self, node): modifiers = [] if 'inline' in self.directives: modifiers.append('inline') nogil = self.directives.get('nogil') except_val = self.directives.get('exceptval') return_type_node = self.directives.get('returns') if return_type_node is None and self.directives['annotation_typing']: return_type_node = node.return_type_annotation # for Python anntations, prefer safe exception handling by default if return_type_node is not None and except_val is None: except_val = (None, True) # except * elif except_val is None: # backward compatible default: no exception check except_val = (None, False) if 'ccall' in self.directives: node = node.as_cfunction( overridable=True, modifiers=modifiers, nogil=nogil, returns=return_type_node, except_val=except_val) return self.visit(node) if 'cfunc' in self.directives: if self.in_py_class: error(node.pos, "cfunc directive is not allowed here") else: node = node.as_cfunction( overridable=False, modifiers=modifiers, nogil=nogil, returns=return_type_node, except_val=except_val) return self.visit(node) if 'inline' in modifiers: error(node.pos, "Python functions cannot be declared 'inline'") if nogil: # TODO: turn this into a "with gil" declaration. error(node.pos, "Python functions cannot be declared 'nogil'") self.visitchildren(node) return node def visit_LambdaNode(self, node): # No directives should modify lambdas or generator expressions (and also nothing in them). return node def visit_PyClassDefNode(self, node): if 'cclass' in self.directives: node = node.as_cclass() return self.visit(node) else: old_in_pyclass = self.in_py_class self.in_py_class = True self.visitchildren(node) self.in_py_class = old_in_pyclass return node def visit_CClassDefNode(self, node): old_in_pyclass = self.in_py_class self.in_py_class = False self.visitchildren(node) self.in_py_class = old_in_pyclass return node class AlignFunctionDefinitions(CythonTransform): """ This class takes the signatures from a .pxd file and applies them to the def methods in a .py file. """ def visit_ModuleNode(self, node): self.scope = node.scope self.directives = node.directives self.imported_names = set() # hack, see visit_FromImportStatNode() self.visitchildren(node) return node def visit_PyClassDefNode(self, node): pxd_def = self.scope.lookup(node.name) if pxd_def: if pxd_def.is_cclass: return self.visit_CClassDefNode(node.as_cclass(), pxd_def) elif not pxd_def.scope or not pxd_def.scope.is_builtin_scope: error(node.pos, "'%s' redeclared" % node.name) if pxd_def.pos: error(pxd_def.pos, "previous declaration here") return None return node def visit_CClassDefNode(self, node, pxd_def=None): if pxd_def is None: pxd_def = self.scope.lookup(node.class_name) if pxd_def: if not pxd_def.defined_in_pxd: return node outer_scope = self.scope self.scope = pxd_def.type.scope self.visitchildren(node) if pxd_def: self.scope = outer_scope return node def visit_DefNode(self, node): pxd_def = self.scope.lookup(node.name) if pxd_def and (not pxd_def.scope or not pxd_def.scope.is_builtin_scope): if not pxd_def.is_cfunction: error(node.pos, "'%s' redeclared" % node.name) if pxd_def.pos: error(pxd_def.pos, "previous declaration here") return None node = node.as_cfunction(pxd_def) elif (self.scope.is_module_scope and self.directives['auto_cpdef'] and not node.name in self.imported_names and node.is_cdef_func_compatible()): # FIXME: cpdef-ing should be done in analyse_declarations() node = node.as_cfunction(scope=self.scope) # Enable this when nested cdef functions are allowed. # self.visitchildren(node) return node def visit_FromImportStatNode(self, node): # hack to prevent conditional import fallback functions from # being cdpef-ed (global Python variables currently conflict # with imports) if self.scope.is_module_scope: for name, _ in node.items: self.imported_names.add(name) return node def visit_ExprNode(self, node): # ignore lambdas and everything else that appears in expressions return node class RemoveUnreachableCode(CythonTransform): def visit_StatListNode(self, node): if not self.current_directives['remove_unreachable']: return node