Pracownia_programowania/venv/Lib/site-packages/Cython/Compiler/Nodes.py
2020-02-01 20:05:44 +01:00

9414 lines
381 KiB
Python

#
# Parse tree nodes
#
from __future__ import absolute_import
import cython
cython.declare(sys=object, os=object, copy=object,
Builtin=object, error=object, warning=object, Naming=object, PyrexTypes=object,
py_object_type=object, ModuleScope=object, LocalScope=object, ClosureScope=object,
StructOrUnionScope=object, PyClassScope=object,
CppClassScope=object, UtilityCode=object, EncodedString=object,
error_type=object, _py_int_types=object)
import sys, os, copy
from itertools import chain
from . import Builtin
from .Errors import error, warning, InternalError, CompileError
from . import Naming
from . import PyrexTypes
from . import TypeSlots
from .PyrexTypes import py_object_type, error_type
from .Symtab import (ModuleScope, LocalScope, ClosureScope,
StructOrUnionScope, PyClassScope, CppClassScope, TemplateScope)
from .Code import UtilityCode
from .StringEncoding import EncodedString
from . import Future
from . import Options
from . import DebugFlags
from .Pythran import has_np_pythran, pythran_type, is_pythran_buffer
from ..Utils import add_metaclass
if sys.version_info[0] >= 3:
_py_int_types = int
else:
_py_int_types = (int, long)
def relative_position(pos):
return (pos[0].get_filenametable_entry(), pos[1])
def embed_position(pos, docstring):
if not Options.embed_pos_in_docstring:
return docstring
pos_line = u'File: %s (starting at line %s)' % relative_position(pos)
if docstring is None:
# unicode string
return EncodedString(pos_line)
# make sure we can encode the filename in the docstring encoding
# otherwise make the docstring a unicode string
encoding = docstring.encoding
if encoding is not None:
try:
pos_line.encode(encoding)
except UnicodeEncodeError:
encoding = None
if not docstring:
# reuse the string encoding of the original docstring
doc = EncodedString(pos_line)
else:
doc = EncodedString(pos_line + u'\n' + docstring)
doc.encoding = encoding
return doc
def analyse_type_annotation(annotation, env, assigned_value=None):
base_type = None
is_ambiguous = False
explicit_pytype = explicit_ctype = False
if annotation.is_dict_literal:
warning(annotation.pos,
"Dicts should no longer be used as type annotations. Use 'cython.int' etc. directly.")
for name, value in annotation.key_value_pairs:
if not name.is_string_literal:
continue
if name.value in ('type', b'type'):
explicit_pytype = True
if not explicit_ctype:
annotation = value
elif name.value in ('ctype', b'ctype'):
explicit_ctype = True
annotation = value
if explicit_pytype and explicit_ctype:
warning(annotation.pos, "Duplicate type declarations found in signature annotation")
arg_type = annotation.analyse_as_type(env)
if annotation.is_name and not annotation.cython_attribute and annotation.name in ('int', 'long', 'float'):
# Map builtin numeric Python types to C types in safe cases.
if assigned_value is not None and arg_type is not None and not arg_type.is_pyobject:
assigned_type = assigned_value.infer_type(env)
if assigned_type and assigned_type.is_pyobject:
# C type seems unsafe, e.g. due to 'None' default value => ignore annotation type
is_ambiguous = True
arg_type = None
# ignore 'int' and require 'cython.int' to avoid unsafe integer declarations
if arg_type in (PyrexTypes.c_long_type, PyrexTypes.c_int_type, PyrexTypes.c_float_type):
arg_type = PyrexTypes.c_double_type if annotation.name == 'float' else py_object_type
elif arg_type is not None and annotation.is_string_literal:
warning(annotation.pos,
"Strings should no longer be used for type declarations. Use 'cython.int' etc. directly.")
if arg_type is not None:
if explicit_pytype and not explicit_ctype and not arg_type.is_pyobject:
warning(annotation.pos,
"Python type declaration in signature annotation does not refer to a Python type")
base_type = CAnalysedBaseTypeNode(
annotation.pos, type=arg_type, is_arg=True)
elif is_ambiguous:
warning(annotation.pos, "Ambiguous types in annotation, ignoring")
else:
warning(annotation.pos, "Unknown type declaration in annotation, ignoring")
return base_type, arg_type
def write_func_call(func, codewriter_class):
def f(*args, **kwds):
if len(args) > 1 and isinstance(args[1], codewriter_class):
# here we annotate the code with this function call
# but only if new code is generated
node, code = args[:2]
marker = ' /* %s -> %s.%s %s */' % (
' ' * code.call_level,
node.__class__.__name__,
func.__name__,
node.pos[1:])
pristine = code.buffer.stream.tell()
code.putln(marker)
start = code.buffer.stream.tell()
code.call_level += 4
res = func(*args, **kwds)
code.call_level -= 4
if start == code.buffer.stream.tell():
# no code written => undo writing marker
code.buffer.stream.truncate(pristine)
else:
marker = marker.replace('->', '<-', 1)
code.putln(marker)
return res
else:
return func(*args, **kwds)
return f
class VerboseCodeWriter(type):
# Set this as a metaclass to trace function calls in code.
# This slows down code generation and makes much larger files.
def __new__(cls, name, bases, attrs):
from types import FunctionType
from .Code import CCodeWriter
attrs = dict(attrs)
for mname, m in attrs.items():
if isinstance(m, FunctionType):
attrs[mname] = write_func_call(m, CCodeWriter)
return super(VerboseCodeWriter, cls).__new__(cls, name, bases, attrs)
class CheckAnalysers(type):
"""Metaclass to check that type analysis functions return a node.
"""
methods = set(['analyse_types',
'analyse_expressions',
'analyse_target_types'])
def __new__(cls, name, bases, attrs):
from types import FunctionType
def check(name, func):
def call(*args, **kwargs):
retval = func(*args, **kwargs)
if retval is None:
print('%s %s %s' % (name, args, kwargs))
return retval
return call
attrs = dict(attrs)
for mname, m in attrs.items():
if isinstance(m, FunctionType) and mname in cls.methods:
attrs[mname] = check(mname, m)
return super(CheckAnalysers, cls).__new__(cls, name, bases, attrs)
def _with_metaclass(cls):
if DebugFlags.debug_trace_code_generation:
return add_metaclass(VerboseCodeWriter)(cls)
#return add_metaclass(CheckAnalysers)(cls)
return cls
@_with_metaclass
class Node(object):
# pos (string, int, int) Source file position
# is_name boolean Is a NameNode
# is_literal boolean Is a ConstNode
is_name = 0
is_none = 0
is_nonecheck = 0
is_literal = 0
is_terminator = 0
is_wrapper = False # is a DefNode wrapper for a C function
temps = None
# All descendants should set child_attrs to a list of the attributes
# containing nodes considered "children" in the tree. Each such attribute
# can either contain a single node or a list of nodes. See Visitor.py.
child_attrs = None
# Subset of attributes that are evaluated in the outer scope (e.g. function default arguments).
outer_attrs = None
cf_state = None
# This may be an additional (or 'actual') type that will be checked when
# this node is coerced to another type. This could be useful to set when
# the actual type to which it can coerce is known, but you want to leave
# the type a py_object_type
coercion_type = None
def __init__(self, pos, **kw):
self.pos = pos
self.__dict__.update(kw)
gil_message = "Operation"
nogil_check = None
in_nogil_context = False # For use only during code generation.
def gil_error(self, env=None):
error(self.pos, "%s not allowed without gil" % self.gil_message)
cpp_message = "Operation"
def cpp_check(self, env):
if not env.is_cpp():
self.cpp_error()
def cpp_error(self):
error(self.pos, "%s only allowed in c++" % self.cpp_message)
def clone_node(self):
"""Clone the node. This is defined as a shallow copy, except for member lists
amongst the child attributes (from get_child_accessors) which are also
copied. Lists containing child nodes are thus seen as a way for the node
to hold multiple children directly; the list is not treated as a separate
level in the tree."""
result = copy.copy(self)
for attrname in result.child_attrs:
value = getattr(result, attrname)
if isinstance(value, list):
setattr(result, attrname, [x for x in value])
return result
#
# There are 3 phases of parse tree processing, applied in order to
# all the statements in a given scope-block:
#
# (0) analyse_declarations
# Make symbol table entries for all declarations at the current
# level, both explicit (def, cdef, etc.) and implicit (assignment
# to an otherwise undeclared name).
#
# (1) analyse_expressions
# Determine the result types of expressions and fill in the
# 'type' attribute of each ExprNode. Insert coercion nodes into the
# tree where needed to convert to and from Python objects.
# Allocate temporary locals for intermediate results. Fill
# in the 'result_code' attribute of each ExprNode with a C code
# fragment.
#
# (2) generate_code
# Emit C code for all declarations, statements and expressions.
# Recursively applies the 3 processing phases to the bodies of
# functions.
#
def analyse_declarations(self, env):
pass
def analyse_expressions(self, env):
raise InternalError("analyse_expressions not implemented for %s" % \
self.__class__.__name__)
def generate_code(self, code):
raise InternalError("generate_code not implemented for %s" % \
self.__class__.__name__)
def annotate(self, code):
# mro does the wrong thing
if isinstance(self, BlockNode):
self.body.annotate(code)
def end_pos(self):
try:
return self._end_pos
except AttributeError:
pos = self.pos
if not self.child_attrs:
self._end_pos = pos
return pos
for attr in self.child_attrs:
child = getattr(self, attr)
# Sometimes lists, sometimes nodes
if child is None:
pass
elif isinstance(child, list):
for c in child:
pos = max(pos, c.end_pos())
else:
pos = max(pos, child.end_pos())
self._end_pos = pos
return pos
def dump(self, level=0, filter_out=("pos",), cutoff=100, encountered=None):
"""Debug helper method that returns a recursive string representation of this node.
"""
if cutoff == 0:
return "<...nesting level cutoff...>"
if encountered is None:
encountered = set()
if id(self) in encountered:
return "<%s (0x%x) -- already output>" % (self.__class__.__name__, id(self))
encountered.add(id(self))
def dump_child(x, level):
if isinstance(x, Node):
return x.dump(level, filter_out, cutoff-1, encountered)
elif isinstance(x, list):
return "[%s]" % ", ".join([dump_child(item, level) for item in x])
else:
return repr(x)
attrs = [(key, value) for key, value in self.__dict__.items() if key not in filter_out]
if len(attrs) == 0:
return "<%s (0x%x)>" % (self.__class__.__name__, id(self))
else:
indent = " " * level
res = "<%s (0x%x)\n" % (self.__class__.__name__, id(self))
for key, value in attrs:
res += "%s %s: %s\n" % (indent, key, dump_child(value, level + 1))
res += "%s>" % indent
return res
def dump_pos(self, mark_column=False, marker='(#)'):
"""Debug helper method that returns the source code context of this node as a string.
"""
if not self.pos:
return u''
source_desc, line, col = self.pos
contents = source_desc.get_lines(encoding='ASCII', error_handling='ignore')
# line numbers start at 1
lines = contents[max(0, line-3):line]
current = lines[-1]
if mark_column:
current = current[:col] + marker + current[col:]
lines[-1] = current.rstrip() + u' # <<<<<<<<<<<<<<\n'
lines += contents[line:line+2]
return u'"%s":%d:%d\n%s\n' % (
source_desc.get_escaped_description(), line, col, u''.join(lines))
class CompilerDirectivesNode(Node):
"""
Sets compiler directives for the children nodes
"""
# directives {string:value} A dictionary holding the right value for
# *all* possible directives.
# body Node
child_attrs = ["body"]
def analyse_declarations(self, env):
old = env.directives
env.directives = self.directives
self.body.analyse_declarations(env)
env.directives = old
def analyse_expressions(self, env):
old = env.directives
env.directives = self.directives
self.body = self.body.analyse_expressions(env)
env.directives = old
return self
def generate_function_definitions(self, env, code):
env_old = env.directives
code_old = code.globalstate.directives
code.globalstate.directives = self.directives
self.body.generate_function_definitions(env, code)
env.directives = env_old
code.globalstate.directives = code_old
def generate_execution_code(self, code):
old = code.globalstate.directives
code.globalstate.directives = self.directives
self.body.generate_execution_code(code)
code.globalstate.directives = old
def annotate(self, code):
old = code.globalstate.directives
code.globalstate.directives = self.directives
self.body.annotate(code)
code.globalstate.directives = old
class BlockNode(object):
# Mixin class for nodes representing a declaration block.
def generate_cached_builtins_decls(self, env, code):
entries = env.global_scope().undeclared_cached_builtins
for entry in entries:
code.globalstate.add_cached_builtin_decl(entry)
del entries[:]
def generate_lambda_definitions(self, env, code):
for node in env.lambda_defs:
node.generate_function_definitions(env, code)
class StatListNode(Node):
# stats a list of StatNode
child_attrs = ["stats"]
@staticmethod
def create_analysed(pos, env, *args, **kw):
node = StatListNode(pos, *args, **kw)
return node # No node-specific analysis needed
def analyse_declarations(self, env):
#print "StatListNode.analyse_declarations" ###
for stat in self.stats:
stat.analyse_declarations(env)
def analyse_expressions(self, env):
#print "StatListNode.analyse_expressions" ###
self.stats = [stat.analyse_expressions(env)
for stat in self.stats]
return self
def generate_function_definitions(self, env, code):
#print "StatListNode.generate_function_definitions" ###
for stat in self.stats:
stat.generate_function_definitions(env, code)
def generate_execution_code(self, code):
#print "StatListNode.generate_execution_code" ###
for stat in self.stats:
code.mark_pos(stat.pos)
stat.generate_execution_code(code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)
class StatNode(Node):
#
# Code generation for statements is split into the following subphases:
#
# (1) generate_function_definitions
# Emit C code for the definitions of any structs,
# unions, enums and functions defined in the current
# scope-block.
#
# (2) generate_execution_code
# Emit C code for executable statements.
#
def generate_function_definitions(self, env, code):
pass
def generate_execution_code(self, code):
raise InternalError("generate_execution_code not implemented for %s" % \
self.__class__.__name__)
class CDefExternNode(StatNode):
# include_file string or None
# verbatim_include string or None
# body StatListNode
child_attrs = ["body"]
def analyse_declarations(self, env):
old_cinclude_flag = env.in_cinclude
env.in_cinclude = 1
self.body.analyse_declarations(env)
env.in_cinclude = old_cinclude_flag
if self.include_file or self.verbatim_include:
# Determine whether include should be late
stats = self.body.stats
if not env.directives['preliminary_late_includes_cy28']:
late = False
elif not stats:
# Special case: empty 'cdef extern' blocks are early
late = False
else:
late = all(isinstance(node, CVarDefNode) for node in stats)
env.add_include_file(self.include_file, self.verbatim_include, late)
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
def annotate(self, code):
self.body.annotate(code)
class CDeclaratorNode(Node):
# Part of a C declaration.
#
# Processing during analyse_declarations phase:
#
# analyse
# Returns (name, type) pair where name is the
# CNameDeclaratorNode of the name being declared
# and type is the type it is being declared as.
#
# calling_convention string Calling convention of CFuncDeclaratorNode
# for which this is a base
child_attrs = []
calling_convention = ""
def analyse_templates(self):
# Only C++ functions have templates.
return None
class CNameDeclaratorNode(CDeclaratorNode):
# name string The Cython name being declared
# cname string or None C name, if specified
# default ExprNode or None the value assigned on declaration
child_attrs = ['default']
default = None
def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
if nonempty and self.name == '':
# May have mistaken the name for the type.
if base_type.is_ptr or base_type.is_array or base_type.is_buffer:
error(self.pos, "Missing argument name")
elif base_type.is_void:
error(self.pos, "Use spam() rather than spam(void) to declare a function with no arguments.")
else:
self.name = base_type.declaration_code("", for_display=1, pyrex=1)
base_type = py_object_type
if base_type.is_fused and env.fused_to_specific:
base_type = base_type.specialize(env.fused_to_specific)
self.type = base_type
return self, base_type
class CPtrDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
child_attrs = ["base"]
def analyse_templates(self):
return self.base.analyse_templates()
def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
if base_type.is_pyobject:
error(self.pos, "Pointer base type cannot be a Python object")
ptr_type = PyrexTypes.c_ptr_type(base_type)
return self.base.analyse(ptr_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
class CReferenceDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
child_attrs = ["base"]
def analyse_templates(self):
return self.base.analyse_templates()
def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
if base_type.is_pyobject:
error(self.pos, "Reference base type cannot be a Python object")
ref_type = PyrexTypes.c_ref_type(base_type)
return self.base.analyse(ref_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
class CArrayDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
# dimension ExprNode
child_attrs = ["base", "dimension"]
def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
if (base_type.is_cpp_class and base_type.is_template_type()) or base_type.is_cfunction:
from .ExprNodes import TupleNode
if isinstance(self.dimension, TupleNode):
args = self.dimension.args
else:
args = self.dimension,
values = [v.analyse_as_type(env) for v in args]
if None in values:
ix = values.index(None)
error(args[ix].pos, "Template parameter not a type")
base_type = error_type
else:
base_type = base_type.specialize_here(self.pos, values)
return self.base.analyse(base_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
if self.dimension:
self.dimension = self.dimension.analyse_const_expression(env)
if not self.dimension.type.is_int:
error(self.dimension.pos, "Array dimension not integer")
size = self.dimension.get_constant_c_result_code()
if size is not None:
try:
size = int(size)
except ValueError:
# runtime constant?
pass
else:
size = None
if not base_type.is_complete():
error(self.pos, "Array element type '%s' is incomplete" % base_type)
if base_type.is_pyobject:
error(self.pos, "Array element cannot be a Python object")
if base_type.is_cfunction:
error(self.pos, "Array element cannot be a function")
array_type = PyrexTypes.c_array_type(base_type, size)
return self.base.analyse(array_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
class CFuncDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
# args [CArgDeclNode]
# templates [TemplatePlaceholderType]
# has_varargs boolean
# exception_value ConstNode
# exception_check boolean True if PyErr_Occurred check needed
# nogil boolean Can be called without gil
# with_gil boolean Acquire gil around function body
# is_const_method boolean Whether this is a const method
child_attrs = ["base", "args", "exception_value"]
overridable = 0
optional_arg_count = 0
is_const_method = 0
templates = None
def analyse_templates(self):
if isinstance(self.base, CArrayDeclaratorNode):
from .ExprNodes import TupleNode, NameNode
template_node = self.base.dimension
if isinstance(template_node, TupleNode):
template_nodes = template_node.args
elif isinstance(template_node, NameNode):
template_nodes = [template_node]
else:
error(template_node.pos, "Template arguments must be a list of names")
return None
self.templates = []
for template in template_nodes:
if isinstance(template, NameNode):
self.templates.append(PyrexTypes.TemplatePlaceholderType(template.name))
else:
error(template.pos, "Template arguments must be a list of names")
self.base = self.base.base
return self.templates
else:
return None
def analyse(self, return_type, env, nonempty=0, directive_locals=None, visibility=None, in_pxd=False):
if directive_locals is None:
directive_locals = {}
if nonempty:
nonempty -= 1
func_type_args = []
for i, arg_node in enumerate(self.args):
name_declarator, type = arg_node.analyse(
env, nonempty=nonempty,
is_self_arg=(i == 0 and env.is_c_class_scope and 'staticmethod' not in env.directives))
name = name_declarator.name
if name in directive_locals:
type_node = directive_locals[name]
other_type = type_node.analyse_as_type(env)
if other_type is None:
error(type_node.pos, "Not a type")
elif (type is not PyrexTypes.py_object_type
and not type.same_as(other_type)):
error(self.base.pos, "Signature does not agree with previous declaration")
error(type_node.pos, "Previous declaration here")
else:
type = other_type
if name_declarator.cname:
error(self.pos, "Function argument cannot have C name specification")
if i == 0 and env.is_c_class_scope and type.is_unspecified:
# fix the type of self
type = env.parent_type
# Turn *[] argument into **
if type.is_array:
type = PyrexTypes.c_ptr_type(type.base_type)
# Catch attempted C-style func(void) decl
if type.is_void:
error(arg_node.pos, "Use spam() rather than spam(void) to declare a function with no arguments.")
func_type_args.append(
PyrexTypes.CFuncTypeArg(name, type, arg_node.pos))
if arg_node.default:
self.optional_arg_count += 1
elif self.optional_arg_count:
error(self.pos, "Non-default argument follows default argument")
exc_val = None
exc_check = 0
if self.exception_check == '+':
env.add_include_file('ios') # for std::ios_base::failure
env.add_include_file('new') # for std::bad_alloc
env.add_include_file('stdexcept')
env.add_include_file('typeinfo') # for std::bad_cast
if (return_type.is_pyobject
and (self.exception_value or self.exception_check)
and self.exception_check != '+'):
error(self.pos, "Exception clause not allowed for function returning Python object")
else:
if self.exception_value is None and self.exception_check and self.exception_check != '+':
# Use an explicit exception return value to speed up exception checks.
# Even if it is not declared, we can use the default exception value of the return type,
# unless the function is some kind of external function that we do not control.
if return_type.exception_value is not None and (visibility != 'extern' and not in_pxd):
# Extension types are more difficult because the signature must match the base type signature.
if not env.is_c_class_scope:
from .ExprNodes import ConstNode
self.exception_value = ConstNode(
self.pos, value=return_type.exception_value, type=return_type)
if self.exception_value:
self.exception_value = self.exception_value.analyse_const_expression(env)
if self.exception_check == '+':
exc_val_type = self.exception_value.type
if (not exc_val_type.is_error
and not exc_val_type.is_pyobject
and not (exc_val_type.is_cfunction
and not exc_val_type.return_type.is_pyobject
and not exc_val_type.args)
and not (exc_val_type == PyrexTypes.c_char_type
and self.exception_value.value == '*')):
error(self.exception_value.pos,
"Exception value must be a Python exception or cdef function with no arguments or *.")
exc_val = self.exception_value
else:
self.exception_value = self.exception_value.coerce_to(
return_type, env).analyse_const_expression(env)
exc_val = self.exception_value.get_constant_c_result_code()
if exc_val is None:
raise InternalError(
"get_constant_c_result_code not implemented for %s" %
self.exception_value.__class__.__name__)
if not return_type.assignable_from(self.exception_value.type):
error(self.exception_value.pos,
"Exception value incompatible with function return type")
exc_check = self.exception_check
if return_type.is_cfunction:
error(self.pos, "Function cannot return a function")
func_type = PyrexTypes.CFuncType(
return_type, func_type_args, self.has_varargs,
optional_arg_count=self.optional_arg_count,
exception_value=exc_val, exception_check=exc_check,
calling_convention=self.base.calling_convention,
nogil=self.nogil, with_gil=self.with_gil, is_overridable=self.overridable,
is_const_method=self.is_const_method,
templates=self.templates)
if self.optional_arg_count:
if func_type.is_fused:
# This is a bit of a hack... When we need to create specialized CFuncTypes
# on the fly because the cdef is defined in a pxd, we need to declare the specialized optional arg
# struct
def declare_opt_arg_struct(func_type, fused_cname):
self.declare_optional_arg_struct(func_type, env, fused_cname)
func_type.declare_opt_arg_struct = declare_opt_arg_struct
else:
self.declare_optional_arg_struct(func_type, env)
callspec = env.directives['callspec']
if callspec:
current = func_type.calling_convention
if current and current != callspec:
error(self.pos, "cannot have both '%s' and '%s' "
"calling conventions" % (current, callspec))
func_type.calling_convention = callspec
return self.base.analyse(func_type, env, visibility=visibility, in_pxd=in_pxd)
def declare_optional_arg_struct(self, func_type, env, fused_cname=None):
"""
Declares the optional argument struct (the struct used to hold the
values for optional arguments). For fused cdef functions, this is
deferred as analyse_declarations is called only once (on the fused
cdef function).
"""
scope = StructOrUnionScope()
arg_count_member = '%sn' % Naming.pyrex_prefix
scope.declare_var(arg_count_member, PyrexTypes.c_int_type, self.pos)
for arg in func_type.args[len(func_type.args) - self.optional_arg_count:]:
scope.declare_var(arg.name, arg.type, arg.pos, allow_pyobject=True, allow_memoryview=True)
struct_cname = env.mangle(Naming.opt_arg_prefix, self.base.name)
if fused_cname is not None:
struct_cname = PyrexTypes.get_fused_cname(fused_cname, struct_cname)
op_args_struct = env.global_scope().declare_struct_or_union(
name=struct_cname,
kind='struct',
scope=scope,
typedef_flag=0,
pos=self.pos,
cname=struct_cname)
op_args_struct.defined_in_pxd = 1
op_args_struct.used = 1
func_type.op_arg_struct = PyrexTypes.c_ptr_type(op_args_struct.type)
class CConstDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
child_attrs = ["base"]
def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
if base_type.is_pyobject:
error(self.pos,
"Const base type cannot be a Python object")
const = PyrexTypes.c_const_type(base_type)
return self.base.analyse(const, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
class CArgDeclNode(Node):
# Item in a function declaration argument list.
#
# base_type CBaseTypeNode
# declarator CDeclaratorNode
# not_none boolean Tagged with 'not None'
# or_none boolean Tagged with 'or None'
# accept_none boolean Resolved boolean for not_none/or_none
# default ExprNode or None
# default_value PyObjectConst constant for default value
# annotation ExprNode or None Py3 function arg annotation
# is_self_arg boolean Is the "self" arg of an extension type method
# is_type_arg boolean Is the "class" arg of an extension type classmethod
# is_kw_only boolean Is a keyword-only argument
# is_dynamic boolean Non-literal arg stored inside CyFunction
child_attrs = ["base_type", "declarator", "default", "annotation"]
outer_attrs = ["default", "annotation"]
is_self_arg = 0
is_type_arg = 0
is_generic = 1
kw_only = 0
not_none = 0
or_none = 0
type = None
name_declarator = None
default_value = None
annotation = None
is_dynamic = 0
def analyse(self, env, nonempty=0, is_self_arg=False):
if is_self_arg:
self.base_type.is_self_arg = self.is_self_arg = True
if self.type is None:
# The parser may misinterpret names as types. We fix that here.
if isinstance(self.declarator, CNameDeclaratorNode) and self.declarator.name == '':
if nonempty:
if self.base_type.is_basic_c_type:
# char, short, long called "int"
type = self.base_type.analyse(env, could_be_name=True)
arg_name = type.empty_declaration_code()
else:
arg_name = self.base_type.name
self.declarator.name = EncodedString(arg_name)
self.base_type.name = None
self.base_type.is_basic_c_type = False
could_be_name = True
else:
could_be_name = False
self.base_type.is_arg = True
base_type = self.base_type.analyse(env, could_be_name=could_be_name)
if hasattr(self.base_type, 'arg_name') and self.base_type.arg_name:
self.declarator.name = self.base_type.arg_name
# The parser is unable to resolve the ambiguity of [] as part of the
# type (e.g. in buffers) or empty declarator (as with arrays).
# This is only arises for empty multi-dimensional arrays.
if (base_type.is_array
and isinstance(self.base_type, TemplatedTypeNode)
and isinstance(self.declarator, CArrayDeclaratorNode)):
declarator = self.declarator
while isinstance(declarator.base, CArrayDeclaratorNode):
declarator = declarator.base
declarator.base = self.base_type.array_declarator
base_type = base_type.base_type
# inject type declaration from annotations
# this is called without 'env' by AdjustDefByDirectives transform before declaration analysis
if self.annotation and env and env.directives['annotation_typing'] and self.base_type.name is None:
arg_type = self.inject_type_from_annotations(env)
if arg_type is not None:
base_type = arg_type
return self.declarator.analyse(base_type, env, nonempty=nonempty)
else:
return self.name_declarator, self.type
def inject_type_from_annotations(self, env):
annotation = self.annotation
if not annotation:
return None
base_type, arg_type = analyse_type_annotation(annotation, env, assigned_value=self.default)
if base_type is not None:
self.base_type = base_type
return arg_type
def calculate_default_value_code(self, code):
if self.default_value is None:
if self.default:
if self.default.is_literal:
# will not output any code, just assign the result_code
self.default.generate_evaluation_code(code)
return self.type.cast_code(self.default.result())
self.default_value = code.get_argument_default_const(self.type)
return self.default_value
def annotate(self, code):
if self.default:
self.default.annotate(code)
def generate_assignment_code(self, code, target=None, overloaded_assignment=False):
default = self.default
if default is None or default.is_literal:
return
if target is None:
target = self.calculate_default_value_code(code)
default.generate_evaluation_code(code)
default.make_owned_reference(code)
result = default.result() if overloaded_assignment else default.result_as(self.type)
code.putln("%s = %s;" % (target, result))
if self.type.is_pyobject:
code.put_giveref(default.result())
default.generate_post_assignment_code(code)
default.free_temps(code)
class CBaseTypeNode(Node):
# Abstract base class for C base type nodes.
#
# Processing during analyse_declarations phase:
#
# analyse
# Returns the type.
def analyse_as_type(self, env):
return self.analyse(env)
class CAnalysedBaseTypeNode(Node):
# type type
child_attrs = []
def analyse(self, env, could_be_name=False):
return self.type
class CSimpleBaseTypeNode(CBaseTypeNode):
# name string
# module_path [string] Qualifying name components
# is_basic_c_type boolean
# signed boolean
# longness integer
# complex boolean
# is_self_arg boolean Is self argument of C method
# ##is_type_arg boolean Is type argument of class method
child_attrs = []
arg_name = None # in case the argument name was interpreted as a type
module_path = []
is_basic_c_type = False
complex = False
def analyse(self, env, could_be_name=False):