self.visitchildren(node) for idx, stat in enumerate(node.stats): idx += 1 if stat.is_terminator: if idx < len(node.stats): if self.current_directives['warn.unreachable']: warning(node.stats[idx].pos, "Unreachable code", 2) node.stats = node.stats[:idx] node.is_terminator = True break return node def visit_IfClauseNode(self, node): self.visitchildren(node) if node.body.is_terminator: node.is_terminator = True return node def visit_IfStatNode(self, node): self.visitchildren(node) if node.else_clause and node.else_clause.is_terminator: for clause in node.if_clauses: if not clause.is_terminator: break else: node.is_terminator = True return node def visit_TryExceptStatNode(self, node): self.visitchildren(node) if node.body.is_terminator and node.else_clause: if self.current_directives['warn.unreachable']: warning(node.else_clause.pos, "Unreachable code", 2) node.else_clause = None return node def visit_TryFinallyStatNode(self, node): self.visitchildren(node) if node.finally_clause.is_terminator: node.is_terminator = True return node class YieldNodeCollector(TreeVisitor): def __init__(self): super(YieldNodeCollector, self).__init__() self.yields = [] self.returns = [] self.finallys = [] self.excepts = [] self.has_return_value = False self.has_yield = False self.has_await = False def visit_Node(self, node): self.visitchildren(node) def visit_YieldExprNode(self, node): self.yields.append(node) self.has_yield = True self.visitchildren(node) def visit_AwaitExprNode(self, node): self.yields.append(node) self.has_await = True self.visitchildren(node) def visit_ReturnStatNode(self, node): self.visitchildren(node) if node.value: self.has_return_value = True self.returns.append(node) def visit_TryFinallyStatNode(self, node): self.visitchildren(node) self.finallys.append(node) def visit_TryExceptStatNode(self, node): self.visitchildren(node) self.excepts.append(node) def visit_ClassDefNode(self, node): pass def visit_FuncDefNode(self, node): pass def visit_LambdaNode(self, node): pass def visit_GeneratorExpressionNode(self, node): pass def visit_CArgDeclNode(self, node): # do not look into annotations # FIXME: support (yield) in default arguments (currently crashes) pass class MarkClosureVisitor(CythonTransform): def visit_ModuleNode(self, node): self.needs_closure = False self.visitchildren(node) return node def visit_FuncDefNode(self, node): self.needs_closure = False self.visitchildren(node) node.needs_closure = self.needs_closure self.needs_closure = True collector = YieldNodeCollector() collector.visitchildren(node) if node.is_async_def: coroutine_type = Nodes.AsyncDefNode if collector.has_yield: coroutine_type = Nodes.AsyncGenNode for yield_expr in collector.yields + collector.returns: yield_expr.in_async_gen = True elif self.current_directives['iterable_coroutine']: coroutine_type = Nodes.IterableAsyncDefNode elif collector.has_await: found = next(y for y in collector.yields if y.is_await) error(found.pos, "'await' not allowed in generators (use 'yield')") return node elif collector.has_yield: coroutine_type = Nodes.GeneratorDefNode else: return node for i, yield_expr in enumerate(collector.yields, 1): yield_expr.label_num = i for retnode in collector.returns + collector.finallys + collector.excepts: retnode.in_generator = True gbody = Nodes.GeneratorBodyDefNode( pos=node.pos, name=node.name, body=node.body, is_async_gen_body=node.is_async_def and collector.has_yield) coroutine = coroutine_type( pos=node.pos, name=node.name, args=node.args, star_arg=node.star_arg, starstar_arg=node.starstar_arg, doc=node.doc, decorators=node.decorators, gbody=gbody, lambda_name=node.lambda_name, return_type_annotation=node.return_type_annotation) return coroutine def visit_CFuncDefNode(self, node): self.needs_closure = False self.visitchildren(node) node.needs_closure = self.needs_closure self.needs_closure = True if node.needs_closure and node.overridable: error(node.pos, "closures inside cpdef functions not yet supported") return node def visit_LambdaNode(self, node): self.needs_closure = False self.visitchildren(node) node.needs_closure = self.needs_closure self.needs_closure = True return node def visit_ClassDefNode(self, node): self.visitchildren(node) self.needs_closure = True return node class CreateClosureClasses(CythonTransform): # Output closure classes in module scope for all functions # that really need it. def __init__(self, context): super(CreateClosureClasses, self).__init__(context) self.path = [] self.in_lambda = False def visit_ModuleNode(self, node): self.module_scope = node.scope self.visitchildren(node) return node def find_entries_used_in_closures(self, node): from_closure = [] in_closure = [] for scope in node.local_scope.iter_local_scopes(): for name, entry in scope.entries.items(): if not name: continue if entry.from_closure: from_closure.append((name, entry)) elif entry.in_closure: in_closure.append((name, entry)) return from_closure, in_closure def create_class_from_scope(self, node, target_module_scope, inner_node=None): # move local variables into closure if node.is_generator: for scope in node.local_scope.iter_local_scopes(): for entry in scope.entries.values(): if not (entry.from_closure or entry.is_pyglobal or entry.is_cglobal): entry.in_closure = True from_closure, in_closure = self.find_entries_used_in_closures(node) in_closure.sort() # Now from the beginning node.needs_closure = False node.needs_outer_scope = False func_scope = node.local_scope cscope = node.entry.scope while cscope.is_py_class_scope or cscope.is_c_class_scope: cscope = cscope.outer_scope if not from_closure and (self.path or inner_node): if not inner_node: if not node.py_cfunc_node: raise InternalError("DefNode does not have assignment node") inner_node = node.py_cfunc_node inner_node.needs_self_code = False node.needs_outer_scope = False if node.is_generator: pass elif not in_closure and not from_closure: return elif not in_closure: func_scope.is_passthrough = True func_scope.scope_class = cscope.scope_class node.needs_outer_scope = True return # entry.cname can contain periods (eg. a derived C method of a class). # We want to use the cname as part of a C struct name, so we replace # periods with double underscores. as_name = '%s_%s' % ( target_module_scope.next_id(Naming.closure_class_prefix), node.entry.cname.replace('.','__')) entry = target_module_scope.declare_c_class( name=as_name, pos=node.pos, defining=True, implementing=True) entry.type.is_final_type = True func_scope.scope_class = entry class_scope = entry.type.scope class_scope.is_internal = True class_scope.is_closure_class_scope = True if node.is_async_def or node.is_generator: # Generators need their closure intact during cleanup as they resume to handle GeneratorExit class_scope.directives['no_gc_clear'] = True if Options.closure_freelist_size: class_scope.directives['freelist'] = Options.closure_freelist_size if from_closure: assert cscope.is_closure_scope class_scope.declare_var(pos=node.pos, name=Naming.outer_scope_cname, cname=Naming.outer_scope_cname, type=cscope.scope_class.type, is_cdef=True) node.needs_outer_scope = True for name, entry in in_closure: closure_entry = class_scope.declare_var( pos=entry.pos, name=entry.name if not entry.in_subscope else None, cname=entry.cname, type=entry.type, is_cdef=True) if entry.is_declared_generic: closure_entry.is_declared_generic = 1 node.needs_closure = True # Do it here because other classes are already checked target_module_scope.check_c_class(func_scope.scope_class) def visit_LambdaNode(self, node): if not isinstance(node.def_node, Nodes.DefNode): # fused function, an error has been previously issued return node was_in_lambda = self.in_lambda self.in_lambda = True self.create_class_from_scope(node.def_node, self.module_scope, node) self.visitchildren(node) self.in_lambda = was_in_lambda return node def visit_FuncDefNode(self, node): if self.in_lambda: self.visitchildren(node) return node if node.needs_closure or self.path: self.create_class_from_scope(node, self.module_scope) self.path.append(node) self.visitchildren(node) self.path.pop() return node def visit_GeneratorBodyDefNode(self, node): self.visitchildren(node) return node def visit_CFuncDefNode(self, node): if not node.overridable: return self.visit_FuncDefNode(node) else: self.visitchildren(node) return node class InjectGilHandling(VisitorTransform, SkipDeclarations): """ Allow certain Python operations inside of nogil blocks by implicitly acquiring the GIL. Must run before the AnalyseDeclarationsTransform to make sure the GILStatNodes get set up, parallel sections know that the GIL is acquired inside of them, etc. """ def __call__(self, root): self.nogil = False return super(InjectGilHandling, self).