# Return type descriptor.
#print "CSimpleBaseTypeNode.analyse: is_self_arg =", self.is_self_arg ###
type = None
if self.is_basic_c_type:
type = PyrexTypes.simple_c_type(self.signed, self.longness, self.name)
if not type:
error(self.pos, "Unrecognised type modifier combination")
elif self.name == "object" and not self.module_path:
type = py_object_type
elif self.name is None:
if self.is_self_arg and env.is_c_class_scope:
#print "CSimpleBaseTypeNode.analyse: defaulting to parent type" ###
type = env.parent_type
## elif self.is_type_arg and env.is_c_class_scope:
## type = Builtin.type_type
else:
type = py_object_type
else:
if self.module_path:
# Maybe it's a nested C++ class.
scope = env
for item in self.module_path:
entry = scope.lookup(item)
if entry is not None and entry.is_cpp_class:
scope = entry.type.scope
else:
scope = None
break
if scope is None:
# Maybe it's a cimport.
scope = env.find_imported_module(self.module_path, self.pos)
if scope:
scope.fused_to_specific = env.fused_to_specific
else:
scope = env
if scope:
if scope.is_c_class_scope:
scope = scope.global_scope()
type = scope.lookup_type(self.name)
if type is not None:
pass
elif could_be_name:
if self.is_self_arg and env.is_c_class_scope:
type = env.parent_type
## elif self.is_type_arg and env.is_c_class_scope:
## type = Builtin.type_type
else:
type = py_object_type
self.arg_name = EncodedString(self.name)
else:
if self.templates:
if not self.name in self.templates:
error(self.pos, "'%s' is not a type identifier" % self.name)
type = PyrexTypes.TemplatePlaceholderType(self.name)
else:
error(self.pos, "'%s' is not a type identifier" % self.name)
if self.complex:
if not type.is_numeric or type.is_complex:
error(self.pos, "can only complexify c numeric types")
type = PyrexTypes.CComplexType(type)
type.create_declaration_utility_code(env)
elif type is Builtin.complex_type:
# Special case: optimise builtin complex type into C's
# double complex. The parser cannot do this (as for the
# normal scalar types) as the user may have redeclared the
# 'complex' type. Testing for the exact type here works.
type = PyrexTypes.c_double_complex_type
type.create_declaration_utility_code(env)
self.complex = True
if type:
return type
else:
return PyrexTypes.error_type
class MemoryViewSliceTypeNode(CBaseTypeNode):
name = 'memoryview'
child_attrs = ['base_type_node', 'axes']
def analyse(self, env, could_be_name=False):
base_type = self.base_type_node.analyse(env)
if base_type.is_error: return base_type
from . import MemoryView
try:
axes_specs = MemoryView.get_axes_specs(env, self.axes)
except CompileError as e:
error(e.position, e.message_only)
self.type = PyrexTypes.ErrorType()
return self.type
if not MemoryView.validate_axes(self.pos, axes_specs):
self.type = error_type
else:
self.type = PyrexTypes.MemoryViewSliceType(base_type, axes_specs)
self.type.validate_memslice_dtype(self.pos)
self.use_memview_utilities(env)
return self.type
def use_memview_utilities(self, env):
from . import MemoryView
env.use_utility_code(MemoryView.view_utility_code)
class CNestedBaseTypeNode(CBaseTypeNode):
# For C++ classes that live inside other C++ classes.
# name string
# base_type CBaseTypeNode
child_attrs = ['base_type']
def analyse(self, env, could_be_name=None):
base_type = self.base_type.analyse(env)
if base_type is PyrexTypes.error_type:
return PyrexTypes.error_type
if not base_type.is_cpp_class:
error(self.pos, "'%s' is not a valid type scope" % base_type)
return PyrexTypes.error_type
type_entry = base_type.scope.lookup_here(self.name)
if not type_entry or not type_entry.is_type:
error(self.pos, "'%s.%s' is not a type identifier" % (base_type, self.name))
return PyrexTypes.error_type
return type_entry.type
class TemplatedTypeNode(CBaseTypeNode):
# After parsing:
# positional_args [ExprNode] List of positional arguments
# keyword_args DictNode Keyword arguments
# base_type_node CBaseTypeNode
# After analysis:
# type PyrexTypes.BufferType or PyrexTypes.CppClassType ...containing the right options
child_attrs = ["base_type_node", "positional_args",
"keyword_args", "dtype_node"]
dtype_node = None
name = None
def analyse(self, env, could_be_name=False, base_type=None):
if base_type is None:
base_type = self.base_type_node.analyse(env)
if base_type.is_error: return base_type
if base_type.is_cpp_class and base_type.is_template_type():
# Templated class
if self.keyword_args and self.keyword_args.key_value_pairs:
error(self.pos, "c++ templates cannot take keyword arguments")
self.type = PyrexTypes.error_type
else:
template_types = []
for template_node in self.positional_args:
type = template_node.analyse_as_type(env)
if type is None:
error(template_node.pos, "unknown type in template argument")
type = error_type
template_types.append(type)
self.type = base_type.specialize_here(self.pos, template_types)
elif base_type.is_pyobject:
# Buffer
from . import Buffer
options = Buffer.analyse_buffer_options(
self.pos,
env,
self.positional_args,
self.keyword_args,
base_type.buffer_defaults)
if sys.version_info[0] < 3:
# Py 2.x enforces byte strings as keyword arguments ...
options = dict([(name.encode('ASCII'), value)
for name, value in options.items()])
self.type = PyrexTypes.BufferType(base_type, **options)
if has_np_pythran(env) and is_pythran_buffer(self.type):
self.type = PyrexTypes.PythranExpr(pythran_type(self.type), self.type)
else:
# Array
empty_declarator = CNameDeclaratorNode(self.pos, name="", cname=None)
if len(self.positional_args) > 1 or self.keyword_args.key_value_pairs:
error(self.pos, "invalid array declaration")
self.type = PyrexTypes.error_type
else:
# It would be nice to merge this class with CArrayDeclaratorNode,
# but arrays are part of the declaration, not the type...
if not self.positional_args:
dimension = None
else:
dimension = self.positional_args[0]
self.array_declarator = CArrayDeclaratorNode(
self.pos,
base=empty_declarator,
dimension=dimension)
self.type = self.array_declarator.analyse(base_type, env)[1]
if self.type.is_fused and env.fused_to_specific:
self.type = self.type.specialize(env.fused_to_specific)
return self.type
class CComplexBaseTypeNode(CBaseTypeNode):
# base_type CBaseTypeNode
# declarator CDeclaratorNode
child_attrs = ["base_type", "declarator"]
def analyse(self, env, could_be_name=False):
base = self.base_type.analyse(env, could_be_name)
_, type = self.declarator.analyse(base, env)
return type
class CTupleBaseTypeNode(CBaseTypeNode):
# components [CBaseTypeNode]
child_attrs = ["components"]
def analyse(self, env, could_be_name=False):
component_types = []
for c in self.components:
type = c.analyse(env)
if type.is_pyobject:
error(c.pos, "Tuple types can't (yet) contain Python objects.")
return error_type
component_types.append(type)
entry = env.declare_tuple_type(self.pos, component_types)
entry.used = True
return entry.type
class FusedTypeNode(CBaseTypeNode):
"""
Represents a fused type in a ctypedef statement:
ctypedef cython.fused_type(int, long, long long) integral
name str name of this fused type
types [CSimpleBaseTypeNode] is the list of types to be fused
"""
child_attrs = []
def analyse_declarations(self, env):
type = self.analyse(env)
entry = env.declare_typedef(self.name, type, self.pos)
# Omit the typedef declaration that self.declarator would produce
entry.in_cinclude = True
def analyse(self, env, could_be_name=False):
types = []
for type_node in self.types:
type = type_node.analyse_as_type(env)
if not type:
error(type_node.pos, "Not a type")
continue
if type in types:
error(type_node.pos, "Type specified multiple times")
else:
types.append(type)
# if len(self.types) == 1:
# return types[0]
return PyrexTypes.FusedType(types, name=self.name)
class CConstTypeNode(CBaseTypeNode):
# base_type CBaseTypeNode
child_attrs = ["base_type"]
def analyse(self, env, could_be_name=False):
base = self.base_type.analyse(env, could_be_name)
if base.is_pyobject:
error(self.pos,
"Const base type cannot be a Python object")
return PyrexTypes.c_const_type(base)
class CVarDefNode(StatNode):
# C variable definition or forward/extern function declaration.
#
# visibility 'private' or 'public' or 'extern'
# base_type CBaseTypeNode
# declarators [CDeclaratorNode]
# in_pxd boolean
# api boolean
# overridable boolean whether it is a cpdef
# modifiers ['inline']
# decorators [cython.locals(...)] or None
# directive_locals { string : NameNode } locals defined by cython.locals(...)
child_attrs = ["base_type", "declarators"]
decorators = None
directive_locals = None
def analyse_declarations(self, env, dest_scope=None):
if self.directive_locals is None:
self.directive_locals = {}
if not dest_scope:
dest_scope = env
self.dest_scope = dest_scope
if self.declarators:
templates = self.declarators[0].analyse_templates()
else:
templates = None
if templates is not None:
if self.visibility != 'extern':
error(self.pos, "Only extern functions allowed")
if len(self.declarators) > 1:
error(self.declarators[1].pos, "Can't multiply declare template types")
env = TemplateScope('func_template', env)
env.directives = env.outer_scope.directives
for template_param in templates:
env.declare_type(template_param.name, template_param, self.pos)
base_type = self.base_type.analyse(env)
if base_type.is_fused and not self.in_pxd and (env.is_c_class_scope or
env.is_module_scope):
error(self.pos, "Fused types not allowed here")
return error_type
self.entry = None
visibility = self.visibility
for declarator in self.declarators:
if (len(self.declarators) > 1
and not isinstance(declarator, CNameDeclaratorNode)
and env.directives['warn.multiple_declarators']):
warning(
declarator.pos,
"Non-trivial type declarators in shared declaration (e.g. mix of pointers and values). "
"Each pointer declaration should be on its own line.", 1)
create_extern_wrapper = (self.overridable
and self.visibility == 'extern'
and env.is_module_scope)
if create_extern_wrapper:
declarator.overridable = False
if isinstance(declarator, CFuncDeclaratorNode):
name_declarator, type = declarator.analyse(
base_type, env, directive_locals=self.directive_locals, visibility=visibility, in_pxd=self.in_pxd)
else:
name_declarator, type = declarator.analyse(
base_type, env, visibility=visibility, in_pxd=self.in_pxd)
if not type.is_complete():
if not (self.visibility == 'extern' and type.is_array or type.is_memoryviewslice):
error(declarator.pos, "Variable type '%s' is incomplete" % type)
if self.visibility == 'extern' and type.is_pyobject:
error(declarator.pos, "Python object cannot be declared extern")
name = name_declarator.name
cname = name_declarator.cname
if name == '':
error(declarator.pos, "Missing name in declaration.")
return
if type.is_reference and self.visibility != 'extern':
error(declarator.pos, "C++ references cannot be declared; use a pointer instead")
if type.is_cfunction:
if 'staticmethod' in env.directives:
type.is_static_method = True
self.entry = dest_scope.declare_cfunction(
name, type, declarator.pos,
cname=cname, visibility=self.visibility, in_pxd=self.in_pxd,
api=self.api, modifiers=self.modifiers, overridable=self.overridable)
if self.entry is not None:
self.entry.directive_locals = copy.copy(self.directive_locals)
if create_extern_wrapper:
self.entry.type.create_to_py_utility_code(env)
self.entry.create_wrapper = True
else:
if self.directive_locals:
error(self.pos, "Decorators can only be followed by functions")
self.entry = dest_scope.declare_var(
name, type, declarator.pos,
cname=cname, visibility=visibility, in_pxd=self.in_pxd,
api=self.api, is_cdef=1)
if Options.docstrings:
self.entry.doc = embed_position(self.pos, self.doc)
class CStructOrUnionDefNode(StatNode):
# name string
# cname string or None
# kind "struct" or "union"
# typedef_flag boolean
# visibility "public" or "private"
# api boolean
# in_pxd boolean
# attributes [CVarDefNode] or None
# entry Entry
# packed boolean
child_attrs = ["attributes"]
def declare(self, env, scope=None):
self.entry = env.declare_struct_or_union(
self.name, self.kind, scope, self.typedef_flag, self.pos,
self.cname, visibility=self.visibility, api=self.api,
packed=self.packed)
def analyse_declarations(self, env):
scope = None
if self.attributes is not None:
scope = StructOrUnionScope(self.name)
self.declare(env, scope)
if self.attributes is not None:
if self.in_pxd and not env.in_cinclude:
self.entry.defined_in_pxd = 1
for attr in self.attributes:
attr.analyse_declarations(env, scope)
if self.visibility != 'extern':
for attr in scope.var_entries:
type = attr.type
while type.is_array:
type = type.base_type
if type == self.entry.type:
error(attr.pos, "Struct cannot contain itself as a member.")
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class CppClassNode(CStructOrUnionDefNode, BlockNode):
# name string
# cname string or None
# visibility "extern"
# in_pxd boolean
# attributes [CVarDefNode] or None
# entry Entry
# base_classes [CBaseTypeNode]
# templates [(string, bool)] or None
# decorators [DecoratorNode] or None
decorators = None
def declare(self, env):
if self.templates is None:
template_types = None
else:
template_types = [PyrexTypes.TemplatePlaceholderType(template_name, not required)
for template_name, required in self.templates]
num_optional_templates = sum(not required for _, required in self.templates)
if num_optional_templates and not all(required for _, required in self.templates[:-num_optional_templates]):
error(self.pos, "Required template parameters must precede optional template parameters.")
self.entry = env.declare_cpp_class(
self.name, None, self.pos, self.cname,
base_classes=[], visibility=self.visibility, templates=template_types)
def analyse_declarations(self, env):
if self.templates is None:
template_types = template_names = None
else:
template_names = [template_name for template_name, _ in self.templates]
template_types = [PyrexTypes.TemplatePlaceholderType(template_name, not required)
for template_name, required in self.templates]
scope = None
if self.attributes is not None:
scope = CppClassScope(self.name, env, templates=template_names)
def base_ok(base_class):
if base_class.is_cpp_class or base_class.is_struct:
return True
else:
error(self.pos, "Base class '%s' not a struct or class." % base_class)
base_class_types = filter(base_ok, [b.analyse(scope or env) for b in self.base_classes])
self.entry = env.declare_cpp_class(
self.name, scope, self.pos,
self.cname, base_class_types, visibility=self.visibility, templates=template_types)
if self.entry is None:
return
self.entry.is_cpp_class = 1
if scope is not None:
scope.type = self.entry.type
defined_funcs = []
def func_attributes(attributes):
for attr in attributes:
if isinstance(attr, CFuncDefNode):
yield attr
elif isinstance(attr, CompilerDirectivesNode):
for sub_attr in func_attributes(attr.body.stats):
yield sub_attr
if self.attributes is not None:
if self.in_pxd and not env.in_cinclude:
self.entry.defined_in_pxd = 1
for attr in self.attributes:
declare = getattr(attr, 'declare', None)
if declare:
attr.declare(scope)
attr.analyse_declarations(scope)
for func in func_attributes(self.attributes):
defined_funcs.append(func)
if self.templates is not None:
func.template_declaration = "template <typename %s>" % ", typename ".join(template_names)
self.body = StatListNode(self.pos, stats=defined_funcs)
self.scope = scope
def analyse_expressions(self, env):
self.body = self.body.analyse_expressions(self.entry.type.scope)
return self
def generate_function_definitions(self, env, code):
self.body.generate_function_definitions(self.entry.type.scope, code)
def generate_execution_code(self, code):
self.body.generate_execution_code(code)
def annotate(self, code):
self.body.annotate(code)
class CEnumDefNode(StatNode):
# name string or None
# cname string or None
# items [CEnumDefItemNode]
# typedef_flag boolean
# visibility "public" or "private" or "extern"
# api boolean
# in_pxd boolean
# create_wrapper boolean
# entry Entry
child_attrs = ["items"]
def declare(self, env):
self.entry = env.declare_enum(
self.name, self.pos,
cname=self.cname, typedef_flag=self.typedef_flag,
visibility=self.visibility, api=self.api,
create_wrapper=self.create_wrapper)
def analyse_declarations(self, env):
if self.items is not None:
if self.in_pxd and not env.in_cinclude:
self.entry.defined_in_pxd = 1
for item in self.items:
item.analyse_declarations(env, self.entry)
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
if self.visibility == 'public' or self.api:
code.mark_pos(self.pos)
temp = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True)
for item in self.entry.enum_values:
code.putln("%s = PyInt_FromLong(%s); %s" % (
temp,
item.cname,
code.error_goto_if_null(temp, item.pos)))
code.put_gotref(temp)
code.putln('if (PyDict_SetItemString(%s, "%s", %s) < 0) %s' % (
Naming.moddict_cname,
item.name,
temp,
code.error_goto(item.pos)))
code.put_decref_clear(temp, PyrexTypes.py_object_type)
code.funcstate.release_temp(temp)
class CEnumDefItemNode(StatNode):
# name string
# cname string or None
# value ExprNode or None
child_attrs = ["value"]
def analyse_declarations(self, env, enum_entry):
if self.value:
self.value = self.value.analyse_const_expression(env)
if not self.value.type.is_int:
self.value = self.value.coerce_to(PyrexTypes.c_int_type, env)
self.value = self.value.analyse_const_expression(env)
entry = env.declare_const(
self.name, enum_entry.type,
self.value, self.pos, cname=self.cname,
visibility=enum_entry.visibility, api=enum_entry.api,
create_wrapper=enum_entry.create_wrapper and enum_entry.name is None)
enum_entry.enum_values.append(entry)
if enum_entry.name:
enum_entry.type.values.append(entry.name)
class CTypeDefNode(StatNode):
# base_type CBaseTypeNode
# declarator CDeclaratorNode
# visibility "public" or "private"
# api boolean
# in_pxd boolean
child_attrs = ["base_type", "declarator"]
def analyse_declarations(self, env):
base = self.base_type.analyse(env)
name_declarator, type = self.declarator.analyse(
base, env, visibility=self.visibility, in_pxd=self.in_pxd)
name = name_declarator.name
cname = name_declarator.cname
entry = env.declare_typedef(
name, type, self.pos,
cname=cname, visibility=self.visibility, api=self.api)
if type.is_fused:
entry.in_cinclude = True
if self.in_pxd and not env.in_cinclude:
entry.defined_in_pxd = 1
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class FuncDefNode(StatNode, BlockNode):
# Base class for function definition nodes.
#
# return_type PyrexType
# #filename string C name of filename string const
# entry Symtab.Entry
# needs_closure boolean Whether or not this function has inner functions/classes/yield
# needs_outer_scope boolean Whether or not this function requires outer scope
# pymethdef_required boolean Force Python method struct generation
# directive_locals { string : ExprNode } locals defined by cython.locals(...)
# directive_returns [ExprNode] type defined by cython.returns(...)
# star_arg PyArgDeclNode or None * argument
# starstar_arg PyArgDeclNode or None ** argument
#
# is_async_def boolean is a Coroutine function
#
# has_fused_arguments boolean
# Whether this cdef function has fused parameters. This is needed
# by AnalyseDeclarationsTransform, so it can replace CFuncDefNodes
# with fused argument types with a FusedCFuncDefNode
py_func = None
needs_closure = False
needs_outer_scope = False
pymethdef_required = False
is_generator = False
is_generator_body = False
is_async_def = False
modifiers = []
has_fused_arguments = False
star_arg = None
starstar_arg = None
is_cyfunction = False
code_object = None
def analyse_default_values(self, env):
default_seen = 0
for arg in self.args:
if arg.default:
default_seen = 1
if arg.is_generic:
arg.default = arg.default.analyse_types(env)
arg.default = arg.default.coerce_to(arg.type, env)
else:
error(arg.pos, "This argument cannot have a default value")
arg.default = None
elif arg.kw_only:
default_seen = 1
elif default_seen:
error(arg.pos, "Non-default argument following default argument")
def analyse_annotation(self, env, annotation):
# Annotations can not only contain valid Python expressions but arbitrary type references.
if annotation is None:
return None
if not env.directives['annotation_typing'] or annotation.analyse_as_type(env) is None:
annotation = annotation.analyse_types(env)
return annotation
def analyse_annotations(self, env):
for arg in self.args:
if arg.annotation:
arg.annotation = self.analyse_annotation(env, arg.annotation)
def align_argument_type(self, env, arg):
# @cython.locals()
directive_locals = self.directive_locals
orig_type = arg.type
if arg.name in directive_locals:
type_node = directive_locals[arg.name]
other_type = type_node.analyse_as_type(env)
elif isinstance(arg, CArgDeclNode) and arg.annotation and env.directives['annotation_typing']:
type_node = arg.annotation
other_type = arg.inject_type_from_annotations(env)
if other_type is None:
return arg
else:
return arg
if other_type is None:
error(type_node.pos, "Not a type")
elif orig_type is not py_object_type and not orig_type.same_as(other_type):
error(arg.base_type.pos, "Signature does not agree with previous declaration")
error(type_node.pos, "Previous declaration here")
else:
arg.type = other_type
return arg
def need_gil_acquisition(self, lenv):
return 0
def create_local_scope(self, env):
genv = env
while genv.is_py_class_scope or genv.is_c_class_scope:
genv = genv.outer_scope
if self.needs_closure:
lenv = ClosureScope(name=self.entry.name,
outer_scope=genv,
parent_scope=env,
scope_name=self.entry.cname)
else:
lenv = LocalScope(name=self.entry.name,
outer_scope=genv,
parent_scope=env)
lenv.return_type = self.return_type
type = self.entry.type
if type.is_cfunction:
lenv.nogil = type.nogil and not type.with_gil
self.local_scope = lenv
lenv.directives = env.directives
return lenv
def generate_function_body(self, env, code):
self.body.generate_execution_code(code)
def generate_function_definitions(self, env, code):
from . import Buffer
if self.return_type.is_memoryviewslice:
from . import MemoryView
lenv = self.local_scope
if lenv.is_closure_scope and not lenv.is_passthrough:
outer_scope_cname = "%s->%s" % (Naming.cur_scope_cname,
Naming.outer_scope_cname)
else:
outer_scope_cname = Naming.outer_scope_cname
lenv.mangle_closure_cnames(outer_scope_cname)
# Generate closure function definitions
self.body.generate_function_definitions(lenv, code)
# generate lambda function definitions
self.generate_lambda_definitions(lenv, code)
is_getbuffer_slot = (self.entry.name == "__getbuffer__" and
self.entry.scope.is_c_class_scope)
is_releasebuffer_slot = (self.entry.name == "__releasebuffer__" and
self.entry.scope.is_c_class_scope)
is_buffer_slot = is_getbuffer_slot or is_releasebuffer_slot
if is_buffer_slot:
if 'cython_unused' not in self.modifiers:
self.modifiers = self.modifiers + ['cython_unused']
preprocessor_guard = self.get_preprocessor_guard()
profile = code.globalstate.directives['profile']
linetrace = code.globalstate.directives['linetrace']
if profile or linetrace:
code.globalstate.use_utility_code(
UtilityCode.load_cached("Profile", "Profile.c"))
# Generate C code for header and body of function
code.enter_cfunc_scope(lenv)
code.return_from_error_cleanup_label = code.new_label()
code.funcstate.gil_owned = not lenv.nogil
# ----- Top-level constants used by this function
code.mark_pos(self.pos)
self.generate_cached_builtins_decls(lenv, code)
# ----- Function header
code.putln("")
if preprocessor_guard:
code.putln(preprocessor_guard)
with_pymethdef = (self.needs_assignment_synthesis(env, code) or
self.pymethdef_required)
if self.py_func:
self.py_func.generate_function_header(
code, with_pymethdef=with_pymethdef, proto_only=True)
self.generate_function_header(code, with_pymethdef=with_pymethdef)
# ----- Local variable declarations
# Find function scope
cenv = env
while cenv.is_py_class_scope or cenv.is_c_class_scope:
cenv = cenv.outer_scope
if self.needs_closure:
code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname))
code.putln(";")
elif self.needs_outer_scope:
if lenv.is_passthrough:
code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname))
code.putln(";")
code.put(cenv.scope_class.type.declaration_code(Naming.outer_scope_cname))
code.putln(";")
self.generate_argument_declarations(lenv, code)
for entry in lenv.var_entries:
if not (entry.in_closure or entry.is_arg):
code.put_var_declaration(entry)
# Initialize the return variable __pyx_r
init = ""
if not self.return_type.is_void:
if self.return_type.is_pyobject:
init = " = NULL"
elif self.return_type.is_memoryviewslice:
init = ' = ' + MemoryView.memslice_entry_init
code.putln("%s%s;" % (
self.return_type.declaration_code(Naming.retval_cname),
init))
tempvardecl_code = code.insertion_point()
self.generate_keyword_list(code)
# ----- GIL acquisition
acquire_gil = self.acquire_gil
# See if we need to acquire the GIL for variable declarations, or for
# refnanny only
# Closures are not currently possible for cdef nogil functions,
# but check them anyway
have_object_args = self.needs_closure or self.needs_outer_scope
for arg in lenv.arg_entries:
if arg.type.is_pyobject:
have_object_args = True
break
used_buffer_entries = [entry for entry in lenv.buffer_entries if entry.used]
acquire_gil_for_var_decls_only = (
lenv.nogil and lenv.has_with_gil_block and
(have_object_args or used_buffer_entries))
acquire_gil_for_refnanny_only = (
lenv.nogil and lenv.has_with_gil_block and not
acquire_gil_for_var_decls_only)
use_refnanny = not lenv.nogil or lenv.has_with_gil_block
if acquire_gil or acquire_gil_for_var_decls_only:
code.put_ensure_gil()
code.funcstate.gil_owned = True
elif lenv.nogil and lenv.has_with_gil_block:
code.declare_gilstate()
if profile or linetrace:
if not self.is_generator:
# generators are traced when iterated, not at creation
tempvardecl_code.put_trace_declarations()
code_object = self.code_object.calculate_result_code(code) if self.code_object else None
code.put_trace_frame_init(code_object)
# ----- Special check for getbuffer
if is_getbuffer_slot:
self.getbuffer_check(code)
# ----- set up refnanny
if use_refnanny:
tempvardecl_code.put_declare_refcount_context()
code.put_setup_refcount_context(
self.entry.name, acquire_gil=acquire_gil_for_refnanny_only)
# ----- Automatic lead-ins for certain special functions
if is_getbuffer_slot:
self.getbuffer_init(code)
# ----- Create closure scope object
if self.needs_closure:
tp_slot = TypeSlots.ConstructorSlot("tp_new", '__new__')
slot_func_cname = TypeSlots.get_slot_function(lenv.scope_class.type.scope, tp_slot)
if not slot_func_cname:
slot_func_cname = '%s->tp_new' % lenv.scope_class.type.typeptr_cname
code.putln("%s = (%s)%s(%s, %s, NULL);" % (
Naming.cur_scope_cname,
lenv.scope_class.type.empty_declaration_code(),
slot_func_cname,
lenv.scope_class.type.typeptr_cname,
Naming.empty_tuple))
code.putln("if (unlikely(!%s)) {" % Naming.cur_scope_cname)
# Scope unconditionally DECREFed on return.
code.putln("%s = %s;" % (
Naming.cur_scope_cname,
lenv.scope_class.type.cast_code("Py_None")))
code.put_incref("Py_None", py_object_type)
code.putln(code.error_goto(self.pos))
code.putln("} else {")
code.put_gotref(Naming.cur_scope_cname)
code.putln("}")
# Note that it is unsafe to decref the scope at this point.
if self.needs_outer_scope:
if self.is_cyfunction:
code.putln("%s = (%s) __Pyx_CyFunction_GetClosure(%s);" % (
outer_scope_cname,
cenv.scope_class.type.empty_declaration_code(),
Naming.self_cname))
else:
code.putln("%s = (%s) %s;" % (
outer_scope_cname,
cenv.scope_class.type.empty_declaration_code(),
Naming.self_cname))
if lenv.is_passthrough:
code.putln("%s = %s;" % (Naming.cur_scope_cname, outer_scope_cname))
elif self.needs_closure:
# inner closures own a reference to their outer parent
code.put_incref(outer_scope_cname, cenv.scope_class.type)
code.put_giveref(outer_scope_cname)
# ----- Trace function call
if profile or linetrace:
# this looks a bit late, but if we don't get here due to a
# fatal error before hand, it's not really worth tracing
if not self.is_generator:
# generators are traced when iterated, not at creation
if self.is_wrapper:
trace_name = self.entry.name + " (wrapper)"
else:
trace_name = self.entry.name
code.put_trace_call(
trace_name, self.pos, nogil=not code.funcstate.gil_owned)
code.funcstate.can_trace = True
# ----- Fetch arguments
self.generate_argument_parsing_code(env, code)
# If an argument is assigned to in the body, we must
# incref it to properly keep track of refcounts.
is_cdef = isinstance(self, CFuncDefNode)
for entry in lenv.arg_entries:
if entry.type.is_pyobject:
if (acquire_gil or len(entry.cf_assignments) > 1) and not entry.in_closure:
code.put_var_incref(entry)
# Note: defaults are always incref-ed. For def functions, we
# we acquire arguments from object conversion, so we have
# new references. If we are a cdef function, we need to
# incref our arguments
elif is_cdef and entry.type.is_memoryviewslice and len(entry.cf_assignments) > 1:
code.put_incref_memoryviewslice(entry.cname, have_gil=code.funcstate.gil_owned)
for entry in lenv.var_entries:
if entry.is_arg and len(entry.cf_assignments) > 1 and not entry.in_closure:
if entry.xdecref_cleanup:
code.put_var_xincref(entry)
else:
code.put_var_incref(entry)
# ----- Initialise local buffer auxiliary variables
for entry in lenv.var_entries + lenv.arg_entries:
if entry.type.is_buffer and entry.buffer_aux.buflocal_nd_var.used:
Buffer.put_init_vars(entry, code)
# ----- Check and convert arguments
self.generate_argument_type_tests(code)
# ----- Acquire buffer arguments
for entry in lenv.arg_entries:
if entry.type.is_buffer:
Buffer.put_acquire_arg_buffer(entry, code, self.pos)
if acquire_gil_for_var_decls_only:
code.put_release_ensured_gil()
code.funcstate.gil_owned = False
# -------------------------
# ----- Function body -----
# -------------------------
self.generate_function_body(env, code)
code.mark_pos(self.pos, trace=False)
code.putln("")
code.putln("/* function exit code */")
# ----- Default return value
if not self.body.is_terminator:
if self.return_type.is_pyobject:
#if self.return_type.is_extension_type:
# lhs = "(PyObject *)%s" % Naming.retval_cname
#else:
lhs = Naming.retval_cname
code.put_init_to_py_none(lhs, self.return_type)
else:
val = self.return_type.default_value
if val:
code.putln("%s = %s;" % (Naming.retval_cname, val))
elif not self.return_type.is_void:
code.putln("__Pyx_pretend_to_initialize(&%s);" % Naming.retval_cname)
# ----- Error cleanup
if code.error_label in code.labels_used:
if not self.body.is_terminator:
code.put_goto(code.return_label)
code.put_label(code.error_label)
for cname, type in code.funcstate.all_managed_temps():
code.put_xdecref(cname, type, have_gil=not lenv.nogil)
# Clean up buffers -- this calls a Python function
# so need to save and restore error state
buffers_present = len(used_buffer_entries) > 0
#memslice_entries = [e for e in lenv.entries.values() if e.type.is_memoryviewslice]
if buffers_present:
code.globalstate.use_utility_code(restore_exception_utility_code)
code.putln("{ PyObject *__pyx_type, *__pyx_value, *__pyx_tb;")
code.putln("__Pyx_PyThreadState_declare")
code.putln("__Pyx_PyThreadState_assign")
code.putln("__Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb);")
for entry in used_buffer_entries:
Buffer.put_release_buffer_code(code, entry)
#code.putln("%s = 0;" % entry.cname)
code.putln("__Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);}")
if self.return_type.is_memoryviewslice:
MemoryView.put_init_entry(Naming.retval_cname, code)
err_val = Naming.retval_cname
else:
err_val = self.error_value()
exc_check = self.caller_will_check_exceptions()
if err_val is not None or exc_check:
# TODO: Fix exception tracing (though currently unused by cProfile).
# code.globalstate.use_utility_code(get_exception_tuple_utility_code)
# code.put_trace_exception()
if lenv.nogil and not lenv.has_with_gil_block:
code.putln("{")
code.put_ensure_gil()
code.put_add_traceback(self.entry.qualified_name)
if lenv.nogil and not lenv.has_with_gil_block:
code.put_release_ensured_gil()
code.putln("}")
else:
warning(self.entry.pos,
"Unraisable exception in function '%s'." %
self.entry.qualified_name, 0)
code.put_unraisable(self.entry.qualified_name, lenv.nogil)
default_retval = self.return_type.default_value
if err_val is None and default_retval:
err_val = default_retval
if err_val is not None:
if err_val != Naming.retval_cname:
code.putln("%s = %s;" % (Naming.retval_cname, err_val))
elif not self.return_type.is_void:
code.putln("__Pyx_pretend_to_initialize(&%s);" % Naming.retval_cname)
if is_getbuffer_slot:
self.getbuffer_error_cleanup(code)
# If we are using the non-error cleanup section we should
# jump past it if we have an error. The if-test below determine
# whether this section is used.
if buffers_present or is_getbuffer_slot or self.return_type.is_memoryviewslice:
code.put_goto(code.return_from_error_cleanup_label)
# ----- Non-error return cleanup
code.put_label(code.return_label)
for entry in used_buffer_entries:
Buffer.put_release_buffer_code(code, entry)
if is_getbuffer_slot:
self.getbuffer_normal_cleanup(code)
if self.return_type.is_memoryviewslice:
# See if our return value is uninitialized on non-error return
# from . import MemoryView
# MemoryView.err_if_nogil_initialized_check(self.pos, env)
cond = code.unlikely(self.return_type.error_condition(Naming.retval_cname))
code.putln(
'if (%s) {' % cond)
if env.nogil:
code.put_ensure_gil()
code.putln(
'PyErr_SetString(PyExc_TypeError, "Memoryview return value is not initialized");')
if env.nogil:
code.put_release_ensured_gil()
code.putln(
'}')
# ----- Return cleanup for both error and no-error return
code.put_label(code.return_from_error_cleanup_label)
for entry in lenv.var_entries:
if not entry.used or entry.in_closure:
continue
if entry.type.is_memoryviewslice:
code.put_xdecref_memoryviewslice(entry.cname, have_gil=not lenv.nogil)
elif entry.type.is_pyobject:
if not entry.is_arg or len(entry.cf_assignments) > 1:
if entry.xdecref_cleanup:
code.put_var_xdecref(entry)
else:
code.put_var_decref(entry)
# Decref any increfed args
for entry in lenv.arg_entries:
if entry.type.is_pyobject:
if (acquire_gil or len(entry.cf_assignments) > 1) and not entry.in_closure:
code.put_var_decref(entry)
elif (entry.type.is_memoryviewslice and
(not is_cdef or len(entry.cf_assignments) > 1)):
# decref slices of def functions and acquired slices from cdef
# functions, but not borrowed slices from cdef functions.
code.put_xdecref_memoryviewslice(entry.cname,
have_gil=not lenv.nogil)
if self.needs_closure:
code.put_decref(Naming.cur_scope_cname, lenv.scope_class.type)
# ----- Return
# This code is duplicated in ModuleNode.generate_module_init_func
if not lenv.nogil:
default_retval = self.return_type.default_value
err_val = self.error_value()
if err_val is None and default_retval:
err_val = default_retval # FIXME: why is err_val not used?
if self.return_type.is_pyobject:
code.put_xgiveref(self.return_type.as_pyobject(Naming.retval_cname))
if self.entry.is_special and self.entry.name == "__hash__":
# Returning -1 for __hash__ is supposed to signal an error
# We do as Python instances and coerce -1 into -2.
code.putln("if (unlikely(%s == -1) && !PyErr_Occurred()) %s = -2;" % (
Naming.retval_cname, Naming.retval_cname))
if profile or linetrace:
code.funcstate.can_trace = False
if not self.is_generator:
# generators are traced when iterated, not at creation
if self.return_type.is_pyobject:
code.put_trace_return(
Naming.retval_cname, nogil=not code.funcstate.gil_owned)
else:
code.put_trace_return(
"Py_None", nogil=not code.funcstate.gil_owned)
if not lenv.nogil:
# GIL holding function
code.put_finish_refcount_context()
if acquire_gil or (lenv.nogil and lenv.has_with_gil_block):
# release the GIL (note that with-gil blocks acquire it on exit in their EnsureGILNode)
code.put_release_ensured_gil()
code.funcstate.gil_owned = False
if not self.return_type.is_void:
code.putln("return %s;" % Naming.retval_cname)
code.putln("}")
if preprocessor_guard:
code.putln("#endif /*!(%s)*/" % preprocessor_guard)
# ----- Go back and insert temp variable declarations
tempvardecl_code.put_temp_declarations(code.funcstate)
# ----- Python version
code.exit_cfunc_scope()
if self.py_func:
self.py_func.generate_function_definitions(env, code)
self.generate_wrapper_functions(code)
def declare_argument(self, env, arg):
if arg.type.is_void:
error(arg.pos, "Invalid use of 'void'")
elif not arg.type.is_complete() and not (arg.type.is_array or arg.type.is_memoryviewslice):
error(arg.pos, "Argument type '%s' is incomplete" % arg.type)
entry = env.declare_arg(arg.name, arg.type, arg.pos)
if arg.annotation:
entry.annotation = arg.annotation
return entry
def generate_arg_type_test(self, arg, code):
# Generate type test for one argument.
if arg.type.typeobj_is_available():
code.globalstate.use_utility_code(
UtilityCode.load_cached("ArgTypeTest", "FunctionArguments.c"))
typeptr_cname = arg.type.typeptr_cname
arg_code = "((PyObject *)%s)" % arg.entry.cname
code.putln(
'if (unlikely(!__Pyx_ArgTypeTest(%s, %s, %d, "%s", %s))) %s' % (
arg_code,
typeptr_cname,
arg.accept_none,
arg.name,
arg.type.is_builtin_type and arg.type.require_exact,
code.error_goto(arg.pos)))
else:
error(arg.pos, "Cannot test type of extern C class without type object name specification")
def generate_arg_none_check(self, arg, code):
# Generate None check for one argument.
if arg.type.is_memoryviewslice:
cname = "%s.memview" % arg.entry.cname
else:
cname = arg.entry.cname
code.putln('if (unlikely(((PyObject *)%s) == Py_None)) {' % cname)
code.putln('''PyErr_Format(PyExc_TypeError, "Argument '%%.%ds' must not be None", "%s"); %s''' % (
max(200, len(arg.name)), arg.name,
code.error_goto(arg.pos)))
code.putln('}')
def generate_wrapper_functions(self, code):
pass
def generate_execution_code(self, code):
code.mark_pos(self.pos)
# Evaluate and store argument default values
for arg in self.args:
if not arg.is_dynamic:
arg.generate_assignment_code(code)
#
# Special code for the __getbuffer__ function
#
def _get_py_buffer_info(self):
py_buffer = self.local_scope.arg_entries[1]
try:
# Check builtin definition of struct Py_buffer
obj_type = py_buffer.type.base_type.scope.entries['obj'].type
except (AttributeError, KeyError):
# User code redeclared struct Py_buffer
obj_type = None
return py_buffer, obj_type
# Old Python 3 used to support write-locks on buffer-like objects by
# calling PyObject_GetBuffer() with a view==NULL parameter. This obscure
# feature is obsolete, it was almost never used (only one instance in
# `Modules/posixmodule.c` in Python 3.1) and it is now officially removed
# (see bpo-14203). We add an extra check here to prevent legacy code from
# from trying to use the feature and prevent segmentation faults.
def getbuffer_check(self, code):
py_buffer, _ = self._get_py_buffer_info()
view = py_buffer.cname
code.putln("if (%s == NULL) {" % view)
code.putln("PyErr_SetString(PyExc_BufferError, "
"\"PyObject_GetBuffer: view==NULL argument is obsolete\");")
code.putln("return -1;")
code.putln("}")
def getbuffer_init(self, code):
py_buffer, obj_type = self._get_py_buffer_info()
view = py_buffer.cname
if obj_type and obj_type.is_pyobject:
code.put_init_to_py_none("%s->obj" % view, obj_type)
code.put_giveref("%s->obj" % view) # Do not refnanny object within structs
else:
code.putln("%s->obj = NULL;" % view)
def getbuffer_error_cleanup(self, code):
py_buffer, obj_type = self._get_py_buffer_info()
view = py_buffer.cname
if obj_type and obj_type.is_pyobject:
code.putln("if (%s->obj != NULL) {" % view)
code.put_gotref("%s->obj" % view)
code.put_decref_clear("%s->obj" % view, obj_type)
code.putln("}")
else:
code.putln("Py_CLEAR(%s->obj);" % view)
def getbuffer_normal_cleanup(self, code):
py_buffer, obj_type = self._get_py_buffer_info()
view = py_buffer.cname
if obj_type and obj_type.is_pyobject:
code.putln("if (%s->obj == Py_None) {" % view)
code.put_gotref("%s->obj" % view)
code.put_decref_clear("%s->obj" % view, obj_type)
code.putln("}")
def get_preprocessor_guard(self):
if not self.entry.is_special:
return None
name = self.entry.name
slot = TypeSlots.method_name_to_slot.get(name)
if not slot:
return None
if name == '__long__' and not self.entry.scope.lookup_here('__int__'):
return None
if name in ("__getbuffer__", "__releasebuffer__") and self.entry.scope.is_c_class_scope:
return None
return slot.preprocessor_guard_code()
class CFuncDefNode(FuncDefNode):
# C function definition.
#
# modifiers ['inline']
# visibility 'private' or 'public' or 'extern'
# base_type CBaseTypeNode
# declarator CDeclaratorNode
# cfunc_declarator the CFuncDeclarator of this function
# (this is also available through declarator or a
# base thereof)
# body StatListNode
# api boolean
# decorators [DecoratorNode] list of decorators
#
# with_gil boolean Acquire GIL around body
# type CFuncType
# py_func wrapper for calling from Python
# overridable whether or not this is a cpdef function
# inline_in_pxd whether this is an inline function in a pxd file
# template_declaration String or None Used for c++ class methods
# is_const_method whether this is a const method
# is_static_method whether this is a static method
# is_c_class_method whether this is a cclass method
child_attrs = ["base_type", "declarator", "body", "py_func_stat"]
inline_in_pxd = False
decorators = None
directive_locals = None
directive_returns = None
override = None
template_declaration = None
is_const_method = False
py_func_stat = None
def unqualified_name(self):
return self.entry.name
@property
def code_object(self):
# share the CodeObject with the cpdef wrapper (if available)
return self.py_func.code_object if self.py_func else None
def analyse_declarations(self, env):
self.is_c_class_method = env.is_c_class_scope
if self.directive_locals is None:
self.directive_locals = {}
self.directive_locals.update(env.directives.get('locals', {}))
if self.directive_returns is not None:
base_type = self.directive_returns.analyse_as_type(env)
if base_type is None:
error(self.directive_returns.pos, "Not a type")
base_type = PyrexTypes.error_type
else:
base_type = self.base_type.analyse(env)
self.is_static_method = 'staticmethod' in env.directives and not env.lookup_here('staticmethod')
# The 2 here is because we need both function and argument names.
if isinstance(self.declarator, CFuncDeclaratorNode):
name_declarator, type = self.declarator.analyse(
base_type, env, nonempty=2 * (self.body is not None),
directive_locals=self.directive_locals, visibility=self.visibility)
else:
name_declarator, type = self.declarator.analyse(
base_type, env, nonempty=2 * (self.body is not None), visibility=self.visibility)
if not type.is_cfunction:
error(self.pos, "Suite attached to non-function declaration")
# Remember the actual type according to the function header
# written here, because the type in the symbol table entry
# may be different if we're overriding a C method inherited
# from the base type of an extension type.
self.type = type
type.is_overridable = self.overridable
declarator = self.declarator
while not hasattr(declarator, 'args'):
declarator = declarator.base
self.cfunc_declarator = declarator
self.args = declarator.args
opt_arg_count = self.cfunc_declarator.optional_arg_count
if (self.visibility == 'public' or self.api) and opt_arg_count:
error(self.cfunc_declarator.pos,
"Function with optional arguments may not be declared public or api")
if type.exception_check == '+' and self.visibility != 'extern':
warning(self.cfunc_declarator.pos,
"Only extern functions can throw C++ exceptions.")
for formal_arg, type_arg in zip(self.args, type.args):
self.align_argument_type(env, type_arg)
formal_arg.type = type_arg.type
formal_arg.name = type_arg.name
formal_arg.cname = type_arg.cname
self._validate_type_visibility(type_arg.type, type_arg.pos, env)
if type_arg.type.is_fused:
self.has_fused_arguments = True
if type_arg.type.is_buffer and 'inline' in self.modifiers:
warning(formal_arg.pos, "Buffer unpacking not optimized away.", 1)
if type_arg.type.is_buffer or type_arg.type.is_pythran_expr:
if self.type.nogil:
error(formal_arg.pos,
"Buffer may not be acquired without the GIL. Consider using memoryview slices instead.")
elif 'inline' in self.modifiers:
warning(formal_arg.pos, "Buffer unpacking not optimized away.", 1)
self._validate_type_visibility(type.return_type, self.pos, env)
name = name_declarator.name
cname = name_declarator.cname
type.is_const_method = self.is_const_method
type.is_static_method = self.is_static_method
self.entry = env.declare_cfunction(
name, type, self.pos,
cname=cname, visibility=self.visibility, api=self.api,
defining=self.body is not None, modifiers=self.modifiers,
overridable=self.overridable)
self.entry.inline_func_in_pxd = self.inline_in_pxd
self.return_type = type.return_type
if self.return_type.is_array and self.visibility != 'extern':
error(self.pos, "Function cannot return an array")
if self.return_type.is_cpp_class:
self.return_type.check_nullary_constructor(self.pos, "used as a return value")
if self.overridable and not env.is_module_scope and not self.is_static_method:
if len(self.args) < 1 or not self.args[0].type.is_pyobject:
# An error will be produced in the cdef function
self.overridable = False
self.declare_cpdef_wrapper(env)
self.create_local_scope(env)
def declare_cpdef_wrapper(self, env):
if self.overridable:
if self.is_static_method:
# TODO(robertwb): Finish this up, perhaps via more function refactoring.
error(self.pos, "static cpdef methods not yet supported")
name = self.entry.name
py_func_body = self.call_self_node(is_module_scope=env.is_module_scope)
if self.is_static_method:
from .ExprNodes import NameNode
decorators = [DecoratorNode(self.pos, decorator=NameNode(self.pos, name='staticmethod'))]
decorators[0].decorator.analyse_types(env)
else:
decorators = []
self.py_func = DefNode(pos=self.pos,
name=self.entry.name,
args=self.args,
star_arg=None,
starstar_arg=None,
doc=self.doc,
body=py_func_body,
decorators=decorators,
is_wrapper=1)
self.py_func.is_module_scope = env.is_module_scope
self.py_func.analyse_declarations(env)
self.py_func.entry.is_overridable = True
self.py_func_stat = StatListNode(self.pos, stats=[self.py_func])
self.py_func.type = PyrexTypes.py_object_type
self.entry.as_variable = self.py_func.entry
self.entry.used = self.entry.as_variable.used = True
# Reset scope entry the above cfunction
env.entries[name] = self.entry
if (not self.entry.is_final_cmethod and
(not env.is_module_scope or Options.lookup_module_cpdef)):
self.override = OverrideCheckNode(self.pos, py_func=self.py_func)
self.body = StatListNode(self.pos, stats=[self.override, self.body])
def _validate_type_visibility(self, type, pos, env):
"""
Ensure that types used in cdef functions are public or api, or
defined in a C header.
"""
public_or_api = (self.visibility == 'public' or self.api)
entry = getattr(type, 'entry', None)
if public_or_api and entry and env.is_module_scope:
if not (entry.visibility in ('public', 'extern') or
entry.api or entry.in_cinclude):
error(pos, "Function declared public or api may not have private types")
def call_self_node(self, omit_optional_args=0, is_module_scope=0):
from . import ExprNodes
args = self.type.args
if omit_optional_args:
args = args[:len(args) - self.type.optional_arg_count]
arg_names = [arg.name for arg in args]
if is_module_scope:
cfunc = ExprNodes.NameNode(self.pos, name=self.entry.name)
call_arg_names = arg_names
skip_dispatch = Options.lookup_module_cpdef
elif self.type.is_static_method:
class_entry = self.entry.scope.parent_type.entry
class_node = ExprNodes.NameNode(self.pos, name=class_entry.name)
class_node.entry = class_entry
cfunc = ExprNodes.AttributeNode(self.pos, obj=class_node, attribute=self.entry.name)
# Calling static c(p)def methods on an instance disallowed.
# TODO(robertwb): Support by passing self to check for override?
skip_dispatch = True
else:
type_entry = self.type.args[0].type.entry
type_arg = ExprNodes.NameNode(self.pos, name=type_entry.name)
type_arg.entry = type_entry
cfunc = ExprNodes.AttributeNode(self.pos, obj=type_arg, attribute=self.entry.name)
skip_dispatch = not is_module_scope or Options.lookup_module_cpdef
c_call = ExprNodes.SimpleCallNode(
self.pos,
function=cfunc,
args=[ExprNodes.NameNode(self.pos, name=n) for n in arg_names],
wrapper_call=skip_dispatch)
return ReturnStatNode(pos=self.pos, return_type=PyrexTypes.py_object_type, value=c_call)
def declare_arguments(self, env):
for arg in self.type.args:
if not arg.name:
error(arg.pos, "Missing argument name")
self.declare_argument(env, arg)
def need_gil_acquisition(self, lenv):
return self.type.with_gil
def nogil_check(self, env):
type = self.type
with_gil = type.with_gil
if type.nogil and not with_gil:
if type.return_type.is_pyobject:
error(self.pos,
"Function with Python return type cannot be declared nogil")
for entry in self.local_scope.var_entries:
if entry.type.is_pyobject and not entry.in_with_gil_block:
error(self.pos, "Function declared nogil has Python locals or temporaries")
def analyse_expressions(self, env):
self.local_scope.directives = env.directives
if self.py_func_stat is not None:
# this will also analyse the default values and the function name assignment
self.py_func_stat = self.py_func_stat.analyse_expressions(env)
elif self.py_func is not None:
# this will also analyse the default values
self.py_func = self.py_func.analyse_expressions(env)
else:
self.analyse_default_values(env)
self.analyse_annotations(env)
self.acquire_gil = self.need_gil_acquisition(self.local_scope)
return self
def needs_assignment_synthesis(self, env, code=None):
return False
def generate_function_header(self, code, with_pymethdef, with_opt_args=1, with_dispatch=1, cname=None):
scope = self.local_scope
arg_decls = []
type = self.type
for arg in type.args[:len(type.args)-type.optional_arg_count]:
arg_decl = arg.declaration_code()
entry = scope.lookup(arg.name)
if not entry.cf_used:
arg_decl = 'CYTHON_UNUSED %s' % arg_decl
arg_decls.append(arg_decl)
if with_dispatch and self.overridable:
dispatch_arg = PyrexTypes.c_int_type.declaration_code(
Naming.skip_dispatch_cname)
if self.override:
arg_decls.append(dispatch_arg)
else:
arg_decls.append('CYTHON_UNUSED %s' % dispatch_arg)
if type.optional_arg_count and with_opt_args:
arg_decls.append(type.op_arg_struct.declaration_code(Naming.optional_args_cname))
if type.has_varargs:
arg_decls.append("...")
if not arg_decls:
arg_decls = ["void"]
if cname is None:
cname = self.entry.func_cname
entity = type.function_header_code(cname, ', '.join(arg_decls))
if self.entry.visibility == 'private' and '::' not in cname:
storage_class = "static "
else:
storage_class = ""
dll_linkage = None
modifiers = code.build_function_modifiers(self.entry.func_modifiers)
header = self.return_type.declaration_code(entity, dll_linkage=dll_linkage)
#print (storage_class, modifiers, header)
needs_proto = self.is_c_class_method
if self.template_declaration:
if needs_proto:
code.globalstate.parts['module_declarations'].putln(self.template_declaration)
code.putln(self.template_declaration)
if needs_proto:
code.globalstate.parts['module_declarations'].putln(
"%s%s%s; /* proto*/" % (storage_class, modifiers, header))
code.putln("%s%s%s {" % (storage_class, modifiers, header))
def generate_argument_declarations(self, env, code):
scope = self.local_scope
for arg in self.args:
if arg.default:
entry = scope.lookup(arg.name)
if self.override or entry.cf_used:
result = arg.calculate_default_value_code(code)
code.putln('%s = %s;' % (
arg.type.declaration_code(arg.cname), result))
def generate_keyword_list(self, code):
pass
def generate_argument_parsing_code(self, env, code):
i = 0
used = 0
scope = self.local_scope
if self.type.optional_arg_count:
code.putln('if (%s) {' % Naming.optional_args_cname)
for arg in self.args:
if arg.default:
entry = scope.lookup(arg.name)
if self.override or entry.cf_used:
code.putln('if (%s->%sn > %s) {' %
(Naming.optional_args_cname,
Naming.pyrex_prefix, i))
declarator = arg.declarator
while not hasattr(declarator, 'name'):
declarator = declarator.base
code.putln('%s = %s->%s;' %
(arg.cname, Naming.optional_args_cname,
self.type.opt_arg_cname(declarator.name)))
used += 1
i += 1
for _ in range(used):
code.putln('}')
code.putln('}')
# Move arguments into closure if required
def put_into_closure(entry):
if entry.in_closure and not arg.default:
code.putln('%s = %s;' % (entry.cname, entry.original_cname))
code.put_var_incref(entry)
code.put_var_giveref(entry)
for arg in self.args:
put_into_closure(scope.lookup_here(arg.name))
def generate_argument_conversion_code(self, code):
pass
def generate_argument_type_tests(self, code):
# Generate type tests for args whose type in a parent
# class is a supertype of the declared type.
for arg in self.type.args:
if arg.needs_type_test:
self.generate_arg_type_test(arg, code)
elif arg.type.is_pyobject and not arg.accept_none:
self.generate_arg_none_check(arg, code)
def generate_execution_code(self, code):
if code.globalstate.directives['linetrace']:
code.mark_pos(self.pos)
code.putln("") # generate line tracing code
super(CFuncDefNode, self).generate_execution_code(code)
if self.py_func_stat:
self.py_func_stat.generate_execution_code(code)
def error_value(self):
if self.return_type.is_pyobject:
return "0"
else:
#return None
return self.entry.type.exception_value
def caller_will_check_exceptions(self):
return self.entry.type.exception_check
def generate_wrapper_functions(self, code):
# If the C signature of a function has changed, we need to generate
# wrappers to put in the slots here.
k = 0
entry = self.entry
func_type = entry.type
while entry.prev_entry is not None:
k += 1
entry = entry.prev_entry
entry.func_cname = "%s%swrap_%s" % (self.entry.func_cname, Naming.pyrex_prefix, k)
code.putln()
self.generate_function_header(
code, 0,
with_dispatch=entry.type.is_overridable,
with_opt_args=entry.type.optional_arg_count,
cname=entry.func_cname)
if not self.return_type.is_void:
code.put('return ')
args = self.type.args
arglist = [arg.cname for arg in args[:len(args)-self.type.optional_arg_count]]
if entry.type.is_overridable:
arglist.append(Naming.skip_dispatch_cname)
elif func_type.is_overridable:
arglist.append('0')
if entry.type.optional_arg_count:
arglist.append(Naming.optional_args_cname)
elif func_type.optional_arg_count:
arglist.append('NULL')
code.putln('%s(%s);' % (self.entry.func_cname, ', '.join(arglist)))
code.putln('}')
class PyArgDeclNode(Node):
# Argument which must be a Python object (used
# for * and ** arguments).
#
# name string
# entry Symtab.Entry
# annotation ExprNode or None Py3 argument annotation
child_attrs = []
is_self_arg = False
is_type_arg = False
def generate_function_definitions(self, env, code):
self.entry.generate_function_definitions(env, code)
class DecoratorNode(Node):
# A decorator
#
# decorator NameNode or CallNode or AttributeNode
child_attrs = ['decorator']
class DefNode(FuncDefNode):
# A Python function definition.
#
# name string the Python name of the function
# lambda_name string the internal name of a lambda 'function'
# decorators [DecoratorNode] list of decorators
# args [CArgDeclNode] formal arguments
# doc EncodedString or None
# body StatListNode
# return_type_annotation
# ExprNode or None the Py3 return type annotation
#
# The following subnode is constructed internally
# when the def statement is inside a Python class definition.
#
# fused_py_func DefNode The original fused cpdef DefNode
# (in case this is a specialization)
# specialized_cpdefs [DefNode] list of specialized cpdef DefNodes
# py_cfunc_node PyCFunctionNode/InnerFunctionNode The PyCFunction to create and assign
#
# decorator_indirection IndirectionNode Used to remove __Pyx_Method_ClassMethod for fused functions
child_attrs = ["args", "star_arg", "starstar_arg", "body", "decorators", "return_type_annotation"]
outer_attrs = ["decorators", "return_type_annotation"]
is_staticmethod = False
is_classmethod = False
lambda_name = None
reqd_kw_flags_cname = "0"
is_wrapper = 0
no_assignment_synthesis = 0
decorators = None
return_type_annotation = None
entry = None
acquire_gil = 0
self_in_stararg = 0
py_cfunc_node = None
requires_classobj = False
defaults_struct = None # Dynamic kwrds structure name
doc = None
fused_py_func = False
specialized_cpdefs = None
py_wrapper = None
py_wrapper_required = True
func_cname = None
defaults_getter = None
def __init__(self, pos, **kwds):
FuncDefNode.__init__(self, pos, **kwds)
k = rk = r = 0
for arg in self.args:
if arg.kw_only:
k += 1
if not arg.default:
rk += 1
if not arg.default:
r += 1
self.num_kwonly_args = k
self.num_required_kw_args = rk
self.num_required_args = r
def as_cfunction(self, cfunc=None, scope=None, overridable=True, returns=None, except_val=None, modifiers=None,
nogil=False, with_gil=False):
if self.star_arg:
error(self.star_arg.pos, "cdef function cannot have star argument")
if self.starstar_arg:
error(self.starstar_arg.pos, "cdef function cannot have starstar argument")
exception_value, exception_check = except_val or (None, False)
if cfunc is None:
cfunc_args = []
for formal_arg in self.args:
name_declarator, type = formal_arg.analyse(scope, nonempty=1)
cfunc_args.append(PyrexTypes.CFuncTypeArg(name=name_declarator.name,
cname=None,
annotation=formal_arg.annotation,
type=py_object_type,
pos=formal_arg.pos))
cfunc_type = PyrexTypes.CFuncType(return_type=py_object_type,
args=cfunc_args,
has_varargs=False,
exception_value=None,
exception_check=exception_check,
nogil=nogil,
with_gil=with_gil,
is_overridable=overridable)
cfunc = CVarDefNode(self.pos, type=cfunc_type)
else:
if scope is None:
scope = cfunc.scope
cfunc_type = cfunc.type
if len(self.args) != len(cfunc_type.args) or cfunc_type.has_varargs:
error(self.pos, "wrong number of arguments")
error(cfunc.pos, "previous declaration here")
for i, (formal_arg, type_arg) in enumerate(zip(self.args, cfunc_type.args)):
name_declarator, type = formal_arg.analyse(scope, nonempty=1,
is_self_arg=(i == 0 and scope.is_c_class_scope))
if type is None or type is PyrexTypes.py_object_type:
formal_arg.type = type_arg.type
formal_arg.name_declarator = name_declarator
if exception_value is None and cfunc_type.exception_value is not None:
from .ExprNodes import ConstNode
exception_value = ConstNode(
self.pos, value=cfunc_type.exception_value, type=cfunc_type.return_type)
declarator = CFuncDeclaratorNode(self.pos,
base=CNameDeclaratorNode(self.pos, name=self.name, cname=None),
args=self.args,
has_varargs=False,
exception_check=cfunc_type.exception_check,
exception_value=exception_value,
with_gil=cfunc_type.with_gil,
nogil=cfunc_type.nogil)
return CFuncDefNode(self.pos,
modifiers=modifiers or [],
base_type=CAnalysedBaseTypeNode(self.pos, type=cfunc_type.return_type),
declarator=declarator,
body=self.body,
doc=self.doc,
overridable=cfunc_type.is_overridable,
type=cfunc_type,
with_gil=cfunc_type.with_gil,
nogil=cfunc_type.nogil,
visibility='private',
api=False,
directive_locals=getattr(cfunc, 'directive_locals', {}),
directive_returns=returns)
def is_cdef_func_compatible(self):
"""Determines if the function's signature is compatible with a
cdef function. This can be used before calling
.as_cfunction() to see if that will be successful.