__call__(root) # special node handling def visit_RaiseStatNode(self, node): """Allow raising exceptions in nogil sections by wrapping them in a 'with gil' block.""" if self.nogil: node = Nodes.GILStatNode(node.pos, state='gil', body=node) return node # further candidates: # def visit_AssertStatNode(self, node): # def visit_ReraiseStatNode(self, node): # nogil tracking def visit_GILStatNode(self, node): was_nogil = self.nogil self.nogil = (node.state == 'nogil') self.visitchildren(node) self.nogil = was_nogil return node def visit_CFuncDefNode(self, node): was_nogil = self.nogil if isinstance(node.declarator, Nodes.CFuncDeclaratorNode): self.nogil = node.declarator.nogil and not node.declarator.with_gil self.visitchildren(node) self.nogil = was_nogil return node def visit_ParallelRangeNode(self, node): was_nogil = self.nogil self.nogil = node.nogil self.visitchildren(node) self.nogil = was_nogil return node def visit_ExprNode(self, node): # No special GIL handling inside of expressions for now. return node visit_Node = VisitorTransform.recurse_to_children class GilCheck(VisitorTransform): """ Call `node.gil_check(env)` on each node to make sure we hold the GIL when we need it. Raise an error when on Python operations inside a `nogil` environment. Additionally, raise exceptions for closely nested with gil or with nogil statements. The latter would abort Python. """ def __call__(self, root): self.env_stack = [root.scope] self.nogil = False # True for 'cdef func() nogil:' functions, as the GIL may be held while # calling this function (thus contained 'nogil' blocks may be valid). self.nogil_declarator_only = False return super(GilCheck, self).__call__(root) def _visit_scoped_children(self, node, gil_state): was_nogil = self.nogil outer_attrs = node.outer_attrs if outer_attrs and len(self.env_stack) > 1: self.nogil = self.env_stack[-2].nogil self.visitchildren(node, outer_attrs) self.nogil = gil_state self.visitchildren(node, exclude=outer_attrs) self.nogil = was_nogil def visit_FuncDefNode(self, node): self.env_stack.append(node.local_scope) inner_nogil = node.local_scope.nogil if inner_nogil: self.nogil_declarator_only = True if inner_nogil and node.nogil_check: node.nogil_check(node.local_scope) self._visit_scoped_children(node, inner_nogil) # This cannot be nested, so it doesn't need backup/restore self.nogil_declarator_only = False self.env_stack.pop() return node def visit_GILStatNode(self, node): if self.nogil and node.nogil_check: node.nogil_check() was_nogil = self.nogil is_nogil = (node.state == 'nogil') if was_nogil == is_nogil and not self.nogil_declarator_only: if not was_nogil: error(node.pos, "Trying to acquire the GIL while it is " "already held.") else: error(node.pos, "Trying to release the GIL while it was " "previously released.") if isinstance(node.finally_clause, Nodes.StatListNode): # The finally clause of the GILStatNode is a GILExitNode, # which is wrapped in a StatListNode. Just unpack that. node.finally_clause, = node.finally_clause.stats self._visit_scoped_children(node, is_nogil) return node def visit_ParallelRangeNode(self, node): if node.nogil: node.nogil = False node = Nodes.GILStatNode(node.pos, state='nogil', body=node) return self.visit_GILStatNode(node) if not self.nogil: error(node.pos, "prange() can only be used without the GIL") # Forget about any GIL-related errors that may occur in the body return None node.nogil_check(self.env_stack[-1]) self.visitchildren(node) return node def visit_ParallelWithBlockNode(self, node): if not self.nogil: error(node.pos, "The parallel section may only be used without " "the GIL") return None if node.nogil_check: # It does not currently implement this, but test for it anyway to # avoid potential future surprises node.nogil_check(self.env_stack[-1]) self.visitchildren(node) return node def visit_TryFinallyStatNode(self, node): """ Take care of try/finally statements in nogil code sections. """ if not self.nogil or isinstance(node, Nodes.GILStatNode): return self.visit_Node(node) node.nogil_check = None node.is_try_finally_in_nogil = True self.visitchildren(node) return node def visit_Node(self, node): if self.env_stack and self.nogil and node.nogil_check: node.nogil_check(self.env_stack[-1]) if node.outer_attrs: self._visit_scoped_children(node, self.nogil) else: self.visitchildren(node) if self.nogil: node.in_nogil_context = True return node class TransformBuiltinMethods(EnvTransform): """ Replace Cython's own cython.* builtins by the corresponding tree nodes. """ def visit_SingleAssignmentNode(self, node): if node.declaration_only: return None else: self.visitchildren(node) return node def visit_AttributeNode(self, node): self.visitchildren(node) return self.visit_cython_attribute(node) def visit_NameNode(self, node): return self.visit_cython_attribute(node) def visit_cython_attribute(self, node): attribute = node.as_cython_attribute() if attribute: if attribute == u'compiled': node = ExprNodes.BoolNode(node.pos, value=True) elif attribute == u'__version__': from .. import __version__ as version node = ExprNodes.StringNode(node.pos, value=EncodedString(version)) elif attribute == u'NULL': node = ExprNodes.NullNode(node.pos) elif attribute in (u'set', u'frozenset', u'staticmethod'): node = ExprNodes.NameNode(node.pos, name=EncodedString(attribute), entry=self.current_env().builtin_scope().lookup_here(attribute)) elif PyrexTypes.parse_basic_type(attribute): pass elif self.context.cython_scope.lookup_qualified_name(attribute): pass else: error(node.pos, u"'%s' not a valid cython attribute or is being used incorrectly" % attribute) return node def visit_ExecStatNode(self, node): lenv = self.current_env() self.visitchildren(node) if len(node.args) == 1: node.args.append(ExprNodes.GlobalsExprNode(node.pos)) if not lenv.is_module_scope: node.args.append( ExprNodes.LocalsExprNode( node.pos, self.current_scope_node(), lenv)) return node def _inject_locals(self, node, func_name): # locals()/dir()/vars() builtins lenv = self.current_env() entry = lenv.lookup_here(func_name) if entry: # not the builtin return node pos = node.pos if func_name in ('locals', 'vars'): if func_name == 'locals' and len(node.args) > 0: error(self.pos, "Builtin 'locals()' called with wrong number of args, expected 0, got %d" % len(node.args)) return node elif func_name == 'vars': if len(node.args) > 1: error(self.pos, "Builtin 'vars()' called with wrong number of args, expected 0-1, got %d" % len(node.args)) if len(node.args) > 0: return node # nothing to do return ExprNodes.LocalsExprNode(pos, self.current_scope_node(), lenv) else: # dir() if len(node.args) > 1: error(self.pos, "Builtin 'dir()' called with wrong number of args, expected 0-1, got %d" % len(node.args)) if len(node.args) > 0: # optimised in Builtin.py return node if lenv.is_py_class_scope or lenv.is_module_scope: if lenv.is_py_class_scope: pyclass = self.current_scope_node() locals_dict = ExprNodes.CloneNode(pyclass.dict) else: locals_dict = ExprNodes.GlobalsExprNode(pos) return ExprNodes.SortedDictKeysNode(locals_dict) local_names = sorted(var.name for var in lenv.entries.values() if var.name) items = [ExprNodes.IdentifierStringNode(pos, value=var) for var in local_names] return ExprNodes.ListNode(pos, args=items) def visit_PrimaryCmpNode(self, node): # special case: for in/not-in test, we do not need to sort locals() self.visitchildren(node) if node.operator in 'not_in': # in/not_in if isinstance(node.operand2, ExprNodes.SortedDictKeysNode): arg = node.operand2.arg if isinstance(arg, ExprNodes.NoneCheckNode): arg = arg.arg node.operand2 = arg return node def visit_CascadedCmpNode(self, node): return