"""
if self.needs_closure:
return False
if self.star_arg or self.starstar_arg:
return False
return True
def analyse_declarations(self, env):
if self.decorators:
for decorator in self.decorators:
func = decorator.decorator
if func.is_name:
self.is_classmethod |= func.name == 'classmethod'
self.is_staticmethod |= func.name == 'staticmethod'
if self.is_classmethod and env.lookup_here('classmethod'):
# classmethod() was overridden - not much we can do here ...
self.is_classmethod = False
if self.is_staticmethod and env.lookup_here('staticmethod'):
# staticmethod() was overridden - not much we can do here ...
self.is_staticmethod = False
if self.name == '__new__' and env.is_py_class_scope:
self.is_staticmethod = 1
self.analyse_argument_types(env)
if self.name == '<lambda>':
self.declare_lambda_function(env)
else:
self.declare_pyfunction(env)
self.analyse_signature(env)
self.return_type = self.entry.signature.return_type()
# if a signature annotation provides a more specific return object type, use it
if self.return_type is py_object_type and self.return_type_annotation:
if env.directives['annotation_typing'] and not self.entry.is_special:
_, return_type = analyse_type_annotation(self.return_type_annotation, env)
if return_type and return_type.is_pyobject:
self.return_type = return_type
self.create_local_scope(env)
self.py_wrapper = DefNodeWrapper(
self.pos,
target=self,
name=self.entry.name,
args=self.args,
star_arg=self.star_arg,
starstar_arg=self.starstar_arg,
return_type=self.return_type)
self.py_wrapper.analyse_declarations(env)
def analyse_argument_types(self, env):
self.directive_locals = env.directives.get('locals', {})
allow_none_for_extension_args = env.directives['allow_none_for_extension_args']
f2s = env.fused_to_specific
env.fused_to_specific = None
for arg in self.args:
if hasattr(arg, 'name'):
name_declarator = None
else:
base_type = arg.base_type.analyse(env)
# If we hare in pythran mode and we got a buffer supported by
# Pythran, we change this node to a fused type
if has_np_pythran(env) and base_type.is_pythran_expr:
base_type = PyrexTypes.FusedType([
base_type,
#PyrexTypes.PythranExpr(pythran_type(self.type, "numpy_texpr")),
base_type.org_buffer])
name_declarator, type = \
arg.declarator.analyse(base_type, env)
arg.name = name_declarator.name
arg.type = type
if type.is_fused:
self.has_fused_arguments = True
self.align_argument_type(env, arg)
if name_declarator and name_declarator.cname:
error(self.pos, "Python function argument cannot have C name specification")
arg.type = arg.type.as_argument_type()
arg.hdr_type = None
arg.needs_conversion = 0
arg.needs_type_test = 0
arg.is_generic = 1
if arg.type.is_pyobject or arg.type.is_buffer or arg.type.is_memoryviewslice:
if arg.or_none:
arg.accept_none = True
elif arg.not_none:
arg.accept_none = False
elif (arg.type.is_extension_type or arg.type.is_builtin_type
or arg.type.is_buffer or arg.type.is_memoryviewslice):
if arg.default and arg.default.constant_result is None:
# special case: def func(MyType obj = None)
arg.accept_none = True
else:
# default depends on compiler directive
arg.accept_none = allow_none_for_extension_args
else:
# probably just a plain 'object'
arg.accept_none = True
else:
arg.accept_none = True # won't be used, but must be there
if arg.not_none:
error(arg.pos, "Only Python type arguments can have 'not None'")
if arg.or_none:
error(arg.pos, "Only Python type arguments can have 'or None'")
env.fused_to_specific = f2s
if has_np_pythran(env):
self.np_args_idx = [i for i,a in enumerate(self.args) if a.type.is_numpy_buffer]
else:
self.np_args_idx = []
def analyse_signature(self, env):
if self.entry.is_special:
if self.decorators:
error(self.pos, "special functions of cdef classes cannot have decorators")
self.entry.trivial_signature = len(self.args) == 1 and not (self.star_arg or self.starstar_arg)
elif not env.directives['always_allow_keywords'] and not (self.star_arg or self.starstar_arg):
# Use the simpler calling signature for zero- and one-argument functions.
if self.entry.signature is TypeSlots.pyfunction_signature:
if len(self.args) == 0:
self.entry.signature = TypeSlots.pyfunction_noargs
elif len(self.args) == 1:
if self.args[0].default is None and not self.args[0].kw_only:
self.entry.signature = TypeSlots.pyfunction_onearg
elif self.entry.signature is TypeSlots.pymethod_signature:
if len(self.args) == 1:
self.entry.signature = TypeSlots.unaryfunc
elif len(self.args) == 2:
if self.args[1].default is None and not self.args[1].kw_only:
self.entry.signature = TypeSlots.ibinaryfunc
sig = self.entry.signature
nfixed = sig.num_fixed_args()
if (sig is TypeSlots.pymethod_signature and nfixed == 1
and len(self.args) == 0 and self.star_arg):
# this is the only case where a diverging number of
# arguments is not an error - when we have no explicit
# 'self' parameter as in method(*args)
sig = self.entry.signature = TypeSlots.pyfunction_signature # self is not 'really' used
self.self_in_stararg = 1
nfixed = 0
if self.is_staticmethod and env.is_c_class_scope:
nfixed = 0
self.self_in_stararg = True # FIXME: why for staticmethods?
self.entry.signature = sig = copy.copy(sig)
sig.fixed_arg_format = "*"
sig.is_staticmethod = True
sig.has_generic_args = True
if ((self.is_classmethod or self.is_staticmethod) and
self.has_fused_arguments and env.is_c_class_scope):
del self.decorator_indirection.stats[:]
for i in range(min(nfixed, len(self.args))):
arg = self.args[i]
arg.is_generic = 0
if sig.is_self_arg(i) and not self.is_staticmethod:
if self.is_classmethod:
arg.is_type_arg = 1
arg.hdr_type = arg.type = Builtin.type_type
else:
arg.is_self_arg = 1
arg.hdr_type = arg.type = env.parent_type
arg.needs_conversion = 0
else:
arg.hdr_type = sig.fixed_arg_type(i)
if not arg.type.same_as(arg.hdr_type):
if arg.hdr_type.is_pyobject and arg.type.is_pyobject:
arg.needs_type_test = 1
else:
arg.needs_conversion = 1
if arg.needs_conversion:
arg.hdr_cname = Naming.arg_prefix + arg.name
else:
arg.hdr_cname = Naming.var_prefix + arg.name
if nfixed > len(self.args):
self.bad_signature()
return
elif nfixed < len(self.args):
if not sig.has_generic_args:
self.bad_signature()
for arg in self.args:
if arg.is_generic and (arg.type.is_extension_type or arg.type.is_builtin_type):
arg.needs_type_test = 1
def bad_signature(self):
sig = self.entry.signature
expected_str = "%d" % sig.num_fixed_args()
if sig.has_generic_args:
expected_str += " or more"
name = self.name
if name.startswith("__") and name.endswith("__"):
desc = "Special method"
else:
desc = "Method"
error(self.pos, "%s %s has wrong number of arguments (%d declared, %s expected)" % (
desc, self.name, len(self.args), expected_str))
def declare_pyfunction(self, env):
#print "DefNode.declare_pyfunction:", self.name, "in", env ###
name = self.name
entry = env.lookup_here(name)
if entry:
if entry.is_final_cmethod and not env.parent_type.is_final_type:
error(self.pos, "Only final types can have final Python (def/cpdef) methods")
if entry.type.is_cfunction and not entry.is_builtin_cmethod and not self.is_wrapper:
warning(self.pos, "Overriding cdef method with def method.", 5)
entry = env.declare_pyfunction(name, self.pos, allow_redefine=not self.is_wrapper)
self.entry = entry
prefix = env.next_id(env.scope_prefix)
self.entry.pyfunc_cname = Naming.pyfunc_prefix + prefix + name
if Options.docstrings:
entry.doc = embed_position(self.pos, self.doc)
entry.doc_cname = Naming.funcdoc_prefix + prefix + name
if entry.is_special:
if entry.name in TypeSlots.invisible or not entry.doc or (
entry.name in '__getattr__' and env.directives['fast_getattr']):
entry.wrapperbase_cname = None
else:
entry.wrapperbase_cname = Naming.wrapperbase_prefix + prefix + name
else:
entry.doc = None
def declare_lambda_function(self, env):
entry = env.declare_lambda_function(self.lambda_name, self.pos)
entry.doc = None
self.entry = entry
self.entry.pyfunc_cname = entry.cname
def declare_arguments(self, env):
for arg in self.args:
if not arg.name:
error(arg.pos, "Missing argument name")
if arg.needs_conversion:
arg.entry = env.declare_var(arg.name, arg.type, arg.pos)
if arg.type.is_pyobject:
arg.entry.init = "0"
else:
arg.entry = self.declare_argument(env, arg)
arg.entry.is_arg = 1
arg.entry.used = 1
arg.entry.is_self_arg = arg.is_self_arg
self.declare_python_arg(env, self.star_arg)
self.declare_python_arg(env, self.starstar_arg)
def declare_python_arg(self, env, arg):
if arg:
if env.directives['infer_types'] != False:
type = PyrexTypes.unspecified_type
else:
type = py_object_type
entry = env.declare_var(arg.name, type, arg.pos)
entry.is_arg = 1
entry.used = 1
entry.init = "0"
entry.xdecref_cleanup = 1
arg.entry = entry
def analyse_expressions(self, env):
self.local_scope.directives = env.directives
self.analyse_default_values(env)
self.analyse_annotations(env)
if self.return_type_annotation:
self.return_type_annotation = self.analyse_annotation(env, self.return_type_annotation)
if not self.needs_assignment_synthesis(env) and self.decorators:
for decorator in self.decorators[::-1]:
decorator.decorator = decorator.decorator.analyse_expressions(env)
self.py_wrapper.prepare_argument_coercion(env)
return self
def needs_assignment_synthesis(self, env, code=None):
if self.is_staticmethod:
return True
if self.specialized_cpdefs or self.entry.is_fused_specialized:
return False
if self.no_assignment_synthesis:
return False
if self.entry.is_special:
return False
if self.entry.is_anonymous:
return True
if env.is_module_scope or env.is_c_class_scope:
if code is None:
return self.local_scope.directives['binding']
else:
return code.globalstate.directives['binding']
return env.is_py_class_scope or env.is_closure_scope
def error_value(self):
return self.entry.signature.error_value
def caller_will_check_exceptions(self):
return self.entry.signature.exception_check
def generate_function_definitions(self, env, code):
if self.defaults_getter:
# defaults getter must never live in class scopes, it's always a module function
self.defaults_getter.generate_function_definitions(env.global_scope(), code)
# Before closure cnames are mangled
if self.py_wrapper_required:
# func_cname might be modified by @cname
self.py_wrapper.func_cname = self.entry.func_cname
self.py_wrapper.generate_function_definitions(env, code)
FuncDefNode.generate_function_definitions(self, env, code)
def generate_function_header(self, code, with_pymethdef, proto_only=0):
if proto_only:
if self.py_wrapper_required:
self.py_wrapper.generate_function_header(
code, with_pymethdef, True)
return
arg_code_list = []
if self.entry.signature.has_dummy_arg:
self_arg = 'PyObject *%s' % Naming.self_cname
if not self.needs_outer_scope:
self_arg = 'CYTHON_UNUSED ' + self_arg
arg_code_list.append(self_arg)
def arg_decl_code(arg):
entry = arg.entry
if entry.in_closure:
cname = entry.original_cname
else:
cname = entry.cname
decl = entry.type.declaration_code(cname)
if not entry.cf_used:
decl = 'CYTHON_UNUSED ' + decl
return decl
for arg in self.args:
arg_code_list.append(arg_decl_code(arg))
if self.star_arg:
arg_code_list.append(arg_decl_code(self.star_arg))
if self.starstar_arg:
arg_code_list.append(arg_decl_code(self.starstar_arg))
if arg_code_list:
arg_code = ', '.join(arg_code_list)
else:
arg_code = 'void' # No arguments
dc = self.return_type.declaration_code(self.entry.pyfunc_cname)
decls_code = code.globalstate['decls']
preprocessor_guard = self.get_preprocessor_guard()
if preprocessor_guard:
decls_code.putln(preprocessor_guard)
decls_code.putln(
"static %s(%s); /* proto */" % (dc, arg_code))
if preprocessor_guard:
decls_code.putln("#endif")
code.putln("static %s(%s) {" % (dc, arg_code))
def generate_argument_declarations(self, env, code):
pass
def generate_keyword_list(self, code):
pass
def generate_argument_parsing_code(self, env, code):
# Move arguments into closure if required
def put_into_closure(entry):
if entry.in_closure:
code.putln('%s = %s;' % (entry.cname, entry.original_cname))
code.put_var_incref(entry)
code.put_var_giveref(entry)
for arg in self.args:
put_into_closure(arg.entry)
for arg in self.star_arg, self.starstar_arg:
if arg:
put_into_closure(arg.entry)
def generate_argument_type_tests(self, code):
pass
class DefNodeWrapper(FuncDefNode):
# DefNode python wrapper code generator
defnode = None
target = None # Target DefNode
def __init__(self, *args, **kwargs):
FuncDefNode.__init__(self, *args, **kwargs)
self.num_kwonly_args = self.target.num_kwonly_args
self.num_required_kw_args = self.target.num_required_kw_args
self.num_required_args = self.target.num_required_args
self.self_in_stararg = self.target.self_in_stararg
self.signature = None
def analyse_declarations(self, env):
target_entry = self.target.entry
name = self.name
prefix = env.next_id(env.scope_prefix)
target_entry.func_cname = Naming.pywrap_prefix + prefix + name
target_entry.pymethdef_cname = Naming.pymethdef_prefix + prefix + name
self.signature = target_entry.signature
self.np_args_idx = self.target.np_args_idx
def prepare_argument_coercion(self, env):
# This is only really required for Cython utility code at this time,
# everything else can be done during code generation. But we expand
# all utility code here, simply because we cannot easily distinguish
# different code types.
for arg in self.args:
if not arg.type.is_pyobject:
if not arg.type.create_from_py_utility_code(env):
pass # will fail later
elif arg.hdr_type and not arg.hdr_type.is_pyobject:
if not arg.hdr_type.create_to_py_utility_code(env):
pass # will fail later
if self.starstar_arg and not self.starstar_arg.entry.cf_used:
# we will set the kwargs argument to NULL instead of a new dict
# and must therefore correct the control flow state
entry = self.starstar_arg.entry
entry.xdecref_cleanup = 1
for ass in entry.cf_assignments:
if not ass.is_arg and ass.lhs.is_name:
ass.lhs.cf_maybe_null = True
def signature_has_nongeneric_args(self):
argcount = len(self.args)
if argcount == 0 or (
argcount == 1 and (self.args[0].is_self_arg or
self.args[0].is_type_arg)):
return 0
return 1
def signature_has_generic_args(self):
return self.signature.has_generic_args
def generate_function_body(self, code):
args = []
if self.signature.has_dummy_arg:
args.append(Naming.self_cname)
for arg in self.args:
if arg.hdr_type and not (arg.type.is_memoryviewslice or
arg.type.is_struct or
arg.type.is_complex):
args.append(arg.type.cast_code(arg.entry.cname))
else:
args.append(arg.entry.cname)
if self.star_arg:
args.append(self.star_arg.entry.cname)
if self.starstar_arg:
args.append(self.starstar_arg.entry.cname)
args = ', '.join(args)
if not self.return_type.is_void:
code.put('%s = ' % Naming.retval_cname)
code.putln('%s(%s);' % (
self.target.entry.pyfunc_cname, args))
def generate_function_definitions(self, env, code):
lenv = self.target.local_scope
# Generate C code for header and body of function
code.mark_pos(self.pos)
code.putln("")
code.putln("/* Python wrapper */")
preprocessor_guard = self.target.get_preprocessor_guard()
if preprocessor_guard:
code.putln(preprocessor_guard)
code.enter_cfunc_scope(lenv)
code.return_from_error_cleanup_label = code.new_label()
with_pymethdef = (self.target.needs_assignment_synthesis(env, code) or
self.target.pymethdef_required)
self.generate_function_header(code, with_pymethdef)
self.generate_argument_declarations(lenv, code)
tempvardecl_code = code.insertion_point()
if self.return_type.is_pyobject:
retval_init = ' = 0'
else:
retval_init = ''
if not self.return_type.is_void:
code.putln('%s%s;' % (
self.return_type.declaration_code(Naming.retval_cname),
retval_init))
code.put_declare_refcount_context()
code.put_setup_refcount_context('%s (wrapper)' % self.name)
self.generate_argument_parsing_code(lenv, code)
self.generate_argument_type_tests(code)
self.generate_function_body(code)
# ----- Go back and insert temp variable declarations
tempvardecl_code.put_temp_declarations(code.funcstate)
code.mark_pos(self.pos)
code.putln("")
code.putln("/* function exit code */")
# ----- Error cleanup
if code.error_label in code.labels_used:
code.put_goto(code.return_label)
code.put_label(code.error_label)
for cname, type in code.funcstate.all_managed_temps():
code.put_xdecref(cname, type)
err_val = self.error_value()
if err_val is not None:
code.putln("%s = %s;" % (Naming.retval_cname, err_val))
# ----- Non-error return cleanup
code.put_label(code.return_label)
for entry in lenv.var_entries:
if entry.is_arg and entry.type.is_pyobject:
code.put_var_decref(entry)
code.put_finish_refcount_context()
if not self.return_type.is_void:
code.putln("return %s;" % Naming.retval_cname)
code.putln('}')
code.exit_cfunc_scope()
if preprocessor_guard:
code.putln("#endif /*!(%s)*/" % preprocessor_guard)
def generate_function_header(self, code, with_pymethdef, proto_only=0):
arg_code_list = []
sig = self.signature
if sig.has_dummy_arg or self.self_in_stararg:
arg_code = "PyObject *%s" % Naming.self_cname
if not sig.has_dummy_arg:
arg_code = 'CYTHON_UNUSED ' + arg_code
arg_code_list.append(arg_code)
for arg in self.args:
if not arg.is_generic:
if arg.is_self_arg or arg.is_type_arg:
arg_code_list.append("PyObject *%s" % arg.hdr_cname)
else:
arg_code_list.append(
arg.hdr_type.declaration_code(arg.hdr_cname))
entry = self.target.entry
if not entry.is_special and sig.method_flags() == [TypeSlots.method_noargs]:
arg_code_list.append("CYTHON_UNUSED PyObject *unused")
if entry.scope.is_c_class_scope and entry.name == "__ipow__":
arg_code_list.append("CYTHON_UNUSED PyObject *unused")
if sig.has_generic_args:
arg_code_list.append(
"PyObject *%s, PyObject *%s" % (
Naming.args_cname, Naming.kwds_cname))
arg_code = ", ".join(arg_code_list)
# Prevent warning: unused function '__pyx_pw_5numpy_7ndarray_1__getbuffer__'
mf = ""
if (entry.name in ("__getbuffer__", "__releasebuffer__")
and entry.scope.is_c_class_scope):
mf = "CYTHON_UNUSED "
with_pymethdef = False
dc = self.return_type.declaration_code(entry.func_cname)
header = "static %s%s(%s)" % (mf, dc, arg_code)
code.putln("%s; /*proto*/" % header)
if proto_only:
if self.target.fused_py_func:
# If we are the specialized version of the cpdef, we still
# want the prototype for the "fused cpdef", in case we're
# checking to see if our method was overridden in Python
self.target.fused_py_func.generate_function_header(
code, with_pymethdef, proto_only=True)
return
if (Options.docstrings and entry.doc and
not self.target.fused_py_func and
not entry.scope.is_property_scope and
(not entry.is_special or entry.wrapperbase_cname)):
# h_code = code.globalstate['h_code']
docstr = entry.doc
if docstr.is_unicode:
docstr = docstr.as_utf8_string()
if not (entry.is_special and entry.name in ('__getbuffer__', '__releasebuffer__')):
code.putln('static char %s[] = %s;' % (
entry.doc_cname,
docstr.as_c_string_literal()))
if entry.is_special:
code.putln('#if CYTHON_COMPILING_IN_CPYTHON')
code.putln(
"struct wrapperbase %s;" % entry.wrapperbase_cname)
code.putln('#endif')
if with_pymethdef or self.target.fused_py_func:
code.put(
"static PyMethodDef %s = " % entry.pymethdef_cname)
code.put_pymethoddef(self.target.entry, ";", allow_skip=False)
code.putln("%s {" % header)
def generate_argument_declarations(self, env, code):
for arg in self.args:
if arg.is_generic:
if arg.needs_conversion:
code.putln("PyObject *%s = 0;" % arg.hdr_cname)
else:
code.put_var_declaration(arg.entry)
for entry in env.var_entries:
if entry.is_arg:
code.put_var_declaration(entry)
def generate_argument_parsing_code(self, env, code):
# Generate fast equivalent of PyArg_ParseTuple call for
# generic arguments, if any, including args/kwargs
old_error_label = code.new_error_label()
our_error_label = code.error_label
end_label = code.new_label("argument_unpacking_done")
has_kwonly_args = self.num_kwonly_args > 0
has_star_or_kw_args = self.star_arg is not None \
or self.starstar_arg is not None or has_kwonly_args
for arg in self.args:
if not arg.type.is_pyobject:
if not arg.type.create_from_py_utility_code(env):
pass # will fail later
if not self.signature_has_generic_args():
if has_star_or_kw_args:
error(self.pos, "This method cannot have * or keyword arguments")
self.generate_argument_conversion_code(code)
elif not self.signature_has_nongeneric_args():
# func(*args) or func(**kw) or func(*args, **kw)
self.generate_stararg_copy_code(code)
else:
self.generate_tuple_and_keyword_parsing_code(self.args, end_label, code)
code.error_label = old_error_label
if code.label_used(our_error_label):
if not code.label_used(end_label):
code.put_goto(end_label)
code.put_label(our_error_label)
if has_star_or_kw_args:
self.generate_arg_decref(self.star_arg, code)
if self.starstar_arg:
if self.starstar_arg.entry.xdecref_cleanup:
code.put_var_xdecref_clear(self.starstar_arg.entry)
else:
code.put_var_decref_clear(self.starstar_arg.entry)
code.put_add_traceback(self.target.entry.qualified_name)
code.put_finish_refcount_context()
code.putln("return %s;" % self.error_value())
if code.label_used(end_label):
code.put_label(end_label)
def generate_arg_xdecref(self, arg, code):
if arg:
code.put_var_xdecref_clear(arg.entry)
def generate_arg_decref(self, arg, code):
if arg:
code.put_var_decref_clear(arg.entry)
def generate_stararg_copy_code(self, code):
if not self.star_arg:
code.globalstate.use_utility_code(
UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c"))
code.putln("if (unlikely(PyTuple_GET_SIZE(%s) > 0)) {" %
Naming.args_cname)
code.put('__Pyx_RaiseArgtupleInvalid("%s", 1, 0, 0, PyTuple_GET_SIZE(%s)); return %s;' % (
self.name, Naming.args_cname, self.error_value()))
code.putln("}")
if self.starstar_arg:
if self.star_arg or not self.starstar_arg.entry.cf_used:
kwarg_check = "unlikely(%s)" % Naming.kwds_cname
else:
kwarg_check = "%s" % Naming.kwds_cname
else:
kwarg_check = "unlikely(%s) && unlikely(PyDict_Size(%s) > 0)" % (
Naming.kwds_cname, Naming.kwds_cname)
code.globalstate.use_utility_code(
UtilityCode.load_cached("KeywordStringCheck", "FunctionArguments.c"))
code.putln(
"if (%s && unlikely(!__Pyx_CheckKeywordStrings(%s, \"%s\", %d))) return %s;" % (
kwarg_check, Naming.kwds_cname, self.name,
bool(self.starstar_arg), self.error_value()))
if self.starstar_arg and self.starstar_arg.entry.cf_used:
if all(ref.node.allow_null for ref in self.starstar_arg.entry.cf_references):
code.putln("if (%s) {" % kwarg_check)
code.putln("%s = PyDict_Copy(%s); if (unlikely(!%s)) return %s;" % (
self.starstar_arg.entry.cname,
Naming.kwds_cname,
self.starstar_arg.entry.cname,
self.error_value()))
code.put_gotref(self.starstar_arg.entry.cname)
code.putln("} else {")
code.putln("%s = NULL;" % (self.starstar_arg.entry.cname,))
code.putln("}")
self.starstar_arg.entry.xdecref_cleanup = 1
else:
code.put("%s = (%s) ? PyDict_Copy(%s) : PyDict_New(); " % (
self.starstar_arg.entry.cname,
Naming.kwds_cname,
Naming.kwds_cname))
code.putln("if (unlikely(!%s)) return %s;" % (
self.starstar_arg.entry.cname, self.error_value()))
self.starstar_arg.entry.xdecref_cleanup = 0
code.put_gotref(self.starstar_arg.entry.cname)
if self.self_in_stararg and not self.target.is_staticmethod:
# need to create a new tuple with 'self' inserted as first item
code.put("%s = PyTuple_New(PyTuple_GET_SIZE(%s)+1); if (unlikely(!%s)) " % (
self.star_arg.entry.cname,
Naming.args_cname,
self.star_arg.entry.cname))
if self.starstar_arg and self.starstar_arg.entry.cf_used:
code.putln("{")
code.put_xdecref_clear(self.starstar_arg.entry.cname, py_object_type)
code.putln("return %s;" % self.error_value())
code.putln("}")
else:
code.putln("return %s;" % self.error_value())
code.put_gotref(self.star_arg.entry.cname)
code.put_incref(Naming.self_cname, py_object_type)
code.put_giveref(Naming.self_cname)
code.putln("PyTuple_SET_ITEM(%s, 0, %s);" % (
self.star_arg.entry.cname, Naming.self_cname))
temp = code.funcstate.allocate_temp(PyrexTypes.c_py_ssize_t_type, manage_ref=False)
code.putln("for (%s=0; %s < PyTuple_GET_SIZE(%s); %s++) {" % (
temp, temp, Naming.args_cname, temp))
code.putln("PyObject* item = PyTuple_GET_ITEM(%s, %s);" % (
Naming.args_cname, temp))
code.put_incref("item", py_object_type)
code.put_giveref("item")
code.putln("PyTuple_SET_ITEM(%s, %s+1, item);" % (
self.star_arg.entry.cname, temp))
code.putln("}")
code.funcstate.release_temp(temp)
self.star_arg.entry.xdecref_cleanup = 0
elif self.star_arg:
code.put_incref(Naming.args_cname, py_object_type)
code.putln("%s = %s;" % (
self.star_arg.entry.cname,
Naming.args_cname))
self.star_arg.entry.xdecref_cleanup = 0
def generate_tuple_and_keyword_parsing_code(self, args, success_label, code):
argtuple_error_label = code.new_label("argtuple_error")
positional_args = []
required_kw_only_args = []
optional_kw_only_args = []
for arg in args:
if arg.is_generic:
if arg.default:
if not arg.is_self_arg and not arg.is_type_arg:
if arg.kw_only:
optional_kw_only_args.append(arg)
else:
positional_args.append(arg)
elif arg.kw_only:
required_kw_only_args.append(arg)
elif not arg.is_self_arg and not arg.is_type_arg:
positional_args.append(arg)
# sort required kw-only args before optional ones to avoid special
# cases in the unpacking code
kw_only_args = required_kw_only_args + optional_kw_only_args
min_positional_args = self.num_required_args - self.num_required_kw_args
if len(args) > 0 and (args[0].is_self_arg or args[0].is_type_arg):
min_positional_args -= 1
max_positional_args = len(positional_args)
has_fixed_positional_count = not self.star_arg and \
min_positional_args == max_positional_args
has_kw_only_args = bool(kw_only_args)
if self.starstar_arg or self.star_arg:
self.generate_stararg_init_code(max_positional_args, code)
code.putln('{')
all_args = tuple(positional_args) + tuple(kw_only_args)
code.putln("static PyObject **%s[] = {%s,0};" % (
Naming.pykwdlist_cname,
','.join(['&%s' % code.intern_identifier(arg.name)
for arg in all_args])))
# Before being converted and assigned to the target variables,
# borrowed references to all unpacked argument values are
# collected into a local PyObject* array called "values",
# regardless if they were taken from default arguments,
# positional arguments or keyword arguments. Note that
# C-typed default arguments are handled at conversion time,
# so their array value is NULL in the end if no argument
# was passed for them.
self.generate_argument_values_setup_code(all_args, code)
# --- optimised code when we receive keyword arguments
code.putln("if (%s(%s)) {" % (
(self.num_required_kw_args > 0) and "likely" or "unlikely",
Naming.kwds_cname))
self.generate_keyword_unpacking_code(
min_positional_args, max_positional_args,
has_fixed_positional_count, has_kw_only_args,
all_args, argtuple_error_label, code)
# --- optimised code when we do not receive any keyword arguments
if (self.num_required_kw_args and min_positional_args > 0) or min_positional_args == max_positional_args:
# Python raises arg tuple related errors first, so we must
# check the length here
if min_positional_args == max_positional_args and not self.star_arg:
compare = '!='
else:
compare = '<'
code.putln('} else if (PyTuple_GET_SIZE(%s) %s %d) {' % (
Naming.args_cname, compare, min_positional_args))
code.put_goto(argtuple_error_label)
if self.num_required_kw_args:
# pure error case: keywords required but not passed
if max_positional_args > min_positional_args and not self.star_arg:
code.putln('} else if (PyTuple_GET_SIZE(%s) > %d) {' % (
Naming.args_cname, max_positional_args))
code.put_goto(argtuple_error_label)
code.putln('} else {')
for i, arg in enumerate(kw_only_args):
if not arg.default:
pystring_cname = code.intern_identifier(arg.name)
# required keyword-only argument missing
code.globalstate.use_utility_code(
UtilityCode.load_cached("RaiseKeywordRequired", "FunctionArguments.c"))
code.put('__Pyx_RaiseKeywordRequired("%s", %s); ' % (
self.name,
pystring_cname))
code.putln(code.error_goto(self.pos))
break
else:
# optimised tuple unpacking code
code.putln('} else {')
if min_positional_args == max_positional_args:
# parse the exact number of positional arguments from
# the args tuple
for i, arg in enumerate(positional_args):
code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (i, Naming.args_cname, i))
else:
# parse the positional arguments from the variable length
# args tuple and reject illegal argument tuple sizes
code.putln('switch (PyTuple_GET_SIZE(%s)) {' % Naming.args_cname)
if self.star_arg:
code.putln('default:')
reversed_args = list(enumerate(positional_args))[::-1]
for i, arg in reversed_args:
if i >= min_positional_args-1:
if i != reversed_args[0][0]:
code.putln('CYTHON_FALLTHROUGH;')
code.put('case %2d: ' % (i+1))
code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (i, Naming.args_cname, i))
if min_positional_args == 0:
code.putln('CYTHON_FALLTHROUGH;')
code.put('case 0: ')
code.putln('break;')
if self.star_arg:
if min_positional_args:
for i in range(min_positional_args-1, -1, -1):
code.putln('case %2d:' % i)
code.put_goto(argtuple_error_label)
else:
code.put('default: ')
code.put_goto(argtuple_error_label)
code.putln('}')
code.putln('}') # end of the conditional unpacking blocks
# Convert arg values to their final type and assign them.
# Also inject non-Python default arguments, which do cannot
# live in the values[] array.
for i, arg in enumerate(all_args):
self.generate_arg_assignment(arg, "values[%d]" % i, code)
code.putln('}') # end of the whole argument unpacking block
if code.label_used(argtuple_error_label):
code.put_goto(success_label)
code.put_label(argtuple_error_label)
code.globalstate.use_utility_code(
UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c"))
code.put('__Pyx_RaiseArgtupleInvalid("%s", %d, %d, %d, PyTuple_GET_SIZE(%s)); ' % (
self.name, has_fixed_positional_count,
min_positional_args, max_positional_args,
Naming.args_cname))
code.putln(code.error_goto(self.pos))
def generate_arg_assignment(self, arg, item, code):
if arg.type.is_pyobject:
# Python default arguments were already stored in 'item' at the very beginning
if arg.is_generic:
item = PyrexTypes.typecast(arg.type, PyrexTypes.py_object_type, item)
entry = arg.entry
code.putln("%s = %s;" % (entry.cname, item))
else:
if arg.type.from_py_function:
if arg.default:
# C-typed default arguments must be handled here
code.putln('if (%s) {' % item)
code.putln(arg.type.from_py_call_code(
item, arg.entry.cname, arg.pos, code))
if arg.default:
code.putln('} else {')
code.putln("%s = %s;" % (
arg.entry.cname,
arg.calculate_default_value_code(code)))
if arg.type.is_memoryviewslice:
code.put_incref_memoryviewslice(arg.entry.cname,
have_gil=True)
code.putln('}')
else:
error(arg.pos, "Cannot convert Python object argument to type '%s'" % arg.type)
def generate_stararg_init_code(self, max_positional_args, code):
if self.starstar_arg:
self.starstar_arg.entry.xdecref_cleanup = 0
code.putln('%s = PyDict_New(); if (unlikely(!%s)) return %s;' % (
self.starstar_arg.entry.cname,
self.starstar_arg.entry.cname,
self.error_value()))
code.put_gotref(self.starstar_arg.entry.cname)
if self.star_arg:
self.star_arg.entry.xdecref_cleanup = 0
code.putln('if (PyTuple_GET_SIZE(%s) > %d) {' % (
Naming.args_cname,
max_positional_args))
code.putln('%s = PyTuple_GetSlice(%s, %d, PyTuple_GET_SIZE(%s));' % (
self.star_arg.entry.cname, Naming.args_cname,
max_positional_args, Naming.args_cname))
code.putln("if (unlikely(!%s)) {" % self.star_arg.entry.cname)
if self.starstar_arg:
code.put_decref_clear(self.starstar_arg.entry.cname, py_object_type)
code.put_finish_refcount_context()
code.putln('return %s;' % self.error_value())
code.putln('}')
code.put_gotref(self.star_arg.entry.cname)
code.putln('} else {')
code.put("%s = %s; " % (self.star_arg.entry.cname, Naming.empty_tuple))
code.put_incref(Naming.empty_tuple, py_object_type)
code.putln('}')
def generate_argument_values_setup_code(self, args, code):
max_args = len(args)
# the 'values' array collects borrowed references to arguments
# before doing any type coercion etc.
code.putln("PyObject* values[%d] = {%s};" % (
max_args, ','.join('0'*max_args)))
if self.target.defaults_struct:
code.putln('%s *%s = __Pyx_CyFunction_Defaults(%s, %s);' % (
self.target.defaults_struct, Naming.dynamic_args_cname,
self.target.defaults_struct, Naming.self_cname))
# assign borrowed Python default values to the values array,
# so that they can be overwritten by received arguments below
for i, arg in enumerate(args):
if arg.default and arg.type.is_pyobject:
default_value = arg.calculate_default_value_code(code)
code.putln('values[%d] = %s;' % (i, arg.type.as_pyobject(default_value)))
def generate_keyword_unpacking_code(self, min_positional_args, max_positional_args,
has_fixed_positional_count, has_kw_only_args,
all_args, argtuple_error_label, code):
code.putln('Py_ssize_t kw_args;')
code.putln('const Py_ssize_t pos_args = PyTuple_GET_SIZE(%s);' % Naming.args_cname)
# copy the values from the args tuple and check that it's not too long
code.putln('switch (pos_args) {')
if self.star_arg:
code.putln('default:')
for i in range(max_positional_args-1, -1, -1):
code.put('case %2d: ' % (i+1))
code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (
i, Naming.args_cname, i))
code.putln('CYTHON_FALLTHROUGH;')
code.putln('case 0: break;')
if not self.star_arg:
code.put('default: ') # more arguments than allowed
code.put_goto(argtuple_error_label)
code.putln('}')
# The code above is very often (but not always) the same as
# the optimised non-kwargs tuple unpacking code, so we keep
# the code block above at the very top, before the following
# 'external' PyDict_Size() call, to make it easy for the C
# compiler to merge the two separate tuple unpacking
# implementations into one when they turn out to be identical.
# If we received kwargs, fill up the positional/required
# arguments with values from the kw dict
code.putln('kw_args = PyDict_Size(%s);' % Naming.kwds_cname)
if self.num_required_args or max_positional_args > 0:
last_required_arg = -1
for i, arg in enumerate(all_args):
if not arg.default:
last_required_arg = i
if last_required_arg < max_positional_args:
last_required_arg = max_positional_args-1
if max_positional_args > 0:
code.putln('switch (pos_args) {')
for i, arg in enumerate(all_args[:last_required_arg+1]):
if max_positional_args > 0 and i <= max_positional_args:
if i != 0:
code.putln('CYTHON_FALLTHROUGH;')
if self.star_arg and i == max_positional_args:
code.putln('default:')
else:
code.putln('case %2d:' % i)
pystring_cname = code.intern_identifier(arg.name)
if arg.default:
if arg.kw_only:
# optional kw-only args are handled separately below
continue
code.putln('if (kw_args > 0) {')
# don't overwrite default argument
code.putln('PyObject* value = __Pyx_PyDict_GetItemStr(%s, %s);' % (
Naming.kwds_cname, pystring_cname))
code.putln('if (value) { values[%d] = value; kw_args--; }' % i)
code.putln('}')
else:
code.putln('if (likely((values[%d] = __Pyx_PyDict_GetItemStr(%s, %s)) != 0)) kw_args--;' % (
i, Naming.kwds_cname, pystring_cname))
if i < min_positional_args:
if i == 0:
# special case: we know arg 0 is missing
code.put('else ')
code.put_goto(argtuple_error_label)
else:
# print the correct number of values (args or
# kwargs) that were passed into positional
# arguments up to this point
code.putln('else {')
code.globalstate.use_utility_code(
UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c"))
code.put('__Pyx_RaiseArgtupleInvalid("%s", %d, %d, %d, %d); ' % (
self.name, has_fixed_positional_count,
min_positional_args, max_positional_args, i))
code.putln(code.error_goto(self.pos))
code.putln('}')
elif arg.kw_only:
code.putln('else {')
code.globalstate.use_utility_code(
UtilityCode.load_cached("RaiseKeywordRequired", "FunctionArguments.c"))
code.put('__Pyx_RaiseKeywordRequired("%s", %s); ' % (
self.name, pystring_cname))
code.putln(code.error_goto(self.pos))
code.putln('}')
if max_positional_args > 0:
code.putln('}')
if has_kw_only_args:
# unpack optional keyword-only arguments separately because
# checking for interned strings in a dict is faster than iterating
self.generate_optional_kwonly_args_unpacking_code(all_args, code)
code.putln('if (unlikely(kw_args > 0)) {')
# non-positional/-required kw args left in dict: default args,
# kw-only args, **kwargs or error
#
# This is sort of a catch-all: except for checking required
# arguments, this will always do the right thing for unpacking
# keyword arguments, so that we can concentrate on optimising
# common cases above.
if max_positional_args == 0:
pos_arg_count = "0"
elif self.star_arg:
code.putln("const Py_ssize_t used_pos_args = (pos_args < %d) ? pos_args : %d;" % (
max_positional_args, max_positional_args))
pos_arg_count = "used_pos_args"
else:
pos_arg_count = "pos_args"
code.globalstate.use_utility_code(
UtilityCode.load_cached("ParseKeywords", "FunctionArguments.c"))
code.putln('if (unlikely(__Pyx_ParseOptionalKeywords(%s, %s, %s, values, %s, "%s") < 0)) %s' % (
Naming.kwds_cname,
Naming.pykwdlist_cname,
self.starstar_arg and self.starstar_arg.entry.cname or '0',
pos_arg_count,
self.name,
code.error_goto(self.pos)))
code.putln('}')
def generate_optional_kwonly_args_unpacking_code(self, all_args, code):
optional_args = []
first_optional_arg = -1
for i, arg in enumerate(all_args):
if not arg.kw_only or not arg.default:
continue
if not optional_args:
first_optional_arg = i
optional_args.append(arg.name)
if optional_args:
if len(optional_args) > 1:
# if we receive more than the named kwargs, we either have **kwargs
# (in which case we must iterate anyway) or it's an error (which we
# also handle during iteration) => skip this part if there are more
code.putln('if (kw_args > 0 && %s(kw_args <= %d)) {' % (
not self.starstar_arg and 'likely' or '',
len(optional_args)))
code.putln('Py_ssize_t index;')
# not unrolling the loop here reduces the C code overhead
code.putln('for (index = %d; index < %d && kw_args > 0; index++) {' % (
first_optional_arg, first_optional_arg + len(optional_args)))
else:
code.putln('if (kw_args == 1) {')
code.putln('const Py_ssize_t index = %d;' % first_optional_arg)
code.putln('PyObject* value = __Pyx_PyDict_GetItemStr(%s, *%s[index]);' % (
Naming.kwds_cname, Naming.pykwdlist_cname))
code.putln('if (value) { values[index] = value; kw_args--; }')
if len(optional_args) > 1:
code.putln('}')
code.putln('}')
def generate_argument_conversion_code(self, code):
# Generate code to convert arguments from signature type to
# declared type, if needed. Also copies signature arguments
# into closure fields.
for arg in self.args:
if arg.needs_conversion:
self.generate_arg_conversion(arg, code)
def generate_arg_conversion(self, arg, code):
# Generate conversion code for one argument.
old_type = arg.hdr_type
new_type = arg.type
if old_type.is_pyobject:
if arg.default:
code.putln("if (%s) {" % arg.hdr_cname)
else:
code.putln("assert(%s); {" % arg.hdr_cname)
self.generate_arg_conversion_from_pyobject(arg, code)
code.putln("}")
elif new_type.is_pyobject:
self.generate_arg_conversion_to_pyobject(arg, code)
else:
if new_type.assignable_from(old_type):
code.putln("%s = %s;" % (arg.entry.cname, arg.hdr_cname))
else:
error(arg.pos, "Cannot convert 1 argument from '%s' to '%s'" % (old_type, new_type))
def generate_arg_conversion_from_pyobject(self, arg, code):
new_type = arg.type
# copied from CoerceFromPyTypeNode
if new_type.from_py_function:
code.putln(new_type.from_py_call_code(
arg.hdr_cname,
arg.entry.cname,
arg.pos,
code,
))
else:
error(arg.pos, "Cannot convert Python object argument to type '%s'" % new_type)
def generate_arg_conversion_to_pyobject(self, arg, code):
old_type = arg.hdr_type
func = old_type.to_py_function
if func:
code.putln("%s = %s(%s); %s" % (
arg.entry.cname,
func,
arg.hdr_cname,
code.error_goto_if_null(arg.entry.cname, arg.pos)))
code.put_var_gotref(arg.entry)
else:
error(arg.pos, "Cannot convert argument of type '%s' to Python object" % old_type)
def generate_argument_type_tests(self, code):
# Generate type tests for args whose signature
# type is PyObject * and whose declared type is
# a subtype thereof.
for arg in self.args:
if arg.needs_type_test:
self.generate_arg_type_test(arg, code)
elif not arg.accept_none and (arg.type.is_pyobject or
arg.type.is_buffer or
arg.type.is_memoryviewslice):
self.generate_arg_none_check(arg, code)
def error_value(self):
return self.signature.error_value
class GeneratorDefNode(DefNode):
# Generator function node that creates a new generator instance when called.
#
# gbody GeneratorBodyDefNode the function implementing the generator
#
is_generator = True
is_coroutine = False
is_iterable_coroutine = False
is_asyncgen = False
gen_type_name = 'Generator'
needs_closure = True
child_attrs = DefNode.child_attrs + ["gbody"]
def __init__(self, pos, **kwargs):
# XXX: don't actually needs a body
kwargs['body'] = StatListNode(pos, stats=[], is_terminator=True)
super(GeneratorDefNode, self).__init__(pos, **kwargs)
def analyse_declarations(self, env):
super(GeneratorDefNode, self).analyse_declarations(env)
self.gbody.local_scope = self.local_scope
self.gbody.analyse_declarations(env)
def generate_function_body(self, env, code):
body_cname = self.gbody.entry.func_cname
name = code.intern_identifier(self.name)
qualname = code.intern_identifier(self.qualname)
module_name = code.intern_identifier(self.module_name)
code.putln('{')
code.putln('__pyx_CoroutineObject *gen = __Pyx_%s_New('
'(__pyx_coroutine_body_t) %s, %s, (PyObject *) %s, %s, %s, %s); %s' % (
self.gen_type_name,
body_cname, self.code_object.calculate_result_code(code) if self.code_object else 'NULL',
Naming.cur_scope_cname, name, qualname, module_name,
code.error_goto_if_null('gen', self.pos)))
code.put_decref(Naming.cur_scope_cname, py_object_type)
if self.requires_classobj:
classobj_cname = 'gen->classobj'
code.putln('%s = __Pyx_CyFunction_GetClassObj(%s);' % (
classobj_cname, Naming.self_cname))
code.put_incref(classobj_cname, py_object_type)
code.put_giveref(classobj_cname)
code.put_finish_refcount_context()
code.putln('return (PyObject *) gen;')
code.putln('}')
def generate_function_definitions(self, env, code):
env.use_utility_code(UtilityCode.load_cached(self.gen_type_name, "Coroutine.c"))
self.gbody.generate_function_header(code, proto=True)
super(GeneratorDefNode, self).generate_function_definitions(env, code)
self.gbody.generate_function_definitions(env, code)
class AsyncDefNode(GeneratorDefNode):
gen_type_name = 'Coroutine'
is_coroutine = True
class IterableAsyncDefNode(AsyncDefNode):
gen_type_name = 'IterableCoroutine'
is_iterable_coroutine = True
class AsyncGenNode(AsyncDefNode):
gen_type_name = 'AsyncGen'
is_asyncgen = True
class GeneratorBodyDefNode(DefNode):
# Main code body of a generator implemented as a DefNode.
#
is_generator_body = True
is_inlined = False
is_async_gen_body = False
inlined_comprehension_type = None # container type for inlined comprehensions
def __init__(self, pos=None, name=None, body=None, is_async_gen_body=False):
super(GeneratorBodyDefNode, self).__init__(
pos=pos, body=body, name=name, is_async_gen_body=is_async_gen_body,
doc=None, args=[], star_arg=None, starstar_arg=None)
def declare_generator_body(self, env):
prefix = env.next_id(env.scope_prefix)
name = env.next_id('generator')
cname = Naming.genbody_prefix + prefix + name
entry = env.declare_var(None, py_object_type, self.pos,
cname=cname, visibility='private')
entry.func_cname = cname
entry.qualified_name = EncodedString(self.name)
self.entry = entry
def analyse_declarations(self, env):
self.analyse_argument_types(env)
self.declare_generator_body(env)
def generate_function_header(self, code, proto=False):
header = "static PyObject *%s(__pyx_CoroutineObject *%s, CYTHON_UNUSED PyThreadState *%s, PyObject *%s)" % (
self.entry.func_cname,
Naming.generator_cname,
Naming.local_tstate_cname,
Naming.sent_value_cname)
if proto:
code.putln('%s; /* proto */' % header)
else:
code.putln('%s /* generator body */\n{' % header)
def generate_function_definitions(self, env, code):
lenv = self.local_scope
# Generate closure function definitions
self.body.generate_function_definitions(lenv, code)
# Generate C code for header and body of function
code.enter_cfunc_scope(lenv)
code.return_from_error_cleanup_label = code.new_label()
# ----- Top-level constants used by this function
code.mark_pos(self.pos)
self.generate_cached_builtins_decls(lenv, code)
# ----- Function header
code.putln("")
self.generate_function_header(code)
closure_init_code = code.insertion_point()
# ----- Local variables
code.putln("PyObject *%s = NULL;" % Naming.retval_cname)
tempvardecl_code = code.insertion_point()
code.put_declare_refcount_context()
code.put_setup_refcount_context(self.entry.name or self.entry.qualified_name)
profile = code.globalstate.directives['profile']
linetrace = code.globalstate.directives['linetrace']
if profile or linetrace:
tempvardecl_code.put_trace_declarations()
code.funcstate.can_trace = True
code_object = self.code_object.calculate_result_code(code) if self.code_object else None
code.put_trace_frame_init(code_object)
# ----- Resume switch point.
code.funcstate.init_closure_temps(lenv.scope_class.type.scope)
resume_code = code.insertion_point()
first_run_label = code.new_label('first_run')
code.use_label(first_run_label)
code.put_label(first_run_label)
code.putln('%s' %
(code.error_goto_if_null(Naming.sent_value_cname, self.pos)))
# ----- prepare target container for inlined comprehension
if self.is_inlined and self.inlined_comprehension_type is not None:
target_type = self.inlined_comprehension_type
if target_type is Builtin.list_type:
comp_init = 'PyList_New(0)'
elif target_type is Builtin.set_type:
comp_init = 'PySet_New(NULL)'
elif target_type is Builtin.dict_type:
comp_init = 'PyDict_New()'
else:
raise InternalError(
"invalid type of inlined comprehension: %s" % target_type)
code.putln("%s = %s; %s" % (
Naming.retval_cname, comp_init,
code.error_goto_if_null(Naming.retval_cname, self.pos)))
code.put_gotref(Naming.retval_cname)
# ----- Function body
self.generate_function_body(env, code)
# ----- Closure initialization
if lenv.scope_class.type.scope.var_entries:
closure_init_code.putln('%s = %s;' % (
lenv.scope_class.type.declaration_code(Naming.cur_scope_cname),
lenv.scope_class.type.cast_code('%s->closure' %
Naming.generator_cname)))
# FIXME: this silences a potential "unused" warning => try to avoid unused closures in more cases
code.putln("CYTHON_MAYBE_UNUSED_VAR(%s);" % Naming.cur_scope_cname)
if profile or linetrace:
code.funcstate.can_trace = False
code.mark_pos(self.pos)
code.putln("")
code.putln("/* function exit code */")
# on normal generator termination, we do not take the exception propagation
# path: no traceback info is required and not creating it is much faster
if not self.is_inlined and not self.body.is_terminator:
if self.is_async_gen_body:
code.globalstate.use_utility_code(
UtilityCode.load_cached("StopAsyncIteration", "Coroutine.c"))
code.putln('PyErr_SetNone(%s);' % (
'__Pyx_PyExc_StopAsyncIteration' if self.is_async_gen_body else 'PyExc_StopIteration'))
# ----- Error cleanup
if code.label_used(code.error_label):
if not self.body.is_terminator:
code.put_goto(code.return_label)
code.put_label(code.error_label)
if self.is_inlined and self.inlined_comprehension_type is not None:
code.put_xdecref_clear(Naming.retval_cname, py_object_type)
if Future.generator_stop in env.global_scope().context.future_directives:
# PEP 479: turn accidental StopIteration exceptions into a RuntimeError
code.globalstate.use_utility_code(UtilityCode.load_cached("pep479", "Coroutine.c"))
code.putln("__Pyx_Generator_Replace_StopIteration(%d);" % bool(self.is_async_gen_body))
for cname, type in code.funcstate.all_managed_temps():
code.put_xdecref(cname, type)
code.put_add_traceback(self.entry.qualified_name)
# ----- Non-error return cleanup
code.put_label(code.return_label)
if self.is_inlined:
code.put_xgiveref(Naming.retval_cname)
else:
code.put_xdecref_clear(Naming.retval_cname, py_object_type)
# For Py3.7, clearing is already done below.
code.putln("#if !CYTHON_USE_EXC_INFO_STACK")
code.putln("__Pyx_Coroutine_ResetAndClearException(%s);" % Naming.generator_cname)
code.putln("#endif")
code.putln('%s->resume_label = -1;' % Naming.generator_cname)
# clean up as early as possible to help breaking any reference cycles
code.putln('__Pyx_Coroutine_clear((PyObject*)%s);' % Naming.generator_cname)
if profile or linetrace:
code.put_trace_return(Naming.retval_cname,
nogil=not code.funcstate.gil_owned)
code.put_finish_refcount_context()
code.putln("return %s;" % Naming.retval_cname)
code.putln("}")
# ----- Go back and insert temp variable declarations
tempvardecl_code.put_temp_declarations(code.funcstate)
# ----- Generator resume code
if profile or linetrace:
resume_code.put_trace_call(self.entry.qualified_name, self.pos,
nogil=not code.funcstate.gil_owned)
resume_code.putln("switch (%s->resume_label) {" % (
Naming.generator_cname))
resume_code.putln("case 0: goto %s;" % first_run_label)
for i, label in code.yield_labels:
resume_code.putln("case %d: goto %s;" % (i, label))
resume_code.putln("default: /* CPython raises the right error here */")
if profile or linetrace:
resume_code.put_trace_return("Py_None",
nogil=not code.funcstate.gil_owned)
resume_code.put_finish_refcount_context()
resume_code.putln("return NULL;")
resume_code.putln("}")
code.exit_cfunc_scope()
class OverrideCheckNode(StatNode):
# A Node for dispatching to the def method if it
# is overridden.
#
# py_func
#
# args
# func_temp
# body
child_attrs = ['body']
body = None
def analyse_expressions(self, env):
self.args = env.arg_entries
if self.py_func.is_module_scope:
first_arg = 0
else:
first_arg = 1
from . import ExprNodes
self.func_node = ExprNodes.RawCNameExprNode(self.pos, py_object_type)
call_node = ExprNodes.SimpleCallNode(
self.pos, function=self.func_node,
args=[ExprNodes.NameNode(self.pos, name=arg.name)
for arg in self.args[first_arg:]])
if env.return_type.is_void or env.return_type.is_returncode:
self.body = StatListNode(self.pos, stats=[
ExprStatNode(self.pos, expr=call_node),
ReturnStatNode(self.pos, value=None)])
else:
self.body = ReturnStatNode(self.pos, value=call_node)
self.body = self.body.analyse_expressions(env)
return self
def generate_execution_code(self, code):
interned_attr_cname = code.intern_identifier(self.py_func.entry.name)
# Check to see if we are an extension type
if self.py_func.is_module_scope:
self_arg = "((PyObject *)%s)" % Naming.module_cname
else:
self_arg = "((PyObject *)%s)" % self.args[0].cname
code.putln("/* Check if called by wrapper */")
code.putln("if (unlikely(%s)) ;" % Naming.skip_dispatch_cname)
code.putln("/* Check if overridden in Python */")
if self.py_func.is_module_scope:
code.putln("else {")
else:
code.putln("else if (unlikely((Py_TYPE(%s)->tp_dictoffset != 0)"
" || (Py_TYPE(%s)->tp_flags & (Py_TPFLAGS_IS_ABSTRACT | Py_TPFLAGS_HEAPTYPE)))) {" % (
self_arg, self_arg))
code.putln("#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS")
code.globalstate.use_utility_code(
UtilityCode.load_cached("PyDictVersioning", "ObjectHandling.c"))
# TODO: remove the object dict version check by 'inlining' the getattr implementation for methods.
# This would allow checking the dict versions around _PyType_Lookup() if it returns a descriptor,
# and would (tada!) make this check a pure type based thing instead of supporting only a single
# instance at a time.
code.putln("static PY_UINT64_T %s = __PYX_DICT_VERSION_INIT, %s = __PYX_DICT_VERSION_INIT;" % (
Naming.tp_dict_version_temp, Naming.obj_dict_version_temp))
code.putln("if (unlikely(!__Pyx_object_dict_version_matches(%s, %s, %s))) {" % (
self_arg, Naming.tp_dict_version_temp, Naming.obj_dict_version_temp))
code.putln("PY_UINT64_T %s = __Pyx_get_tp_dict_version(%s);" % (
Naming.type_dict_guard_temp, self_arg))
code.putln("#endif")
func_node_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True)
self.func_node.set_cname(func_node_temp)
# need to get attribute manually--scope would return cdef method
code.globalstate.use_utility_code(
UtilityCode.load_cached("PyObjectGetAttrStr", "ObjectHandling.c"))
err = code.error_goto_if_null(func_node_temp, self.pos)
code.putln("%s = __Pyx_PyObject_GetAttrStr(%s, %s); %s" % (
func_node_temp, self_arg, interned_attr_cname, err))
code.put_gotref(func_node_temp)
is_builtin_function_or_method = "PyCFunction_Check(%s)" % func_node_temp
is_overridden = "(PyCFunction_GET_FUNCTION(%s) != (PyCFunction)(void*)%s)" % (
func_node_temp, self.py_func.entry.func_cname)
code.putln("if (!%s || %s) {" % (is_builtin_function_or_method, is_overridden))
self.body.generate_execution_code(code)
code.putln("}")
# NOTE: it's not 100% sure that we catch the exact versions here that were used for the lookup,
# but it is very unlikely that the versions change during lookup, and the type dict safe guard
# should increase the chance of detecting such a case.
code.putln("#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS")
code.putln("%s = __Pyx_get_tp_dict_version(%s);" % (
Naming.tp_dict_version_temp, self_arg))
code.putln("%s = __Pyx_get_object_dict_version(%s);" % (
Naming.obj_dict_version_temp, self_arg))
# Safety check that the type dict didn't change during the lookup. Since CPython looks up the
# attribute (descriptor) first in the type dict and then in the instance dict or through the
# descriptor, the only really far-away lookup when we get here is one in the type dict. So we
# double check the type dict version before and afterwards to guard against later changes of
# the type dict during the lookup process.
code.putln("if (unlikely(%s != %s)) {" % (
Naming.type_dict_guard_temp, Naming.tp_dict_version_temp))
code.putln("%s = %s = __PYX_DICT_VERSION_INIT;" % (
Naming.tp_dict_version_temp, Naming.obj_dict_version_temp))
code.putln("}")
code.putln("#endif")
code.put_decref_clear(func_node_temp, PyrexTypes.py_object_type)
code.funcstate.release_temp(func_node_temp)
code.putln("#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS")
code.putln("}")
code.putln("#endif")
code.putln("}")
class ClassDefNode(StatNode, BlockNode):
pass
class PyClassDefNode(ClassDefNode):