self.visit_PrimaryCmpNode(node) def _inject_eval(self, node, func_name): lenv = self.current_env() entry = lenv.lookup_here(func_name) if entry or len(node.args) != 1: return node # Inject globals and locals node.args.append(ExprNodes.GlobalsExprNode(node.pos)) if not lenv.is_module_scope: node.args.append( ExprNodes.LocalsExprNode( node.pos, self.current_scope_node(), lenv)) return node def _inject_super(self, node, func_name): lenv = self.current_env() entry = lenv.lookup_here(func_name) if entry or node.args: return node # Inject no-args super def_node = self.current_scope_node() if (not isinstance(def_node, Nodes.DefNode) or not def_node.args or len(self.env_stack) < 2): return node class_node, class_scope = self.env_stack[-2] if class_scope.is_py_class_scope: def_node.requires_classobj = True class_node.class_cell.is_active = True node.args = [ ExprNodes.ClassCellNode( node.pos, is_generator=def_node.is_generator), ExprNodes.NameNode(node.pos, name=def_node.args[0].name) ] elif class_scope.is_c_class_scope: node.args = [ ExprNodes.NameNode( node.pos, name=class_node.scope.name, entry=class_node.entry), ExprNodes.NameNode(node.pos, name=def_node.args[0].name) ] return node def visit_SimpleCallNode(self, node): # cython.foo function = node.function.as_cython_attribute() if function: if function in InterpretCompilerDirectives.unop_method_nodes: if len(node.args) != 1: error(node.function.pos, u"%s() takes exactly one argument" % function) else: node = InterpretCompilerDirectives.unop_method_nodes[function]( node.function.pos, operand=node.args[0]) elif function in InterpretCompilerDirectives.binop_method_nodes: if len(node.args) != 2: error(node.function.pos, u"%s() takes exactly two arguments" % function) else: node = InterpretCompilerDirectives.binop_method_nodes[function]( node.function.pos, operand1=node.args[0], operand2=node.args[1]) elif function == u'cast': if len(node.args) != 2: error(node.function.pos, u"cast() takes exactly two arguments and an optional typecheck keyword") else: type = node.args[0].analyse_as_type(self.current_env()) if type: node = ExprNodes.TypecastNode( node.function.pos, type=type, operand=node.args[1], typecheck=False) else: error(node.args[0].pos, "Not a type") elif function == u'sizeof': if len(node.args) != 1: error(node.function.pos, u"sizeof() takes exactly one argument") else: type = node.args[0].analyse_as_type(self.current_env()) if type: node = ExprNodes.SizeofTypeNode(node.function.pos, arg_type=type) else: node = ExprNodes.SizeofVarNode(node.function.pos, operand=node.args[0]) elif function == 'cmod': if len(node.args) != 2: error(node.function.pos, u"cmod() takes exactly two arguments") else: node = ExprNodes.binop_node(node.function.pos, '%', node.args[0], node.args[1]) node.cdivision = True elif function == 'cdiv': if len(node.args) != 2: error(node.function.pos, u"cdiv() takes exactly two arguments") else: node = ExprNodes.binop_node(node.function.pos, '/', node.args[0], node.args[1]) node.cdivision = True elif function == u'set': node.function = ExprNodes.NameNode(node.pos, name=EncodedString('set')) elif function == u'staticmethod': node.function = ExprNodes.NameNode(node.pos, name=EncodedString('staticmethod')) elif self.context.cython_scope.lookup_qualified_name(function): pass else: error(node.function.pos, u"'%s' not a valid cython language construct" % function) self.visitchildren(node) if isinstance(node, ExprNodes.SimpleCallNode) and node.function.is_name: func_name = node.function.name if func_name in ('dir', 'locals', 'vars'): return self._inject_locals(node, func_name) if func_name == 'eval': return self._inject_eval(node, func_name) if func_name == 'super': return self._inject_super(node, func_name) return node def visit_GeneralCallNode(self, node): function = node.function.as_cython_attribute() if function == u'cast': # NOTE: assuming simple tuple/dict nodes for positional_args and keyword_args args = node.positional_args.args kwargs = node.keyword_args.compile_time_value(None) if (len(args) != 2 or len(kwargs) > 1 or (len(kwargs) == 