# A Python class definition.
#
# name EncodedString Name of the class
# doc string or None
# body StatNode Attribute definition code
# entry Symtab.Entry
# scope PyClassScope
# decorators [DecoratorNode] list of decorators or None
#
# The following subnodes are constructed internally:
#
# dict DictNode Class dictionary or Py3 namespace
# classobj ClassNode Class object
# target NameNode Variable to assign class object to
child_attrs = ["body", "dict", "metaclass", "mkw", "bases", "class_result",
"target", "class_cell", "decorators"]
decorators = None
class_result = None
is_py3_style_class = False # Python3 style class (kwargs)
metaclass = None
mkw = None
def __init__(self, pos, name, bases, doc, body, decorators=None,
keyword_args=None, force_py3_semantics=False):
StatNode.__init__(self, pos)
self.name = name
self.doc = doc
self.body = body
self.decorators = decorators
self.bases = bases
from . import ExprNodes
if self.doc and Options.docstrings:
doc = embed_position(self.pos, self.doc)
doc_node = ExprNodes.StringNode(pos, value=doc)
else:
doc_node = None
allow_py2_metaclass = not force_py3_semantics
if keyword_args:
allow_py2_metaclass = False
self.is_py3_style_class = True
if keyword_args.is_dict_literal:
if keyword_args.key_value_pairs:
for i, item in list(enumerate(keyword_args.key_value_pairs))[::-1]:
if item.key.value == 'metaclass':
if self.metaclass is not None:
error(item.pos, "keyword argument 'metaclass' passed multiple times")
# special case: we already know the metaclass,
# so we don't need to do the "build kwargs,
# find metaclass" dance at runtime
self.metaclass = item.value
del keyword_args.key_value_pairs[i]
self.mkw = keyword_args
else:
assert self.metaclass is not None
else:
# MergedDictNode
self.mkw = ExprNodes.ProxyNode(keyword_args)
if force_py3_semantics or self.bases or self.mkw or self.metaclass:
if self.metaclass is None:
if keyword_args and not keyword_args.is_dict_literal:
# **kwargs may contain 'metaclass' arg
mkdict = self.mkw
else:
mkdict = None
if (not mkdict and
self.bases.is_sequence_constructor and
not self.bases.args):
pass # no base classes => no inherited metaclass
else:
self.metaclass = ExprNodes.PyClassMetaclassNode(
pos, mkw=mkdict, bases=self.bases)
needs_metaclass_calculation = False
else:
needs_metaclass_calculation = True
self.dict = ExprNodes.PyClassNamespaceNode(
pos, name=name, doc=doc_node,
metaclass=self.metaclass, bases=self.bases, mkw=self.mkw)
self.classobj = ExprNodes.Py3ClassNode(
pos, name=name,
bases=self.bases, dict=self.dict, doc=doc_node,
metaclass=self.metaclass, mkw=self.mkw,
calculate_metaclass=needs_metaclass_calculation,
allow_py2_metaclass=allow_py2_metaclass)
else:
# no bases, no metaclass => old style class creation
self.dict = ExprNodes.DictNode(pos, key_value_pairs=[])
self.classobj = ExprNodes.ClassNode(
pos, name=name,
bases=bases, dict=self.dict, doc=doc_node)
self.target = ExprNodes.NameNode(pos, name=name)
self.class_cell = ExprNodes.ClassCellInjectorNode(self.pos)
def as_cclass(self):
"""
Return this node as if it were declared as an extension class
"""
if self.is_py3_style_class:
error(self.classobj.pos, "Python3 style class could not be represented as C class")
return
from . import ExprNodes
return CClassDefNode(self.pos,
visibility='private',
module_name=None,
class_name=self.name,
bases=self.classobj.bases or ExprNodes.TupleNode(self.pos, args=[]),
decorators=self.decorators,
body=self.body,
in_pxd=False,
doc=self.doc)
def create_scope(self, env):
genv = env
while genv.is_py_class_scope or genv.is_c_class_scope:
genv = genv.outer_scope
cenv = self.scope = PyClassScope(name=self.name, outer_scope=genv)
return cenv
def analyse_declarations(self, env):
class_result = self.classobj
if self.decorators:
from .ExprNodes import SimpleCallNode
for decorator in self.decorators[::-1]:
class_result = SimpleCallNode(
decorator.pos,
function=decorator.decorator,
args=[class_result])
self.decorators = None
self.class_result = class_result
self.class_result.analyse_declarations(env)
self.target.analyse_target_declaration(env)
cenv = self.create_scope(env)
cenv.directives = env.directives
cenv.class_obj_cname = self.target.entry.cname
self.body.analyse_declarations(cenv)
def analyse_expressions(self, env):
if self.bases:
self.bases = self.bases.analyse_expressions(env)
if self.metaclass:
self.metaclass = self.metaclass.analyse_expressions(env)
if self.mkw:
self.mkw = self.mkw.analyse_expressions(env)
self.dict = self.dict.analyse_expressions(env)
self.class_result = self.class_result.analyse_expressions(env)
cenv = self.scope
self.body = self.body.analyse_expressions(cenv)
self.target.analyse_target_expression(env, self.classobj)
self.class_cell = self.class_cell.analyse_expressions(cenv)
return self
def generate_function_definitions(self, env, code):
self.generate_lambda_definitions(self.scope, code)
self.body.generate_function_definitions(self.scope, code)
def generate_execution_code(self, code):
code.mark_pos(self.pos)
code.pyclass_stack.append(self)
cenv = self.scope
if self.bases:
self.bases.generate_evaluation_code(code)
if self.mkw:
self.mkw.generate_evaluation_code(code)
if self.metaclass:
self.metaclass.generate_evaluation_code(code)
self.dict.generate_evaluation_code(code)
cenv.namespace_cname = cenv.class_obj_cname = self.dict.result()
self.class_cell.generate_evaluation_code(code)
self.body.generate_execution_code(code)
self.class_result.generate_evaluation_code(code)
self.class_cell.generate_injection_code(
code, self.class_result.result())
self.class_cell.generate_disposal_code(code)
cenv.namespace_cname = cenv.class_obj_cname = self.classobj.result()
self.target.generate_assignment_code(self.class_result, code)
self.dict.generate_disposal_code(code)
self.dict.free_temps(code)
if self.metaclass:
self.metaclass.generate_disposal_code(code)
self.metaclass.free_temps(code)
if self.mkw:
self.mkw.generate_disposal_code(code)
self.mkw.free_temps(code)
if self.bases:
self.bases.generate_disposal_code(code)
self.bases.free_temps(code)
code.pyclass_stack.pop()
class CClassDefNode(ClassDefNode):
# An extension type definition.
#
# visibility 'private' or 'public' or 'extern'
# typedef_flag boolean
# api boolean
# module_name string or None For import of extern type objects
# class_name string Unqualified name of class
# as_name string or None Name to declare as in this scope
# bases TupleNode Base class(es)
# objstruct_name string or None Specified C name of object struct
# typeobj_name string or None Specified C name of type object
# check_size 'warn', 'error', 'ignore' What to do if tp_basicsize does not match
# in_pxd boolean Is in a .pxd file
# decorators [DecoratorNode] list of decorators or None
# doc string or None
# body StatNode or None
# entry Symtab.Entry
# base_type PyExtensionType or None
# buffer_defaults_node DictNode or None Declares defaults for a buffer
# buffer_defaults_pos
child_attrs = ["body"]
buffer_defaults_node = None
buffer_defaults_pos = None
typedef_flag = False
api = False
objstruct_name = None
typeobj_name = None
check_size = None
decorators = None
shadow = False
def buffer_defaults(self, env):
if not hasattr(self, '_buffer_defaults'):
from . import Buffer
if self.buffer_defaults_node:
self._buffer_defaults = Buffer.analyse_buffer_options(
self.buffer_defaults_pos,
env, [], self.buffer_defaults_node,
need_complete=False)
else:
self._buffer_defaults = None
return self._buffer_defaults
def declare(self, env):
if self.module_name and self.visibility != 'extern':
module_path = self.module_name.split(".")
home_scope = env.find_imported_module(module_path, self.pos)
if not home_scope:
return None
else:
home_scope = env
self.entry = home_scope.declare_c_class(
name=self.class_name,
pos=self.pos,
defining=0,
implementing=0,
module_name=self.module_name,
base_type=None,
objstruct_cname=self.objstruct_name,
typeobj_cname=self.typeobj_name,
visibility=self.visibility,
typedef_flag=self.typedef_flag,
check_size = self.check_size,
api=self.api,
buffer_defaults=self.buffer_defaults(env),
shadow=self.shadow)
def analyse_declarations(self, env):
#print "CClassDefNode.analyse_declarations:", self.class_name
#print "...visibility =", self.visibility
#print "...module_name =", self.module_name
if env.in_cinclude and not self.objstruct_name:
error(self.pos, "Object struct name specification required for C class defined in 'extern from' block")
if self.decorators:
error(self.pos, "Decorators not allowed on cdef classes (used on type '%s')" % self.class_name)
self.base_type = None
# Now that module imports are cached, we need to
# import the modules for extern classes.
if self.module_name:
self.module = None
for module in env.cimported_modules:
if module.name == self.module_name:
self.module = module
if self.module is None:
self.module = ModuleScope(self.module_name, None, env.context)
self.module.has_extern_class = 1
env.add_imported_module(self.module)
if self.bases.args:
base = self.bases.args[0]
base_type = base.analyse_as_type(env)
if base_type in (PyrexTypes.c_int_type, PyrexTypes.c_long_type, PyrexTypes.c_float_type):
# Use the Python rather than C variant of these types.
base_type = env.lookup(base_type.sign_and_name()).type
if base_type is None:
error(base.pos, "First base of '%s' is not an extension type" % self.class_name)
elif base_type == PyrexTypes.py_object_type:
base_class_scope = None
elif not base_type.is_extension_type and \
not (base_type.is_builtin_type and base_type.objstruct_cname):
error(base.pos, "'%s' is not an extension type" % base_type)
elif not base_type.is_complete():
error(base.pos, "Base class '%s' of type '%s' is incomplete" % (
base_type.name, self.class_name))
elif base_type.scope and base_type.scope.directives and \
base_type.is_final_type:
error(base.pos, "Base class '%s' of type '%s' is final" % (
base_type, self.class_name))
elif base_type.is_builtin_type and \
base_type.name in ('tuple', 'str', 'bytes'):
error(base.pos, "inheritance from PyVarObject types like '%s' is not currently supported"
% base_type.name)
else:
self.base_type = base_type
if env.directives.get('freelist', 0) > 0 and base_type != PyrexTypes.py_object_type:
warning(self.pos, "freelists cannot be used on subtypes, only the base class can manage them", 1)
has_body = self.body is not None
if has_body and self.base_type and not self.base_type.scope:
# To properly initialize inherited attributes, the base type must
# be analysed before this type.
self.base_type.defered_declarations.append(lambda : self.analyse_declarations(env))
return
if self.module_name and self.visibility != 'extern':
module_path = self.module_name.split(".")
home_scope = env.find_imported_module(module_path, self.pos)
if not home_scope:
return
else:
home_scope = env
if self.visibility == 'extern':
if (self.module_name == '__builtin__' and
self.class_name in Builtin.builtin_types and
env.qualified_name[:8] != 'cpython.'): # allow overloaded names for cimporting from cpython
warning(self.pos, "%s already a builtin Cython type" % self.class_name, 1)
self.entry = home_scope.declare_c_class(
name=self.class_name,
pos=self.pos,
defining=has_body and self.in_pxd,
implementing=has_body and not self.in_pxd,
module_name=self.module_name,
base_type=self.base_type,
objstruct_cname=self.objstruct_name,
typeobj_cname=self.typeobj_name,
check_size=self.check_size,
visibility=self.visibility,
typedef_flag=self.typedef_flag,
api=self.api,
buffer_defaults=self.buffer_defaults(env),
shadow=self.shadow)
if self.shadow:
home_scope.lookup(self.class_name).as_variable = self.entry
if home_scope is not env and self.visibility == 'extern':
env.add_imported_entry(self.class_name, self.entry, self.pos)
self.scope = scope = self.entry.type.scope
if scope is not None:
scope.directives = env.directives
if self.doc and Options.docstrings:
scope.doc = embed_position(self.pos, self.doc)
if has_body:
self.body.analyse_declarations(scope)
dict_entry = self.scope.lookup_here("__dict__")
if dict_entry and dict_entry.is_variable and (not scope.defined and not scope.implemented):
dict_entry.getter_cname = self.scope.mangle_internal("__dict__getter")
self.scope.declare_property("__dict__", dict_entry.doc, dict_entry.pos)
if self.in_pxd:
scope.defined = 1
else:
scope.implemented = 1
if len(self.bases.args) > 1:
if not has_body or self.in_pxd:
error(self.bases.args[1].pos, "Only declare first base in declaration.")
# At runtime, we check that the other bases are heap types
# and that a __dict__ is added if required.
for other_base in self.bases.args[1:]:
if other_base.analyse_as_type(env):
error(other_base.pos, "Only one extension type base class allowed.")
self.entry.type.early_init = 0
from . import ExprNodes
self.type_init_args = ExprNodes.TupleNode(
self.pos,
args=[ExprNodes.IdentifierStringNode(self.pos, value=self.class_name),
self.bases,
ExprNodes.DictNode(self.pos, key_value_pairs=[])])
elif self.base_type:
self.entry.type.early_init = self.base_type.is_external or self.base_type.early_init
self.type_init_args = None
else:
self.entry.type.early_init = 1
self.type_init_args = None
env.allocate_vtable_names(self.entry)
for thunk in self.entry.type.defered_declarations:
thunk()
def analyse_expressions(self, env):
if self.body:
scope = self.entry.type.scope
self.body = self.body.analyse_expressions(scope)
if self.type_init_args:
self.type_init_args.analyse_expressions(env)
return self
def generate_function_definitions(self, env, code):
if self.body:
self.generate_lambda_definitions(self.scope, code)
self.body.generate_function_definitions(self.scope, code)
def generate_execution_code(self, code):
# This is needed to generate evaluation code for
# default values of method arguments.
code.mark_pos(self.pos)
if self.body:
self.body.generate_execution_code(code)
if not self.entry.type.early_init:
if self.type_init_args:
self.type_init_args.generate_evaluation_code(code)
bases = "PyTuple_GET_ITEM(%s, 1)" % self.type_init_args.result()
first_base = "((PyTypeObject*)PyTuple_GET_ITEM(%s, 0))" % bases
# Let Python do the base types compatibility checking.
trial_type = code.funcstate.allocate_temp(PyrexTypes.py_object_type, True)
code.putln("%s = PyType_Type.tp_new(&PyType_Type, %s, NULL);" % (
trial_type, self.type_init_args.result()))
code.putln(code.error_goto_if_null(trial_type, self.pos))
code.put_gotref(trial_type)
code.putln("if (((PyTypeObject*) %s)->tp_base != %s) {" % (
trial_type, first_base))
code.putln("PyErr_Format(PyExc_TypeError, \"best base '%s' must be equal to first base '%s'\",")
code.putln(" ((PyTypeObject*) %s)->tp_base->tp_name, %s->tp_name);" % (
trial_type, first_base))
code.putln(code.error_goto(self.pos))
code.putln("}")
code.funcstate.release_temp(trial_type)
code.put_incref(bases, PyrexTypes.py_object_type)
code.put_giveref(bases)
code.putln("%s.tp_bases = %s;" % (self.entry.type.typeobj_cname, bases))
code.put_decref_clear(trial_type, PyrexTypes.py_object_type)
self.type_init_args.generate_disposal_code(code)
self.type_init_args.free_temps(code)
self.generate_type_ready_code(self.entry, code, True)
# Also called from ModuleNode for early init types.
@staticmethod
def generate_type_ready_code(entry, code, heap_type_bases=False):
# Generate a call to PyType_Ready for an extension
# type defined in this module.
type = entry.type
typeobj_cname = type.typeobj_cname
scope = type.scope
if not scope: # could be None if there was an error
return
if entry.visibility != 'extern':
for slot in TypeSlots.slot_table:
slot.generate_dynamic_init_code(scope, code)
if heap_type_bases:
code.globalstate.use_utility_code(
UtilityCode.load_cached('PyType_Ready', 'ExtensionTypes.c'))
readyfunc = "__Pyx_PyType_Ready"
else:
readyfunc = "PyType_Ready"
code.putln(
"if (%s(&%s) < 0) %s" % (
readyfunc,
typeobj_cname,
code.error_goto(entry.pos)))
# Don't inherit tp_print from builtin types, restoring the
# behavior of using tp_repr or tp_str instead.
# ("tp_print" was renamed to "tp_vectorcall_offset" in Py3.8b1)
code.putln("#if PY_VERSION_HEX < 0x030800B1")
code.putln("%s.tp_print = 0;" % typeobj_cname)
code.putln("#endif")
# Use specialised attribute lookup for types with generic lookup but no instance dict.
getattr_slot_func = TypeSlots.get_slot_code_by_name(scope, 'tp_getattro')
dictoffset_slot_func = TypeSlots.get_slot_code_by_name(scope, 'tp_dictoffset')
if getattr_slot_func == '0' and dictoffset_slot_func == '0':
if type.is_final_type:
py_cfunc = "__Pyx_PyObject_GenericGetAttrNoDict" # grepable
utility_func = "PyObject_GenericGetAttrNoDict"
else:
py_cfunc = "__Pyx_PyObject_GenericGetAttr"
utility_func = "PyObject_GenericGetAttr"
code.globalstate.use_utility_code(UtilityCode.load_cached(utility_func, "ObjectHandling.c"))
code.putln("if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) &&"
" likely(!%s.tp_dictoffset && %s.tp_getattro == PyObject_GenericGetAttr)) {" % (
typeobj_cname, typeobj_cname))
code.putln("%s.tp_getattro = %s;" % (
typeobj_cname, py_cfunc))
code.putln("}")
# Fix special method docstrings. This is a bit of a hack, but
# unless we let PyType_Ready create the slot wrappers we have
# a significant performance hit. (See trac #561.)
for func in entry.type.scope.pyfunc_entries:
is_buffer = func.name in ('__getbuffer__', '__releasebuffer__')
if (func.is_special and Options.docstrings and
func.wrapperbase_cname and not is_buffer):
slot = TypeSlots.method_name_to_slot.get(func.name)
preprocessor_guard = slot.preprocessor_guard_code() if slot else None
if preprocessor_guard:
code.putln(preprocessor_guard)
code.putln('#if CYTHON_COMPILING_IN_CPYTHON')
code.putln("{")
code.putln(
'PyObject *wrapper = PyObject_GetAttrString((PyObject *)&%s, "%s"); %s' % (
typeobj_cname,
func.name,
code.error_goto_if_null('wrapper', entry.pos)))
code.putln(
"if (Py_TYPE(wrapper) == &PyWrapperDescr_Type) {")
code.putln(
"%s = *((PyWrapperDescrObject *)wrapper)->d_base;" % (
func.wrapperbase_cname))
code.putln(
"%s.doc = %s;" % (func.wrapperbase_cname, func.doc_cname))
code.putln(
"((PyWrapperDescrObject *)wrapper)->d_base = &%s;" % (
func.wrapperbase_cname))
code.putln("}")
code.putln("}")
code.putln('#endif')
if preprocessor_guard:
code.putln('#endif')
if type.vtable_cname:
code.globalstate.use_utility_code(
UtilityCode.load_cached('SetVTable', 'ImportExport.c'))
code.putln(
"if (__Pyx_SetVtable(%s.tp_dict, %s) < 0) %s" % (
typeobj_cname,
type.vtabptr_cname,
code.error_goto(entry.pos)))
if heap_type_bases:
code.globalstate.use_utility_code(
UtilityCode.load_cached('MergeVTables', 'ImportExport.c'))
code.putln("if (__Pyx_MergeVtables(&%s) < 0) %s" % (
typeobj_cname,
code.error_goto(entry.pos)))
if not type.scope.is_internal and not type.scope.directives.get('internal'):
# scope.is_internal is set for types defined by
# Cython (such as closures), the 'internal'
# directive is set by users
code.putln(
'if (PyObject_SetAttr(%s, %s, (PyObject *)&%s) < 0) %s' % (
Naming.module_cname,
code.intern_identifier(scope.class_name),
typeobj_cname,
code.error_goto(entry.pos)))
weakref_entry = scope.lookup_here("__weakref__") if not scope.is_closure_class_scope else None
if weakref_entry:
if weakref_entry.type is py_object_type:
tp_weaklistoffset = "%s.tp_weaklistoffset" % typeobj_cname
if type.typedef_flag:
objstruct = type.objstruct_cname
else:
objstruct = "struct %s" % type.objstruct_cname
code.putln("if (%s == 0) %s = offsetof(%s, %s);" % (
tp_weaklistoffset,
tp_weaklistoffset,
objstruct,
weakref_entry.cname))
else:
error(weakref_entry.pos, "__weakref__ slot must be of type 'object'")
if scope.lookup_here("__reduce_cython__") if not scope.is_closure_class_scope else None:
# Unfortunately, we cannot reliably detect whether a
# superclass defined __reduce__ at compile time, so we must
# do so at runtime.
code.globalstate.use_utility_code(
UtilityCode.load_cached('SetupReduce', 'ExtensionTypes.c'))
code.putln('if (__Pyx_setup_reduce((PyObject*)&%s) < 0) %s' % (
typeobj_cname,
code.error_goto(entry.pos)))
# Generate code to initialise the typeptr of an extension
# type defined in this module to point to its type object.
if type.typeobj_cname:
code.putln(
"%s = &%s;" % (
type.typeptr_cname, type.typeobj_cname))
def annotate(self, code):
if self.type_init_args:
self.type_init_args.annotate(code)
if self.body:
self.body.annotate(code)
class PropertyNode(StatNode):
# Definition of a property in an extension type.
#
# name string
# doc EncodedString or None Doc string
# entry Symtab.Entry
# body StatListNode
child_attrs = ["body"]
def analyse_declarations(self, env):
self.entry = env.declare_property(self.name, self.doc, self.pos)
self.entry.scope.directives = env.directives
self.body.analyse_declarations(self.entry.scope)
def analyse_expressions(self, env):
self.body = self.body.analyse_expressions(env)
return self
def generate_function_definitions(self, env, code):
self.body.generate_function_definitions(env, code)
def generate_execution_code(self, code):
pass
def annotate(self, code):
self.body.annotate(code)
class GlobalNode(StatNode):
# Global variable declaration.
#
# names [string]
child_attrs = []
def analyse_declarations(self, env):
for name in self.names:
env.declare_global(name, self.pos)
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class NonlocalNode(StatNode):
# Nonlocal variable declaration via the 'nonlocal' keyword.
#
# names [string]
child_attrs = []
def analyse_declarations(self, env):
for name in self.names:
env.declare_nonlocal(name, self.pos)
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class ExprStatNode(StatNode):
# Expression used as a statement.
#
# expr ExprNode
child_attrs = ["expr"]
def analyse_declarations(self, env):
from . import ExprNodes
expr = self.expr
if isinstance(expr, ExprNodes.GeneralCallNode):
func = expr.function.as_cython_attribute()
if func == u'declare':
args, kwds = expr.explicit_args_kwds()
if len(args):
error(expr.pos, "Variable names must be specified.")
for var, type_node in kwds.key_value_pairs:
type = type_node.analyse_as_type(env)
if type is None:
error(type_node.pos, "Unknown type")
else:
env.declare_var(var.value, type, var.pos, is_cdef=True)
self.__class__ = PassStatNode
elif getattr(expr, 'annotation', None) is not None:
if expr.is_name:
# non-code variable annotation, e.g. "name: type"
expr.declare_from_annotation(env)
self.__class__ = PassStatNode
elif expr.is_attribute or expr.is_subscript:
# unused expression with annotation, e.g. "a[0]: type" or "a.xyz : type"
self.__class__ = PassStatNode
def analyse_expressions(self, env):
self.expr.result_is_used = False # hint that .result() may safely be left empty
self.expr = self.expr.analyse_expressions(env)
# Repeat in case of node replacement.
self.expr.result_is_used = False # hint that .result() may safely be left empty
return self
def nogil_check(self, env):
if self.expr.type.is_pyobject and self.expr.is_temp:
self.gil_error()
gil_message = "Discarding owned Python object"
def generate_execution_code(self, code):
code.mark_pos(self.pos)
self.expr.result_is_used = False # hint that .result() may safely be left empty
self.expr.generate_evaluation_code(code)
if not self.expr.is_temp and self.expr.result():
result = self.expr.result()
if not self.expr.type.is_void:
result = "(void)(%s)" % result
code.putln("%s;" % result)
self.expr.generate_disposal_code(code)
self.expr.free_temps(code)
def generate_function_definitions(self, env, code):
self.expr.generate_function_definitions(env, code)
def annotate(self, code):
self.expr.annotate(code)
class AssignmentNode(StatNode):
# Abstract base class for assignment nodes.
#
# The analyse_expressions and generate_execution_code
# phases of assignments are split into two sub-phases
# each, to enable all the right hand sides of a
# parallel assignment to be evaluated before assigning
# to any of the left hand sides.
def analyse_expressions(self, env):
node = self.analyse_types(env)
if isinstance(node, AssignmentNode) and not isinstance(node, ParallelAssignmentNode):
if node.rhs.type.is_ptr and node.rhs.is_ephemeral():
error(self.pos, "Storing unsafe C derivative of temporary Python reference")
return node
# def analyse_expressions(self, env):
# self.analyse_expressions_1(env)
# self.analyse_expressions_2(env)
def generate_execution_code(self, code):
code.mark_pos(self.pos)
self.generate_rhs_evaluation_code(code)
self.generate_assignment_code(code)
class SingleAssignmentNode(AssignmentNode):
# The simplest case:
#
# a = b
#
# lhs ExprNode Left hand side
# rhs ExprNode Right hand side
# first bool Is this guaranteed the first assignment to lhs?
# is_overloaded_assignment bool Is this assignment done via an overloaded operator=
# exception_check
# exception_value
child_attrs = ["lhs", "rhs"]
first = False
is_overloaded_assignment = False
declaration_only = False
def analyse_declarations(self, env):
from . import ExprNodes
# handle declarations of the form x = cython.foo()
if isinstance(self.rhs, ExprNodes.CallNode):
func_name = self.rhs.function.as_cython_attribute()
if func_name:
args, kwds = self.rhs.explicit_args_kwds()
if func_name in ['declare', 'typedef']:
if len(args) > 2:
error(args[2].pos, "Invalid positional argument.")
return
if kwds is not None:
kwdict = kwds.compile_time_value(None)
if func_name == 'typedef' or 'visibility' not in kwdict:
error(kwds.pos, "Invalid keyword argument.")
return
visibility = kwdict['visibility']
else:
visibility = 'private'
type = args[0].analyse_as_type(env)
if type is None:
error(args[0].pos, "Unknown type")
return
lhs = self.lhs
if func_name == 'declare':
if isinstance(lhs, ExprNodes.NameNode):
vars = [(lhs.name, lhs.pos)]
elif isinstance(lhs, ExprNodes.TupleNode):
vars = [(var.name, var.pos) for var in lhs.args]
else:
error(lhs.pos, "Invalid declaration")
return
for var, pos in vars:
env.declare_var(var, type, pos, is_cdef=True, visibility=visibility)
if len(args) == 2:
# we have a value
self.rhs = args[1]
else:
self.declaration_only = True
else:
self.declaration_only = True
if not isinstance(lhs, ExprNodes.NameNode):
error(lhs.pos, "Invalid declaration.")
env.declare_typedef(lhs.name, type, self.pos, visibility='private')
elif func_name in ['struct', 'union']:
self.declaration_only = True
if len(args) > 0 or kwds is None:
error(self.rhs.pos, "Struct or union members must be given by name.")
return
members = []
for member, type_node in kwds.key_value_pairs:
type = type_node.analyse_as_type(env)
if type is None:
error(type_node.pos, "Unknown type")
else:
members.append((member.value, type, member.pos))
if len(members) < len(kwds.key_value_pairs):
return
if not isinstance(self.lhs, ExprNodes.NameNode):
error(self.lhs.pos, "Invalid declaration.")
name = self.lhs.name
scope = StructOrUnionScope(name)
env.declare_struct_or_union(name, func_name, scope, False, self.rhs.pos)
for member, type, pos in members:
scope.declare_var(member, type, pos)
elif func_name == 'fused_type':
# dtype = cython.fused_type(...)
self.declaration_only = True
if kwds:
error(self.rhs.function.pos,
"fused_type does not take keyword arguments")
fusednode = FusedTypeNode(self.rhs.pos,
name=self.lhs.name, types=args)
fusednode.analyse_declarations(env)
if self.declaration_only:
return
else:
self.lhs.analyse_target_declaration(env)
def analyse_types(self, env, use_temp=0):
from . import ExprNodes
self.rhs = self.rhs.analyse_types(env)
unrolled_assignment = self.unroll_rhs(env)
if unrolled_assignment:
return unrolled_assignment
self.lhs = self.lhs.analyse_target_types(env)
self.lhs.gil_assignment_check(env)
unrolled_assignment = self.unroll_lhs(env)
if unrolled_assignment:
return unrolled_assignment
if isinstance(self.lhs, ExprNodes.MemoryViewIndexNode):
self.lhs.analyse_broadcast_operation(self.rhs)
self.lhs = self.lhs.analyse_as_memview_scalar_assignment(self.rhs)
elif self.lhs.type.is_array:
if not isinstance(self.lhs, ExprNodes.SliceIndexNode):
# cannot assign to C array, only to its full slice
self.lhs = ExprNodes.SliceIndexNode(self.lhs.pos, base=self.lhs, start=None, stop=None)
self.lhs = self.lhs.analyse_target_types(env)
if self.lhs.type.is_cpp_class:
op = env.lookup_operator_for_types(self.pos, '=', [self.lhs.type, self.rhs.type])
if op:
rhs = self.rhs
self.is_overloaded_assignment = True
self.exception_check = op.type.exception_check
self.exception_value = op.type.exception_value
if self.exception_check == '+' and self.exception_value is None:
env.use_utility_code(UtilityCode.load_cached("CppExceptionConversion", "CppSupport.cpp"))
else:
rhs = self.rhs.coerce_to(self.lhs.type, env)
else:
rhs = self.rhs.coerce_to(self.lhs.type, env)
if use_temp or rhs.is_attribute or (
not rhs.is_name and not rhs.is_literal and
rhs.type.is_pyobject):
# things like (cdef) attribute access are not safe (traverses pointers)
rhs = rhs.coerce_to_temp(env)
elif rhs.type.is_pyobject:
rhs = rhs.coerce_to_simple(env)
self.rhs = rhs
return self
def unroll(self, node, target_size, env):
from . import ExprNodes, UtilNodes
base = node
start_node = stop_node = step_node = check_node = None
if node.type.is_ctuple:
slice_size = node.type.size
elif node.type.is_ptr or node.type.is_array:
while isinstance(node, ExprNodes.SliceIndexNode) and not (node.start or node.stop):
base = node = node.base
if isinstance(node, ExprNodes.SliceIndexNode):
base = node.base
start_node = node.start
if start_node:
start_node = start_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env)
stop_node = node.stop
if stop_node:
stop_node = stop_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env)
else:
if node.type.is_array and node.type.size:
stop_node = ExprNodes.IntNode(
self.pos, value=str(node.type.size),
constant_result=(node.type.size if isinstance(node.type.size, _py_int_types)
else ExprNodes.constant_value_not_set))
else:
error(self.pos, "C array iteration requires known end index")
return
step_node = None #node.step
if step_node:
step_node = step_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env)
# TODO: Factor out SliceIndexNode.generate_slice_guard_code() for use here.
def get_const(node, none_value):
if node is None:
return none_value
elif node.has_constant_result():
return node.constant_result
else:
raise ValueError("Not a constant.")
try:
slice_size = (get_const(stop_node, None) - get_const(start_node, 0)) / get_const(step_node, 1)
except ValueError:
error(self.pos, "C array assignment currently requires known endpoints")
return
elif node.type.is_array:
slice_size = node.type.size
if not isinstance(slice_size, _py_int_types):
return # might still work when coercing to Python
else:
return
else:
return
if slice_size != target_size:
error(self.pos, "Assignment to/from slice of wrong length, expected %s, got %s" % (
slice_size, target_size))
return
items = []
base = UtilNodes.LetRefNode(base)
refs = [base]
if start_node and not start_node.is_literal:
start_node = UtilNodes.LetRefNode(start_node)
refs.append(start_node)
if stop_node and not stop_node.is_literal:
stop_node = UtilNodes.LetRefNode(stop_node)
refs.append(stop_node)
if step_node and not step_node.is_literal:
step_node = UtilNodes.LetRefNode(step_node)
refs.append(step_node)
for ix in range(target_size):
ix_node = ExprNodes.IntNode(self.pos, value=str(ix), constant_result=ix, type=PyrexTypes.c_py_ssize_t_type)
if step_node is not None:
if step_node.has_constant_result():
step_value = ix_node.constant_result * step_node.constant_result
ix_node = ExprNodes.IntNode(self.pos, value=str(step_value), constant_result=step_value)
else:
ix_node = ExprNodes.MulNode(self.pos, operator='*', operand1=step_node, operand2=ix_node)
if start_node is not None:
if start_node.has_constant_result() and ix_node.has_constant_result():
index_value = ix_node.constant_result + start_node.constant_result
ix_node = ExprNodes.IntNode(self.pos, value=str(index_value), constant_result=index_value)
else:
ix_node = ExprNodes.AddNode(
self.pos, operator='+', operand1=start_node, operand2=ix_node)
items.append(ExprNodes.IndexNode(self.pos, base=base, index=ix_node.analyse_types(env)))
return check_node, refs, items
def unroll_assignments(self, refs, check_node, lhs_list, rhs_list, env):
from . import UtilNodes
assignments = []
for lhs, rhs in zip(lhs_list, rhs_list):
assignments.append(SingleAssignmentNode(self.pos, lhs=lhs, rhs=rhs, first=self.first))
node = ParallelAssignmentNode(pos=self.pos, stats=assignments).analyse_expressions(env)
if check_node:
node = StatListNode(pos=self.pos, stats=[check_node, node])
for ref in refs[::-1]:
node = UtilNodes.LetNode(ref, node)
return node
def unroll_rhs(self, env):
from . import ExprNodes
if not isinstance(self.lhs, ExprNodes.TupleNode):
return
if any(arg.is_starred for arg in self.lhs.args):
return
unrolled = self.unroll(self.rhs, len(self.lhs.args), env)
if not unrolled:
return
check_node, refs, rhs = unrolled
return self.unroll_assignments(refs, check_node, self.lhs.args, rhs, env)
def unroll_lhs(self, env):
if self.lhs.type.is_ctuple:
# Handled directly.
return
from . import ExprNodes
if not isinstance(self.rhs, ExprNodes.TupleNode):
return
unrolled = self.unroll(self.lhs, len(self.rhs.args), env)
if not unrolled:
return
check_node, refs, lhs = unrolled
return self.unroll_assignments(refs, check_node, lhs, self.rhs.args, env)
def generate_rhs_evaluation_code(self, code):
self.rhs.generate_evaluation_code(code)
def generate_assignment_code(self, code, overloaded_assignment=False):
if self.is_overloaded_assignment:
self.lhs.generate_assignment_code(
self.rhs,
code,
overloaded_assignment=self.is_overloaded_assignment,
exception_check=self.exception_check,
exception_value=self.exception_value)
else:
self.lhs.generate_assignment_code(self.rhs, code)
def generate_function_definitions(self, env, code):
self.rhs.generate_function_definitions(env, code)
def annotate(self, code):
self.lhs.annotate(code)
self.rhs.annotate(code)
class CascadedAssignmentNode(AssignmentNode):
# An assignment with multiple left hand sides:
#
# a = b = c
#
# lhs_list [ExprNode] Left hand sides
# rhs ExprNode Right hand sides
#
# Used internally:
#
# coerced_values [ExprNode] RHS coerced to all distinct LHS types
# cloned_values [ExprNode] cloned RHS value for each LHS
# assignment_overloads [Bool] If each assignment uses a C++ operator=
child_attrs = ["lhs_list", "rhs", "coerced_values", "cloned_values"]
cloned_values = None
coerced_values = None
assignment_overloads = None
def analyse_declarations(self, env):
for lhs in self.lhs_list:
lhs.analyse_target_declaration(env)
def analyse_types(self, env, use_temp=0):
from .ExprNodes import CloneNode, ProxyNode
# collect distinct types used on the LHS
lhs_types = set()
for i, lhs in enumerate(self.lhs_list):
lhs = self.lhs_list[i] = lhs.analyse_target_types(env)
lhs.gil_assignment_check(env)
lhs_types.add(lhs.type)
rhs = self.rhs.analyse_types(env)
# common special case: only one type needed on the LHS => coerce only once
if len(lhs_types) == 1:
# Avoid coercion for overloaded assignment operators.
if next(iter(lhs_types)).is_cpp_class:
op = env.lookup_operator('=', [lhs, self.rhs])
if not op:
rhs = rhs.coerce_to(lhs_types.pop(), env)
else:
rhs = rhs.coerce_to(lhs_types.pop(), env)
if not rhs.is_name and not rhs.is_literal and (
use_temp or rhs.is_attribute or rhs.type.is_pyobject):
rhs = rhs.coerce_to_temp(env)
else:
rhs = rhs.coerce_to_simple(env)
self.rhs = ProxyNode(rhs) if rhs.is_temp else rhs
# clone RHS and coerce it to all distinct LHS types
self.coerced_values = []
coerced_values = {}
self.assignment_overloads = []
for lhs in self.lhs_list:
overloaded = lhs.type.is_cpp_class and env.lookup_operator('=', [lhs, self.rhs])
self.assignment_overloads.append(overloaded)
if lhs.type not in coerced_values and lhs.type != rhs.type:
rhs = CloneNode(self.rhs)
if not overloaded:
rhs = rhs.coerce_to(lhs.type, env)
self.coerced_values.append(rhs)
coerced_values[lhs.type] = rhs
# clone coerced values for all LHS assignments
self.cloned_values = []
for lhs in self.lhs_list:
rhs = coerced_values.get(lhs.type, self.rhs)
self.cloned_values.append(CloneNode(rhs))
return self
def generate_rhs_evaluation_code(self, code):
self.rhs.generate_evaluation_code(code)
def generate_assignment_code(self, code, overloaded_assignment=False):
# prepare all coercions
for rhs in self.coerced_values:
rhs.generate_evaluation_code(code)
# assign clones to LHS
for lhs, rhs, overload in zip(self.lhs_list, self.cloned_values, self.assignment_overloads):
rhs.generate_evaluation_code(code)
lhs.generate_assignment_code(rhs, code, overloaded_assignment=overload)
# dispose of coerced values and original RHS
for rhs_value in self.coerced_values:
rhs_value.generate_disposal_code(code)
rhs_value.free_temps(code)
self.rhs.generate_disposal_code(code)
self.rhs.free_temps(code)
def generate_function_definitions(self, env, code):
self.rhs.generate_function_definitions(env, code)
def annotate(self, code):
for rhs in self.coerced_values:
rhs.annotate(code)
for lhs, rhs in zip(self.lhs_list, self.cloned_values):
lhs.annotate(code)
rhs.annotate(code)
self.rhs.annotate(code)
class ParallelAssignmentNode(AssignmentNode):
# A combined packing/unpacking assignment:
#
# a, b, c = d, e, f
#
# This has been rearranged by the parser into
#
# a = d ; b = e ; c = f
#
# but we must evaluate all the right hand sides
# before assigning to any of the left hand sides.
#
# stats [AssignmentNode] The constituent assignments
child_attrs = ["stats"]
def analyse_declarations(self, env):
for stat in self.stats:
stat.analyse_declarations(env)
def analyse_expressions(self, env):
self.stats = [stat.analyse_types(env, use_temp=1)
for stat in self.stats]
return self
# def analyse_expressions(self, env):
# for stat in self.stats:
# stat.analyse_expressions_1(env, use_temp=1)
# for stat in self.stats:
# stat.analyse_expressions_2(env)
def generate_execution_code(self, code):
code.mark_pos(self.pos)
for stat in self.stats:
stat.generate_rhs_evaluation_code(code)
for stat in self.stats:
stat.generate_assignment_code(code)
def generate_function_definitions(self, env, code):
for stat in self.stats:
stat.generate_function_definitions(env, code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)
class InPlaceAssignmentNode(AssignmentNode):
# An in place arithmetic operand:
#
# a += b
# a -= b
# ...
#
# lhs ExprNode Left hand side
# rhs ExprNode Right hand side
# operator char one of "+-*/%^&|"
#
# This code is a bit tricky because in order to obey Python
# semantics the sub-expressions (e.g. indices) of the lhs must
# not be evaluated twice. So we must re-use the values calculated
# in evaluation phase for the assignment phase as well.
# Fortunately, the type of the lhs node is fairly constrained
# (it must be a NameNode, AttributeNode, or IndexNode).
child_attrs = ["lhs", "rhs"]
def analyse_declarations(self, env):
self.lhs.analyse_target_declaration(env)
def analyse_types(self, env):
self.rhs = self.rhs.analyse_types(env)
self.lhs = self.lhs.analyse_target_types(env)
# When assigning to a fully indexed buffer or memoryview, coerce the rhs
if self.lhs.is_memview_index or self.lhs.is_buffer_access:
self.rhs = self.rhs.coerce_to(self.lhs.type, env)
elif self.lhs.type.is_string and self.operator in '+-':
# use pointer arithmetic for char* LHS instead of string concat
self.rhs = self.rhs.coerce_to(PyrexTypes.c_py_ssize_t_type, env)
return self
def generate_execution_code(self, code):
code.mark_pos(self.pos)
lhs, rhs = self.lhs, self.rhs
rhs.generate_evaluation_code(code)
lhs.generate_subexpr_evaluation_code(code)
c_op = self.operator
if c_op == "//":
c_op = "/"
elif c_op == "**":
error(self.pos, "No C inplace power operator")
if lhs.is_buffer_access or lhs.is_memview_index:
if lhs.type.is_pyobject:
error(self.pos, "In-place operators not allowed on object buffers in this release.")
if c_op in ('/', '%') and lhs.type.is_int and not code.globalstate.directives['cdivision']:
error(self.pos, "In-place non-c divide operators not allowed on int buffers.")
lhs.generate_buffer_setitem_code(rhs, code, c_op)
elif lhs.is_memview_slice:
error(self.pos, "Inplace operators not supported on memoryview slices")
else:
# C++
# TODO: make sure overload is declared
code.putln("%s %s= %s;" % (lhs.result(), c_op, rhs.result()))
lhs.generate_subexpr_disposal_code(code)
lhs.free_subexpr_temps(code)
rhs.generate_disposal_code(code)
rhs.free_temps(code)
def annotate(self, code):
self.lhs.annotate(code)
self.rhs.annotate(code)
def create_binop_node(self):
from . import ExprNodes
return ExprNodes.binop_node(self.pos, self.operator, self.lhs, self.rhs)
class PrintStatNode(StatNode):
# print statement
#
# arg_tuple TupleNode
# stream ExprNode or None (stdout)
# append_newline boolean
child_attrs = ["arg_tuple", "stream"]
def analyse_expressions(self, env):
if self.stream:
stream = self.stream.analyse_expressions(env)
self.stream = stream.coerce_to_pyobject(env)
arg_tuple = self.arg_tuple.analyse_expressions(env)
self.arg_tuple = arg_tuple.coerce_to_pyobject(env)
env.use_utility_code(printing_utility_code)
if len(self.arg_tuple.args) == 1 and self.append_newline:
env.use_utility_code(printing_one_utility_code)
return self
nogil_check = Node.gil_error
gil_message = "Python print statement"
def generate_execution_code(self, code):
code.mark_pos(self.pos)
if self.stream:
self.stream.generate_evaluation_code(code)
stream_result = self.stream.py_result()
else:
stream_result = '0'
if len(self.arg_tuple.args) == 1 and self.append_newline:
arg = self.arg_tuple.args[0]
arg.generate_evaluation_code(code)
code.putln(
"if (__Pyx_PrintOne(%s, %s) < 0) %s" % (
stream_result,
arg.py_result(),
code.error_goto(self.pos)))
arg.generate_disposal_code(code)
arg.free_temps(code)
else:
self.arg_tuple.generate_evaluation_code(code)
code.putln(
"if (__Pyx_Print(%s, %s, %d) < 0) %s" % (
stream_result,
self.arg_tuple.py_result(),
self.append_newline,
code.error_goto(self.pos)))
self.arg_tuple.generate_disposal_code(code)
self.arg_tuple.free_temps(code)
if self.stream:
self.stream.generate_disposal_code(code)
self.stream.free_temps(code)
def generate_function_definitions(self, env, code):
if self.stream:
self.stream.generate_function_definitions(env, code)
self.arg_tuple.generate_function_definitions(env, code)
def annotate(self, code):
if self.stream:
self.stream.annotate(code)
self.arg_tuple.annotate(code)
class ExecStatNode(StatNode):
# exec statement
#
# args [ExprNode]
child_attrs = ["args"]
def analyse_expressions(self, env):
for i, arg in enumerate(self.args):
arg = arg.analyse_expressions(env)
arg = arg.coerce_to_pyobject(env)
self.args[i] = arg
env.use_utility_code(Builtin.pyexec_utility_code)
return self
nogil_check = Node.gil_error
gil_message = "Python exec statement"
def generate_execution_code(self, code):
code.mark_pos(self.pos)
args = []
for arg in self.args:
arg.generate_evaluation_code(code)
args.append(arg.py_result())
args = tuple(args + ['0', '0'][:3-len(args)])
temp_result = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True)
code.putln("%s = __Pyx_PyExec3(%s, %s, %s);" % ((temp_result,) + args))
for arg in self.args:
arg.generate_disposal_code(code)
arg.free_temps(code)
code.putln(
code.error_goto_if_null(temp_result, self.pos))
code.put_gotref(temp_result)
code.put_decref_clear(temp_result, py_object_type)
code.funcstate.release_temp(temp_result)
def annotate(self, code):
for arg in self.args:
arg.annotate(code)
class DelStatNode(StatNode):
# del statement
#
# args [ExprNode]
child_attrs = ["args"]
ignore_nonexisting = False
def analyse_declarations(self, env):
for arg in self.args:
arg.analyse_target_declaration(env)
def analyse_expressions(self, env):
for i, arg in enumerate(self.args):
arg = self.args[i] = arg.analyse_target_expression(env, None)
if arg.type.is_pyobject or (arg.is_name and arg.type.is_memoryviewslice):
if arg.is_name and arg.entry.is_cglobal:
error(arg.pos, "Deletion of global C variable")
elif arg.type.is_ptr and arg.type.base_type.is_cpp_class:
self.cpp_check(env)
elif arg.type.is_cpp_class:
error(arg.pos, "Deletion of non-heap C++ object")
elif arg.is_subscript and arg.base.type is Builtin.bytearray_type:
pass # del ba[i]
else:
error(arg.pos, "Deletion of non-Python, non-C++ object")
#arg.release_target_temp(env)
return self
def nogil_check(self, env):
for arg in self.args:
if arg.type.is_pyobject:
self.gil_error()
gil_message = "Deleting Python object"
def generate_execution_code(self, code):
code.mark_pos(self.pos)
for arg in self.args:
if (arg.type.is_pyobject or
arg.type.is_memoryviewslice or
arg.is_subscript and arg.base.type is Builtin.bytearray_type):
arg.generate_deletion_code(
code, ignore_nonexisting=self.ignore_nonexisting)
elif arg.type.is_ptr and arg.type.base_type.is_cpp_class:
arg.generate_evaluation_code(code)
code.putln("delete %s;" % arg.result())
arg.generate_disposal_code(code)
# else error reported earlier
def annotate(self, code):
for arg in self.args:
arg.annotate(code)
class PassStatNode(StatNode):
# pass statement
child_attrs = []
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class IndirectionNode(StatListNode):
"""
This adds an indirection so that the node can be shared and a subtree can
be removed at any time by clearing self.stats.
"""
def __init__(self, stats):
super(IndirectionNode, self).__init__(stats[0].pos, stats=stats)
class BreakStatNode(StatNode):
child_attrs = []
is_terminator = True
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
code.mark_pos(self.pos)
if not code.break_label:
error(self.pos, "break statement not inside loop")
else:
code.put_goto(code.break_label)
class ContinueStatNode(StatNode):
child_attrs = []
is_terminator = True
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
if not code.continue_label:
error(self.pos, "continue statement not inside loop")
return
code.mark_pos(self.pos)
code.put_goto(code.continue_label)
class ReturnStatNode(StatNode):
# return statement
#
# value ExprNode or None
# return_type PyrexType
# in_generator return inside of generator => raise StopIteration
# in_async_gen return inside of async generator
child_attrs = ["value"]
is_terminator = True
in_generator = False
in_async_gen = False
# Whether we are in a parallel section
in_parallel = False
def analyse_expressions(self, env):
return_type = env.return_type
self.return_type = return_type
if not return_type:
error(self.pos, "Return not inside a function body")
return self
if self.value:
if self.in_async_gen:
error(self.pos, "Return with value in async generator")
self.value = self.value.analyse_types(env)
if return_type.is_void or return_type.is_returncode:
error(self.value.pos, "Return with value in void function")
else:
self.value = self.value.coerce_to(env.return_type, env)
else:
if (not return_type.is_void
and not return_type.is_pyobject
and not return_type.is_returncode):
error(self.pos, "Return value required")
return self
def nogil_check(self, env):
if self.return_type.is_pyobject:
self.gil_error()
gil_message = "Returning Python object"
def generate_execution_code(self, code):
code.mark_pos(self.pos)
if not self.return_type:
# error reported earlier
return
value = self.value
if self.return_type.is_pyobject:
code.put_xdecref(Naming.retval_cname, self.return_type)
if value and value.is_none:
# Use specialised default handling for "return None".
value = None
if value:
value.generate_evaluation_code(code)
if self.return_type.is_memoryviewslice:
from . import MemoryView
MemoryView.put_acquire_memoryviewslice(
lhs_cname=Naming.retval_cname,
lhs_type=self.return_type,
lhs_pos=value.pos,
rhs=value,
code=code,
have_gil=self.in_nogil_context)
elif self.in_generator:
# return value == raise StopIteration(value), but uncatchable
code.globalstate.use_utility_code(
UtilityCode.load_cached("ReturnWithStopIteration", "Coroutine.c"))
code.putln("%s = NULL; __Pyx_ReturnWithStopIteration(%s);" % (
Naming.retval_cname,
value.py_result()))
value.generate_disposal_code(code)
else:
value.make_owned_reference(code)
code.putln("%s = %s;" % (
Naming.retval_cname,
value.result_as(self.return_type)))
value.generate_post_assignment_code(code)
value.free_temps(code)
else:
if self.return_type.is_pyobject:
if self.in_generator:
if self.in_async_gen:
code.globalstate.use_utility_code(
UtilityCode.load_cached("StopAsyncIteration", "Coroutine.c"))
code.put("PyErr_SetNone(__Pyx_PyExc_StopAsyncIteration); ")
code.putln("%s = NULL;" % Naming.retval_cname)
else:
code.put_init_to_py_none(Naming.retval_cname, self.return_type)
elif self.return_type.is_returncode:
self.put_return(code, self.return_type.default_value)
for cname, type in code.funcstate.temps_holding_reference():
code.put_decref_clear(cname, type)
code.put_goto(code.return_label)
def put_return(self, code, value):
if self.in_parallel:
code.putln_openmp("#pragma omp critical(__pyx_returning)")
code.putln("%s = %s;" % (Naming.retval_cname, value))
def generate_function_definitions(self, env, code):
if self.value is not None:
self.value.generate_function_definitions(env, code)
def annotate(self, code):
if self.value:
self.value.annotate(code)
class RaiseStatNode(StatNode):
# raise statement
#
# exc_type ExprNode or None
# exc_value ExprNode or None
# exc_tb ExprNode or None
# cause ExprNode or None
child_attrs = ["exc_type", "exc_value", "exc_tb", "cause"]
is_terminator = True
def analyse_expressions(self, env):
if self.exc_type:
exc_type = self.exc_type.analyse_types(env)
self.exc_type = exc_type.coerce_to_pyobject(env)
if self.exc_value:
exc_value = self.exc_value.analyse_types(env)
self.exc_value = exc_value.coerce_to_pyobject(env)
if self.exc_tb:
exc_tb = self.exc_tb.analyse_types(env)
self.exc_tb = exc_tb.coerce_to_pyobject(env)
if self.cause:
cause = self.cause.analyse_types(env)
self.cause = cause.coerce_to_pyobject(env)
# special cases for builtin exceptions
self.builtin_exc_name = None
if self.exc_type and not self.exc_value and not self.exc_tb:
exc = self.exc_type
from . import ExprNodes
if (isinstance(exc, ExprNodes.SimpleCallNode) and
not (exc.args or (exc.arg_tuple is not None and exc.arg_tuple.args))):
exc = exc.function # extract the exception type
if exc.is_name and exc.entry.is_builtin:
self.builtin_exc_name = exc.name
if self.builtin_exc_name == 'MemoryError':
self.exc_type = None # has a separate implementation
return self
nogil_check = Node.gil_error
gil_message = "Raising exception"
def generate_execution_code(self, code):
code.mark_pos(self.pos)
if self.builtin_exc_name == 'MemoryError':
code.putln('PyErr_NoMemory(); %s' % code.error_goto(self.pos))
return
if self.exc_type:
self.exc_type.generate_evaluation_code(code)
type_code = self.exc_type.py_result()
if self.exc_type.is_name:
code.globalstate.use_entry_utility_code(self.exc_type.entry)
else:
type_code = "0"
if self.exc_value:
self.exc_value.generate_evaluation_code(code)
value_code = self.exc_value.py_result()
else:
value_code = "0"
if self.exc_tb:
self.exc_tb.generate_evaluation_code(code)
tb_code = self.exc_tb.py_result()
else:
tb_code = "0"
if self.cause:
self.cause.generate_evaluation_code(code)
cause_code = self.cause.py_result()
else:
cause_code = "0"
code.globalstate.use_utility_code(raise_utility_code)
code.putln(
"__Pyx_Raise(%s, %s, %s, %s);" % (
type_code,
value_code,
tb_code,
cause_code))
for obj in (self.exc_type, self.exc_value, self.exc_tb, self.cause):
if obj:
obj.generate_disposal_code(code)
obj.free_temps(code)
code.putln(
code.error_goto(self.pos))
def generate_function_definitions(self, env, code):
if self.exc_type is not None:
self.exc_type.generate_function_definitions(env, code)
if self.exc_value is not None:
self.exc_value.generate_function_definitions(env, code)
if self.exc_tb is not None:
self.exc_tb.generate_function_definitions(env, code)
if self.cause is not None:
self.cause.generate_function_definitions(env, code)
def annotate(self, code):
if self.exc_type:
self.exc_type.annotate(code)
if self.exc_value:
self.exc_value.annotate(code)
if self.exc_tb:
self.exc_tb.annotate(code)
if self.cause:
self.cause.annotate(code)
class ReraiseStatNode(StatNode):
child_attrs = []
is_terminator = True
def analyse_expressions(self, env):
return self
nogil_check = Node.gil_error
gil_message = "Raising exception"
def generate_execution_code(self, code):
code.mark_pos(self.pos)
vars = code.funcstate.exc_vars
if vars:
code.globalstate.use_utility_code(restore_exception_utility_code)
code.put_giveref(vars[0])
code.put_giveref(vars[1])
# fresh exceptions may not have a traceback yet (-> finally!)
code.put_xgiveref(vars[2])
code.putln("__Pyx_ErrRestoreWithState(%s, %s, %s);" % tuple(vars))
for varname in vars:
code.put("%s = 0; " % varname)
code.putln()
code.putln(code.error_goto(self.pos))
else:
code.globalstate.use_utility_code(
UtilityCode.load_cached("ReRaiseException", "Exceptions.c"))
code.putln("__Pyx_ReraiseException(); %s" % code.error_goto(self.pos))
class AssertStatNode(StatNode):
# assert statement
#
# cond ExprNode
# value ExprNode or None
child_attrs = ["cond", "value"]
def analyse_expressions(self, env):
self.cond = self.cond.analyse_boolean_expression(env)
if self.value:
value = self.value.analyse_types(env)
if value.type is Builtin.tuple_type or not value.type.is_builtin_type:
# prevent tuple values from being interpreted as argument value tuples
from .ExprNodes import TupleNode
value = TupleNode(value.pos, args=[value], slow=True)
self.value = value.analyse_types(env, skip_children=True).coerce_to_pyobject(env)
else:
self.value = value.coerce_to_pyobject(env)
return self
nogil_check = Node.gil_error
gil_message = "Raising exception"
def generate_execution_code(self, code):
code.putln("#ifndef CYTHON_WITHOUT_ASSERTIONS")
code.putln("if (unlikely(!Py_OptimizeFlag)) {")
code.mark_pos(self.pos)
self.cond.generate_evaluation_code(code)
code.putln(
"if (unlikely(!%s)) {" % self.cond.result())
if self.value:
self.value.generate_evaluation_code(code)
code.putln(
"PyErr_SetObject(PyExc_AssertionError, %s);" % self.value.py_result())
self.value.generate_disposal_code(code)
self.value.free_temps(code)
else:
code.putln(
"PyErr_SetNone(PyExc_AssertionError);")
code.putln(
code.error_goto(self.pos))
code.putln(
"}")
self.cond.generate_disposal_code(code)
self.cond.free_temps(code)
code.putln(
"}")
code.putln("#endif")
def generate_function_definitions(self, env, code):
self.cond.generate_function_definitions(env, code)
if self.value is not None:
self.value.generate_function_definitions(env, code)
def annotate(self, code):
self.cond.annotate(code)
if self.value:
self.value.annotate(code)
class IfStatNode(StatNode):
# if statement
#
# if_clauses [IfClauseNode]
# else_clause StatNode or None
child_attrs = ["if_clauses", "else_clause"]
def analyse_declarations(self, env):
for if_clause in self.if_clauses:
if_clause.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
def analyse_expressions(self, env):
self.if_clauses = [if_clause.analyse_expressions(env) for if_clause in self.if_clauses]
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
def generate_execution_code(self, code):
code.mark_pos(self.pos)
end_label = code.new_label()
last = len(self.if_clauses)
if self.else_clause:
# If the 'else' clause is 'unlikely', then set the preceding 'if' clause to 'likely' to reflect that.
self._set_branch_hint(self.if_clauses[-1], self.else_clause, inverse=True)
else:
last -= 1 # avoid redundant goto at end of last if-clause
for i, if_clause in enumerate(self.if_clauses):
self._set_branch_hint(if_clause, if_clause.body)
if_clause.generate_execution_code(code, end_label, is_last=i == last)
if self.else_clause:
code.mark_pos(self.else_clause.pos)
code.putln("/*else*/ {")
self.else_clause.generate_execution_code(code)
code.putln("}")
code.put_label(end_label)
def _set_branch_hint(self, clause, statements_node, inverse=False):
if not statements_node.is_terminator:
return
if not isinstance(statements_node, StatListNode) or not statements_node.stats:
return
# Anything that unconditionally raises exceptions should be considered unlikely.
if isinstance(statements_node.stats[-1], (RaiseStatNode, ReraiseStatNode)):
if len(statements_node.stats) > 1:
# Allow simple statements before the 'raise', but no conditions, loops, etc.
non_branch_nodes = (ExprStatNode, AssignmentNode, DelStatNode, GlobalNode, NonlocalNode)
for node in statements_node.stats[:-1]:
if not isinstance(node, non_branch_nodes):
return
clause.branch_hint = 'likely' if inverse else 'unlikely'
def generate_function_definitions(self, env, code):
for clause in self.if_clauses:
clause.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
for if_clause in self.if_clauses:
if_clause.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
class IfClauseNode(Node):
# if or elif clause in an if statement
#
# condition ExprNode
# body StatNode
child_attrs = ["condition", "body"]
branch_hint = None
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
def analyse_expressions(self, env):
self.condition = self.condition.analyse_temp_boolean_expression(env)
self.body = self.body.analyse_expressions(env)
return self
def generate_execution_code(self, code, end_label, is_last):
self.condition.generate_evaluation_code(code)
code.mark_pos(self.pos)
condition = self.condition.result()
if self.branch_hint:
condition = '%s(%s)' % (self.branch_hint, condition)
code.putln("if (%s) {" % condition)
self.condition.generate_disposal_code(code)
self.condition.free_temps(code)
self.body.generate_execution_code(code)
code.mark_pos(self.pos, trace=False)
if not (is_last or self.body.is_terminator):
code.put_goto(end_label)
code.putln("}")
def generate_function_definitions(self, env, code):
self.condition.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
def annotate(self, code):
self.condition.annotate(code)
self.body.annotate(code)
class SwitchCaseNode(StatNode):
# Generated in the optimization of an if-elif-else node
#
# conditions [ExprNode]
# body StatNode
child_attrs = ['conditions', 'body']
def generate_condition_evaluation_code(self, code):
for cond in self.conditions:
cond.generate_evaluation_code(code)
def generate_execution_code(self, code):
num_conditions = len(self.conditions)
line_tracing_enabled = code.globalstate.directives['linetrace']
for i, cond in enumerate(self.conditions, 1):
code.putln("case %s:" % cond.result())
code.mark_pos(cond.pos) # Tracing code must appear *after* the 'case' statement.