1 and 'typecheck' not in kwargs)): error(node.function.pos, u"cast() takes exactly two arguments and an optional typecheck keyword") else: type = args[0].analyse_as_type(self.current_env()) if type: typecheck = kwargs.get('typecheck', False) node = ExprNodes.TypecastNode( node.function.pos, type=type, operand=args[1], typecheck=typecheck) else: error(args[0].pos, "Not a type") self.visitchildren(node) return node class ReplaceFusedTypeChecks(VisitorTransform): """ This is not a transform in the pipeline. It is invoked on the specific versions of a cdef function with fused argument types. It filters out any type branches that don't match. e.g. if fused_t is mytype: ... elif fused_t in other_fused_type: ... """ def __init__(self, local_scope): super(ReplaceFusedTypeChecks, self).__init__() self.local_scope = local_scope # defer the import until now to avoid circular import time dependencies from .Optimize import ConstantFolding self.transform = ConstantFolding(reevaluate=True) def visit_IfStatNode(self, node): """ Filters out any if clauses with false compile time type check expression. """ self.visitchildren(node) return self.transform(node) def visit_PrimaryCmpNode(self, node): with Errors.local_errors(ignore=True): type1 = node.operand1.analyse_as_type(self.local_scope) type2 = node.operand2.analyse_as_type(self.local_scope) if type1 and type2: false_node = ExprNodes.BoolNode(node.pos, value=False) true_node = ExprNodes.BoolNode(node.pos, value=True) type1 = self.specialize_type(type1, node.operand1.pos) op = node.operator if op in ('is', 'is_not', '==', '!='): type2 = self.specialize_type(type2, node.operand2.pos) is_same = type1.same_as(type2) eq = op in ('is', '==') if (is_same and eq) or (not is_same and not eq): return true_node elif op in ('in', 'not_in'): # We have to do an instance check directly, as operand2 # needs to be a fused type and not a type with a subtype # that is fused. First unpack the typedef if isinstance(type2, PyrexTypes.CTypedefType): type2 = type2.typedef_base_type if type1.is_fused: error(node.operand1.pos, "Type is fused") elif not type2.is_fused: error(node.operand2.pos, "Can only use 'in' or 'not in' on a fused type") else: types = PyrexTypes.get_specialized_types(type2) for specialized_type in types: if type1.same_as(specialized_type): if op == 'in': return true_node else: return false_node if op == 'not_in': return true_node return false_node return node def specialize_type(self, type, pos): try: return type.specialize(self.local_scope.fused_to_specific) except KeyError: error(pos, "Type is not specific") return type def visit_Node(self, node): self.visitchildren(node) return node class DebugTransform(CythonTransform): """ Write debug information for this Cython module. """ def __init__(self, context, options, result): super(DebugTransform, self).__init__(context) self.visited = set() # our treebuilder and debug output writer # (see Cython.Debugger.debug_output.CythonDebugWriter) self.tb = self.context.gdb_debug_outputwriter #self.c_output_file = options.output_file self.c_output_file = result.c_file # Closure support, basically treat nested functions as if the AST were # never nested self.nested_funcdefs = [] # tells visit_NameNode whether it should register step-into functions self.register_stepinto = False def visit_ModuleNode(self, node): self.tb.module_name = node.full_module_name attrs = dict( module_name=node.full_module_name, filename=node.pos[0].filename, c_filename=self.c_output_file) self.tb.start('Module', attrs) # serialize functions self.tb.start('Functions') # First, serialize functions normally... self.visitchildren(node) # ... then, serialize nested functions for nested_funcdef in self.nested_funcdefs: self.visit_FuncDefNode(nested_funcdef) self.register_stepinto = True self.serialize_modulenode_as_function(node) self.register_stepinto = False self.tb.end('Functions') # 2.3 compatibility. Serialize global variables self.tb.start('Globals') entries = {} for k, v in node.scope.entries.items(): if (v.qualified_name not in self.visited and not v.name.startswith('__pyx_') and not v.type.is_cfunction and not v.type.is_extension_type): entries[k]= v self.serialize_local_variables(entries) self.tb.end('Globals') # self.tb.end('Module') # end Module after the line number mapping in # Cython.Compiler.ModuleNode.ModuleNode._serialize_lineno_map return node def visit_FuncDefNode(self, node): self.visited.add(node.local_scope.qualified_name) if getattr(node, 'is_wrapper', False): return node if self.register_stepinto: self.nested_funcdefs.append(node) return node # node.entry.visibility = 'extern' if node.py_func is None: pf_cname = '' else: pf_cname = node.py_func.entry.func_cname attrs = dict( name=node.entry.name or getattr(node, 'name', ''), cname=node.entry.func_cname, pf_cname=pf_cname, qualified_name=node.local_scope.qualified_name, lineno=str(node.pos[1])) self.tb.start('Function', attrs=attrs) self.tb.start('Locals') self.serialize_local_variables(node.local_scope.entries) self.tb.end('Locals') self.tb.start('Arguments') for arg in node.local_scope.arg_entries: self.tb.start(arg.name) self.tb.end(arg.name) self.tb.end('Arguments') self.tb.start('StepIntoFunctions') self.register_stepinto = True self.visitchildren(node) self.register_stepinto = False self.tb.end('StepIntoFunctions') self.tb.end('Function') return node def visit_NameNode(self, node): if (self.register_stepinto and node.type is not None and node.type.is_cfunction and getattr(node, 'is_called', False) and node.entry.func_cname is not None): # don't check node.entry.in_cinclude, as 'cdef extern: ...' # declared functions are not 'in_cinclude'. # This means we will list called 'cdef' functions as # "step into functions", but this is not an issue as they will be # recognized as Cython functions anyway. attrs = dict(name=node.entry.func_cname) self.tb.start('StepIntoFunction', attrs=attrs) self.tb.end('StepIntoFunction') self.visitchildren(node) return node def serialize_modulenode_as_function(self, node): """ Serialize the module-level code as a function so the debugger will know it's a "relevant frame" and it will know where to set the breakpoint for 'break modulename'. """ name = node.full_module_name.rpartition('.')[-1] cname_py2 = 'init' + name cname_py3 = 'PyInit_' + name py2_attrs = dict( name=name, cname=cname_py2, pf_cname='', # Ignore the qualified_name, breakpoints should be set using # `cy break modulename:lineno` for module-level breakpoints. qualified_name='', lineno='1', is_initmodule_function="True", ) py3_attrs = dict(py2_attrs, cname=cname_py3) self._serialize_modulenode_as_function(node, py2_attrs) self._serialize_modulenode_as_function(node, py3_attrs) def _serialize_modulenode_as_function(self, node, attrs): self.tb.start('Function', attrs=attrs) self.tb.start('Locals') self.serialize_local_variables(node.scope.entries) self.tb.end('Locals') self.tb.start('Arguments') self.tb.end('Arguments') self.tb.start('StepIntoFunctions') self.register_stepinto = True self.visitchildren(node) self.register_stepinto = False self.tb.end('StepIntoFunctions') self.tb.end('Function') def serialize_local_variables(self, entries): for entry in entries.values(): if not entry.cname: # not a local variable continue if entry.type.is_pyobject: vartype = 'PythonObject' else: vartype = 'CObject' if entry.from_closure: # We're dealing with a closure where a variable from an outer # scope is accessed, get it from the scope object. cname = '%s->%s' % (Naming.cur_scope_cname, entry.outer_entry.cname) qname = '%s.%s.%s' % (entry.scope.outer_scope.qualified_name, entry.scope.name, entry.name) elif entry.in_closure: cname = '%s->%s' % (Naming.cur_scope_cname, entry.cname) qname = entry.qualified_name else: cname = entry.cname qname = entry.qualified_name if not entry.pos: # this happens for variables that are not in the user's code, # e.g. for the global __builtins__, __doc__, etc. We can just # set the lineno to 0 for those. lineno = '0' else: lineno = str(entry.pos[1]) attrs = dict( name=entry.name, cname=cname, qualified_name=qname, type=vartype, lineno=lineno) self.tb.start('LocalVar', attrs) self.tb.end('LocalVar')