if line_tracing_enabled and i < num_conditions:
# Allow fall-through after the line tracing code.
code.putln('CYTHON_FALLTHROUGH;')
self.body.generate_execution_code(code)
code.mark_pos(self.pos, trace=False)
code.putln("break;")
def generate_function_definitions(self, env, code):
for cond in self.conditions:
cond.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
def annotate(self, code):
for cond in self.conditions:
cond.annotate(code)
self.body.annotate(code)
class SwitchStatNode(StatNode):
# Generated in the optimization of an if-elif-else node
#
# test ExprNode
# cases [SwitchCaseNode]
# else_clause StatNode or None
child_attrs = ['test', 'cases', 'else_clause']
def generate_execution_code(self, code):
self.test.generate_evaluation_code(code)
# Make sure all conditions are evaluated before going into the switch() statement.
# This is required in order to prevent any execution code from leaking into the space between the cases.
for case in self.cases:
case.generate_condition_evaluation_code(code)
code.mark_pos(self.pos)
code.putln("switch (%s) {" % self.test.result())
for case in self.cases:
case.generate_execution_code(code)
if self.else_clause is not None:
code.putln("default:")
self.else_clause.generate_execution_code(code)
code.putln("break;")
else:
# Always generate a default clause to prevent C compiler warnings
# about unmatched enum values (it was not the user who decided to
# generate the switch statement, so shouldn't be bothered).
code.putln("default: break;")
code.putln("}")
def generate_function_definitions(self, env, code):
self.test.generate_function_definitions(env, code)
for case in self.cases:
case.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
self.test.annotate(code)
for case in self.cases:
case.annotate(code)
if self.else_clause is not None:
self.else_clause.annotate(code)
class LoopNode(object):
pass
class WhileStatNode(LoopNode, StatNode):
# while statement
#
# condition ExprNode
# body StatNode
# else_clause StatNode
child_attrs = ["condition", "body", "else_clause"]
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
def analyse_expressions(self, env):
if self.condition:
self.condition = self.condition.analyse_temp_boolean_expression(env)
self.body = self.body.analyse_expressions(env)
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
def generate_execution_code(self, code):
code.mark_pos(self.pos)
old_loop_labels = code.new_loop_labels()
code.putln(
"while (1) {")
if self.condition:
self.condition.generate_evaluation_code(code)
self.condition.generate_disposal_code(code)
code.putln(
"if (!%s) break;" % self.condition.result())
self.condition.free_temps(code)
self.body.generate_execution_code(code)
code.put_label(code.continue_label)
code.putln("}")
break_label = code.break_label
code.set_loop_labels(old_loop_labels)
if self.else_clause:
code.mark_pos(self.else_clause.pos)
code.putln("/*else*/ {")
self.else_clause.generate_execution_code(code)
code.putln("}")
code.put_label(break_label)
def generate_function_definitions(self, env, code):
if self.condition:
self.condition.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
if self.condition:
self.condition.annotate(code)
self.body.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
class DictIterationNextNode(Node):
# Helper node for calling PyDict_Next() inside of a WhileStatNode
# and checking the dictionary size for changes. Created in
# Optimize.py.
child_attrs = ['dict_obj', 'expected_size', 'pos_index_var',
'coerced_key_var', 'coerced_value_var', 'coerced_tuple_var',
'key_target', 'value_target', 'tuple_target', 'is_dict_flag']
coerced_key_var = key_ref = None
coerced_value_var = value_ref = None
coerced_tuple_var = tuple_ref = None
def __init__(self, dict_obj, expected_size, pos_index_var,
key_target, value_target, tuple_target, is_dict_flag):
Node.__init__(
self, dict_obj.pos,
dict_obj=dict_obj,
expected_size=expected_size,
pos_index_var=pos_index_var,
key_target=key_target,
value_target=value_target,
tuple_target=tuple_target,
is_dict_flag=is_dict_flag,
is_temp=True,
type=PyrexTypes.c_bint_type)
def analyse_expressions(self, env):
from . import ExprNodes
self.dict_obj = self.dict_obj.analyse_types(env)
self.expected_size = self.expected_size.analyse_types(env)
if self.pos_index_var:
self.pos_index_var = self.pos_index_var.analyse_types(env)
if self.key_target:
self.key_target = self.key_target.analyse_target_types(env)
self.key_ref = ExprNodes.TempNode(self.key_target.pos, PyrexTypes.py_object_type)
self.coerced_key_var = self.key_ref.coerce_to(self.key_target.type, env)
if self.value_target:
self.value_target = self.value_target.analyse_target_types(env)
self.value_ref = ExprNodes.TempNode(self.value_target.pos, type=PyrexTypes.py_object_type)
self.coerced_value_var = self.value_ref.coerce_to(self.value_target.type, env)
if self.tuple_target:
self.tuple_target = self.tuple_target.analyse_target_types(env)
self.tuple_ref = ExprNodes.TempNode(self.tuple_target.pos, PyrexTypes.py_object_type)
self.coerced_tuple_var = self.tuple_ref.coerce_to(self.tuple_target.type, env)
self.is_dict_flag = self.is_dict_flag.analyse_types(env)
return self
def generate_function_definitions(self, env, code):
self.dict_obj.generate_function_definitions(env, code)
def generate_execution_code(self, code):
code.globalstate.use_utility_code(UtilityCode.load_cached("dict_iter", "Optimize.c"))
self.dict_obj.generate_evaluation_code(code)
assignments = []
temp_addresses = []
for var, result, target in [(self.key_ref, self.coerced_key_var, self.key_target),
(self.value_ref, self.coerced_value_var, self.value_target),
(self.tuple_ref, self.coerced_tuple_var, self.tuple_target)]:
if target is None:
addr = 'NULL'
else:
assignments.append((var, result, target))
var.allocate(code)
addr = '&%s' % var.result()
temp_addresses.append(addr)
result_temp = code.funcstate.allocate_temp(PyrexTypes.c_int_type, False)
code.putln("%s = __Pyx_dict_iter_next(%s, %s, &%s, %s, %s, %s, %s);" % (
result_temp,
self.dict_obj.py_result(),
self.expected_size.result(),
self.pos_index_var.result(),
temp_addresses[0],
temp_addresses[1],
temp_addresses[2],
self.is_dict_flag.result()
))
code.putln("if (unlikely(%s == 0)) break;" % result_temp)
code.putln(code.error_goto_if("%s == -1" % result_temp, self.pos))
code.funcstate.release_temp(result_temp)
# evaluate all coercions before the assignments
for var, result, target in assignments:
code.put_gotref(var.result())
for var, result, target in assignments:
result.generate_evaluation_code(code)
for var, result, target in assignments:
target.generate_assignment_code(result, code)
var.release(code)
class SetIterationNextNode(Node):
# Helper node for calling _PySet_NextEntry() inside of a WhileStatNode
# and checking the set size for changes. Created in Optimize.py.
child_attrs = ['set_obj', 'expected_size', 'pos_index_var',
'coerced_value_var', 'value_target', 'is_set_flag']
coerced_value_var = value_ref = None
def __init__(self, set_obj, expected_size, pos_index_var, value_target, is_set_flag):
Node.__init__(
self, set_obj.pos,
set_obj=set_obj,
expected_size=expected_size,
pos_index_var=pos_index_var,
value_target=value_target,
is_set_flag=is_set_flag,
is_temp=True,
type=PyrexTypes.c_bint_type)
def analyse_expressions(self, env):
from . import ExprNodes
self.set_obj = self.set_obj.analyse_types(env)
self.expected_size = self.expected_size.analyse_types(env)
self.pos_index_var = self.pos_index_var.analyse_types(env)
self.value_target = self.value_target.analyse_target_types(env)
self.value_ref = ExprNodes.TempNode(self.value_target.pos, type=PyrexTypes.py_object_type)
self.coerced_value_var = self.value_ref.coerce_to(self.value_target.type, env)
self.is_set_flag = self.is_set_flag.analyse_types(env)
return self
def generate_function_definitions(self, env, code):
self.set_obj.generate_function_definitions(env, code)
def generate_execution_code(self, code):
code.globalstate.use_utility_code(UtilityCode.load_cached("set_iter", "Optimize.c"))
self.set_obj.generate_evaluation_code(code)
value_ref = self.value_ref
value_ref.allocate(code)
result_temp = code.funcstate.allocate_temp(PyrexTypes.c_int_type, False)
code.putln("%s = __Pyx_set_iter_next(%s, %s, &%s, &%s, %s);" % (
result_temp,
self.set_obj.py_result(),
self.expected_size.result(),
self.pos_index_var.result(),
value_ref.result(),
self.is_set_flag.result()
))
code.putln("if (unlikely(%s == 0)) break;" % result_temp)
code.putln(code.error_goto_if("%s == -1" % result_temp, self.pos))
code.funcstate.release_temp(result_temp)
# evaluate all coercions before the assignments
code.put_gotref(value_ref.result())
self.coerced_value_var.generate_evaluation_code(code)
self.value_target.generate_assignment_code(self.coerced_value_var, code)
value_ref.release(code)
def ForStatNode(pos, **kw):
if 'iterator' in kw:
if kw['iterator'].is_async:
return AsyncForStatNode(pos, **kw)
else:
return ForInStatNode(pos, **kw)
else:
return ForFromStatNode(pos, **kw)
class _ForInStatNode(LoopNode, StatNode):
# Base class of 'for-in' statements.
#
# target ExprNode
# iterator IteratorNode | AIterAwaitExprNode(AsyncIteratorNode)
# body StatNode
# else_clause StatNode
# item NextNode | AwaitExprNode(AsyncNextNode)
# is_async boolean true for 'async for' statements
child_attrs = ["target", "item", "iterator", "body", "else_clause"]
item = None
is_async = False
def _create_item_node(self):
raise NotImplementedError("must be implemented by subclasses")
def analyse_declarations(self, env):
self.target.analyse_target_declaration(env)
self.body.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
self._create_item_node()
def analyse_expressions(self, env):
self.target = self.target.analyse_target_types(env)
self.iterator = self.iterator.analyse_expressions(env)
self._create_item_node() # must rewrap self.item after analysis
self.item = self.item.analyse_expressions(env)
if (not self.is_async and
(self.iterator.type.is_ptr or self.iterator.type.is_array) and
self.target.type.assignable_from(self.iterator.type)):
# C array slice optimization.
pass
else:
self.item = self.item.coerce_to(self.target.type, env)
self.body = self.body.analyse_expressions(env)
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
def generate_execution_code(self, code):
code.mark_pos(self.pos)
old_loop_labels = code.new_loop_labels()
self.iterator.generate_evaluation_code(code)
code.putln("for (;;) {")
self.item.generate_evaluation_code(code)
self.target.generate_assignment_code(self.item, code)
self.body.generate_execution_code(code)
code.mark_pos(self.pos)
code.put_label(code.continue_label)
code.putln("}")
break_label = code.break_label
code.set_loop_labels(old_loop_labels)
if self.else_clause:
# in nested loops, the 'else' block can contain a
# 'continue' statement for the outer loop, but we may need
# to generate cleanup code before taking that path, so we
# intercept it here
orig_continue_label = code.continue_label
code.continue_label = code.new_label('outer_continue')
code.putln("/*else*/ {")
self.else_clause.generate_execution_code(code)
code.putln("}")
if code.label_used(code.continue_label):
code.put_goto(break_label)
code.mark_pos(self.pos)
code.put_label(code.continue_label)
self.iterator.generate_disposal_code(code)
code.put_goto(orig_continue_label)
code.set_loop_labels(old_loop_labels)
code.mark_pos(self.pos)
if code.label_used(break_label):
code.put_label(break_label)
self.iterator.generate_disposal_code(code)
self.iterator.free_temps(code)
def generate_function_definitions(self, env, code):
self.target.generate_function_definitions(env, code)
self.iterator.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
self.target.annotate(code)
self.iterator.annotate(code)
self.body.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
self.item.annotate(code)
class ForInStatNode(_ForInStatNode):
# 'for' statement
is_async = False
def _create_item_node(self):
from .ExprNodes import NextNode
self.item = NextNode(self.iterator)
class AsyncForStatNode(_ForInStatNode):
# 'async for' statement
#
# iterator AIterAwaitExprNode(AsyncIteratorNode)
# item AwaitIterNextExprNode(AsyncIteratorNode)
is_async = True
def __init__(self, pos, **kw):
assert 'item' not in kw
from . import ExprNodes
# AwaitExprNodes must appear before running MarkClosureVisitor
kw['item'] = ExprNodes.AwaitIterNextExprNode(kw['iterator'].pos, arg=None)
_ForInStatNode.__init__(self, pos, **kw)
def _create_item_node(self):
from . import ExprNodes
self.item.arg = ExprNodes.AsyncNextNode(self.iterator)
class ForFromStatNode(LoopNode, StatNode):
# for name from expr rel name rel expr
#
# target NameNode
# bound1 ExprNode
# relation1 string
# relation2 string
# bound2 ExprNode
# step ExprNode or None
# body StatNode
# else_clause StatNode or None
#
# Used internally:
#
# from_range bool
# is_py_target bool
# loopvar_node ExprNode (usually a NameNode or temp node)
# py_loopvar_node PyTempNode or None
child_attrs = ["target", "bound1", "bound2", "step", "body", "else_clause"]
is_py_target = False
loopvar_node = None
py_loopvar_node = None
from_range = False
gil_message = "For-loop using object bounds or target"
def nogil_check(self, env):
for x in (self.target, self.bound1, self.bound2):
if x.type.is_pyobject:
self.gil_error()
def analyse_declarations(self, env):
self.target.analyse_target_declaration(env)
self.body.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
def analyse_expressions(self, env):
from . import ExprNodes
self.target = self.target.analyse_target_types(env)
self.bound1 = self.bound1.analyse_types(env)
self.bound2 = self.bound2.analyse_types(env)
if self.step is not None:
if isinstance(self.step, ExprNodes.UnaryMinusNode):
warning(self.step.pos, "Probable infinite loop in for-from-by statement. "
"Consider switching the directions of the relations.", 2)
self.step = self.step.analyse_types(env)
self.set_up_loop(env)
target_type = self.target.type
if not (target_type.is_pyobject or target_type.is_numeric):
error(self.target.pos, "for-from loop variable must be c numeric type or Python object")
self.body = self.body.analyse_expressions(env)
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
def set_up_loop(self, env):
from . import ExprNodes
target_type = self.target.type
if target_type.is_numeric:
loop_type = target_type
else:
if target_type.is_enum:
warning(self.target.pos,
"Integer loops over enum values are fragile. Please cast to a safe integer type instead.")
loop_type = PyrexTypes.c_long_type if target_type.is_pyobject else PyrexTypes.c_int_type
if not self.bound1.type.is_pyobject:
loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound1.type)
if not self.bound2.type.is_pyobject:
loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound2.type)
if self.step is not None and not self.step.type.is_pyobject:
loop_type = PyrexTypes.widest_numeric_type(loop_type, self.step.type)
self.bound1 = self.bound1.coerce_to(loop_type, env)
self.bound2 = self.bound2.coerce_to(loop_type, env)
if not self.bound2.is_literal:
self.bound2 = self.bound2.coerce_to_temp(env)
if self.step is not None:
self.step = self.step.coerce_to(loop_type, env)
if not self.step.is_literal:
self.step = self.step.coerce_to_temp(env)
if target_type.is_numeric or target_type.is_enum:
self.is_py_target = False
if isinstance(self.target, ExprNodes.BufferIndexNode):
raise error(self.pos, "Buffer or memoryview slicing/indexing not allowed as for-loop target.")
self.loopvar_node = self.target
self.py_loopvar_node = None
else:
self.is_py_target = True
c_loopvar_node = ExprNodes.TempNode(self.pos, loop_type, env)
self.loopvar_node = c_loopvar_node
self.py_loopvar_node = ExprNodes.CloneNode(c_loopvar_node).coerce_to_pyobject(env)
def generate_execution_code(self, code):
code.mark_pos(self.pos)
old_loop_labels = code.new_loop_labels()
from_range = self.from_range
self.bound1.generate_evaluation_code(code)
self.bound2.generate_evaluation_code(code)
offset, incop = self.relation_table[self.relation1]
if self.step is not None:
self.step.generate_evaluation_code(code)
step = self.step.result()
incop = "%s=%s" % (incop[0], step) # e.g. '++' => '+= STEP'
else:
step = '1'
from . import ExprNodes
if isinstance(self.loopvar_node, ExprNodes.TempNode):
self.loopvar_node.allocate(code)
if isinstance(self.py_loopvar_node, ExprNodes.TempNode):
self.py_loopvar_node.allocate(code)
loopvar_type = PyrexTypes.c_long_type if self.target.type.is_enum else self.target.type
if from_range and not self.is_py_target:
loopvar_name = code.funcstate.allocate_temp(loopvar_type, False)
else:
loopvar_name = self.loopvar_node.result()
if loopvar_type.is_int and not loopvar_type.signed and self.relation2[0] == '>':
# Handle the case where the endpoint of an unsigned int iteration
# is within step of 0.
code.putln("for (%s = %s%s + %s; %s %s %s + %s; ) { %s%s;" % (
loopvar_name,
self.bound1.result(), offset, step,
loopvar_name, self.relation2, self.bound2.result(), step,
loopvar_name, incop))
else:
code.putln("for (%s = %s%s; %s %s %s; %s%s) {" % (
loopvar_name,
self.bound1.result(), offset,
loopvar_name, self.relation2, self.bound2.result(),
loopvar_name, incop))
coerced_loopvar_node = self.py_loopvar_node
if coerced_loopvar_node is None and from_range:
coerced_loopvar_node = ExprNodes.RawCNameExprNode(self.target.pos, loopvar_type, loopvar_name)
if coerced_loopvar_node is not None:
coerced_loopvar_node.generate_evaluation_code(code)
self.target.generate_assignment_code(coerced_loopvar_node, code)
self.body.generate_execution_code(code)
code.put_label(code.continue_label)
if not from_range and self.py_loopvar_node:
# This mess is to make for..from loops with python targets behave
# exactly like those with C targets with regards to re-assignment
# of the loop variable.
if self.target.entry.is_pyglobal:
# We know target is a NameNode, this is the only ugly case.
target_node = ExprNodes.PyTempNode(self.target.pos, None)
target_node.allocate(code)
interned_cname = code.intern_identifier(self.target.entry.name)
if self.target.entry.scope.is_module_scope:
code.globalstate.use_utility_code(
UtilityCode.load_cached("GetModuleGlobalName", "ObjectHandling.c"))
lookup_func = '__Pyx_GetModuleGlobalName(%s, %s); %s'
else:
code.globalstate.use_utility_code(
UtilityCode.load_cached("GetNameInClass", "ObjectHandling.c"))
lookup_func = '__Pyx_GetNameInClass(%s, {}, %s); %s'.format(
self.target.entry.scope.namespace_cname)
code.putln(lookup_func % (
target_node.result(),
interned_cname,
code.error_goto_if_null(target_node.result(), self.target.pos)))
code.put_gotref(target_node.result())
else:
target_node = self.target
from_py_node = ExprNodes.CoerceFromPyTypeNode(
self.loopvar_node.type, target_node, self.target.entry.scope)
from_py_node.temp_code = loopvar_name
from_py_node.generate_result_code(code)
if self.target.entry.is_pyglobal:
code.put_decref(target_node.result(), target_node.type)
target_node.release(code)
code.putln("}")
if not from_range and self.py_loopvar_node:
# This is potentially wasteful, but we don't want the semantics to
# depend on whether or not the loop is a python type.
self.py_loopvar_node.generate_evaluation_code(code)
self.target.generate_assignment_code(self.py_loopvar_node, code)
if from_range and not self.is_py_target:
code.funcstate.release_temp(loopvar_name)
break_label = code.break_label
code.set_loop_labels(old_loop_labels)
if self.else_clause:
code.putln("/*else*/ {")
self.else_clause.generate_execution_code(code)
code.putln("}")
code.put_label(break_label)
self.bound1.generate_disposal_code(code)
self.bound1.free_temps(code)
self.bound2.generate_disposal_code(code)
self.bound2.free_temps(code)
if isinstance(self.loopvar_node, ExprNodes.TempNode):
self.loopvar_node.release(code)
if isinstance(self.py_loopvar_node, ExprNodes.TempNode):
self.py_loopvar_node.release(code)
if self.step is not None:
self.step.generate_disposal_code(code)
self.step.free_temps(code)
relation_table = {
# {relop : (initial offset, increment op)}
'<=': ("", "++"),
'<' : ("+1", "++"),
'>=': ("", "--"),
'>' : ("-1", "--"),
}
def generate_function_definitions(self, env, code):
self.target.generate_function_definitions(env, code)
self.bound1.generate_function_definitions(env, code)
self.bound2.generate_function_definitions(env, code)
if self.step is not None:
self.step.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
self.target.annotate(code)
self.bound1.annotate(code)
self.bound2.annotate(code)
if self.step:
self.step.annotate(code)
self.body.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
class WithStatNode(StatNode):
"""
Represents a Python with statement.
Implemented by the WithTransform as follows:
MGR = EXPR
EXIT = MGR.__exit__
VALUE = MGR.__enter__()
EXC = True
try:
try:
TARGET = VALUE # optional
BODY
except:
EXC = False
if not EXIT(*EXCINFO):
raise
finally:
if EXC:
EXIT(None, None, None)
MGR = EXIT = VALUE = None
"""
# manager The with statement manager object
# target ExprNode the target lhs of the __enter__() call
# body StatNode
# enter_call ExprNode the call to the __enter__() method
# exit_var String the cname of the __exit__() method reference
child_attrs = ["manager", "enter_call", "target", "body"]
enter_call = None
target_temp = None
def analyse_declarations(self, env):
self.manager.analyse_declarations(env)
self.enter_call.analyse_declarations(env)
self.body.analyse_declarations(env)
def analyse_expressions(self, env):
self.manager = self.manager.analyse_types(env)
self.enter_call = self.enter_call.analyse_types(env)
if self.target:
# set up target_temp before descending into body (which uses it)
from .ExprNodes import TempNode
self.target_temp = TempNode(self.enter_call.pos, self.enter_call.type)
self.body = self.body.analyse_expressions(env)
return self
def generate_function_definitions(self, env, code):
self.manager.generate_function_definitions(env, code)
self.enter_call.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
def generate_execution_code(self, code):
code.mark_pos(self.pos)
code.putln("/*with:*/ {")
self.manager.generate_evaluation_code(code)
self.exit_var = code.funcstate.allocate_temp(py_object_type, manage_ref=False)
code.globalstate.use_utility_code(
UtilityCode.load_cached("PyObjectLookupSpecial", "ObjectHandling.c"))
code.putln("%s = __Pyx_PyObject_LookupSpecial(%s, %s); %s" % (
self.exit_var,
self.manager.py_result(),
code.intern_identifier(EncodedString('__aexit__' if self.is_async else '__exit__')),
code.error_goto_if_null(self.exit_var, self.pos),
))
code.put_gotref(self.exit_var)
# need to free exit_var in the face of exceptions during setup
old_error_label = code.new_error_label()
intermediate_error_label = code.error_label
self.enter_call.generate_evaluation_code(code)
if self.target:
# The temp result will be cleaned up by the WithTargetAssignmentStatNode
# after assigning its result to the target of the 'with' statement.
self.target_temp.allocate(code)
self.enter_call.make_owned_reference(code)
code.putln("%s = %s;" % (self.target_temp.result(), self.enter_call.result()))
self.enter_call.generate_post_assignment_code(code)
else:
self.enter_call.generate_disposal_code(code)
self.enter_call.free_temps(code)
self.manager.generate_disposal_code(code)
self.manager.free_temps(code)
code.error_label = old_error_label
self.body.generate_execution_code(code)
if code.label_used(intermediate_error_label):
step_over_label = code.new_label()
code.put_goto(step_over_label)
code.put_label(intermediate_error_label)
code.put_decref_clear(self.exit_var, py_object_type)
code.put_goto(old_error_label)
code.put_label(step_over_label)
code.funcstate.release_temp(self.exit_var)
code.putln('}')
class WithTargetAssignmentStatNode(AssignmentNode):
# The target assignment of the 'with' statement value (return
# value of the __enter__() call).
#
# This is a special cased assignment that properly cleans up the RHS.
#
# lhs ExprNode the assignment target
# rhs ExprNode a (coerced) TempNode for the rhs (from WithStatNode)
# with_node WithStatNode the surrounding with-statement
child_attrs = ["rhs", "lhs"]
with_node = None
rhs = None
def analyse_declarations(self, env):
self.lhs.analyse_target_declaration(env)
def analyse_expressions(self, env):
self.lhs = self.lhs.analyse_target_types(env)
self.lhs.gil_assignment_check(env)
self.rhs = self.with_node.target_temp.coerce_to(self.lhs.type, env)
return self
def generate_execution_code(self, code):
self.rhs.generate_evaluation_code(code)
self.lhs.generate_assignment_code(self.rhs, code)
self.with_node.target_temp.release(code)
def annotate(self, code):
self.lhs.annotate(code)
self.rhs.annotate(code)
class TryExceptStatNode(StatNode):
# try .. except statement
#
# body StatNode
# except_clauses [ExceptClauseNode]
# else_clause StatNode or None
child_attrs = ["body", "except_clauses", "else_clause"]
in_generator = False
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
for except_clause in self.except_clauses:
except_clause.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
def analyse_expressions(self, env):
self.body = self.body.analyse_expressions(env)
default_clause_seen = 0
for i, except_clause in enumerate(self.except_clauses):
except_clause = self.except_clauses[i] = except_clause.analyse_expressions(env)
if default_clause_seen:
error(except_clause.pos, "default 'except:' must be last")
if not except_clause.pattern:
default_clause_seen = 1
self.has_default_clause = default_clause_seen
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
nogil_check = Node.gil_error
gil_message = "Try-except statement"
def generate_execution_code(self, code):
code.mark_pos(self.pos) # before changing the error label, in case of tracing errors
code.putln("{")
old_return_label = code.return_label
old_break_label = code.break_label
old_continue_label = code.continue_label
old_error_label = code.new_error_label()
our_error_label = code.error_label
except_end_label = code.new_label('exception_handled')
except_error_label = code.new_label('except_error')
except_return_label = code.new_label('except_return')
try_return_label = code.new_label('try_return')
try_break_label = code.new_label('try_break') if old_break_label else None
try_continue_label = code.new_label('try_continue') if old_continue_label else None
try_end_label = code.new_label('try_end')
exc_save_vars = [code.funcstate.allocate_temp(py_object_type, False)
for _ in range(3)]
save_exc = code.insertion_point()
code.putln(
"/*try:*/ {")
code.return_label = try_return_label
code.break_label = try_break_label
code.continue_label = try_continue_label
self.body.generate_execution_code(code)
code.mark_pos(self.pos, trace=False)
code.putln(
"}")
temps_to_clean_up = code.funcstate.all_free_managed_temps()
can_raise = code.label_used(our_error_label)
if can_raise:
# inject code before the try block to save away the exception state
code.globalstate.use_utility_code(reset_exception_utility_code)
if not self.in_generator:
save_exc.putln("__Pyx_PyThreadState_declare")
save_exc.putln("__Pyx_PyThreadState_assign")
save_exc.putln("__Pyx_ExceptionSave(%s);" % (
', '.join(['&%s' % var for var in exc_save_vars])))
for var in exc_save_vars:
save_exc.put_xgotref(var)
def restore_saved_exception():
for name in exc_save_vars:
code.put_xgiveref(name)
code.putln("__Pyx_ExceptionReset(%s);" %
', '.join(exc_save_vars))
else:
# try block cannot raise exceptions, but we had to allocate the temps above,
# so just keep the C compiler from complaining about them being unused
mark_vars_used = ["(void)%s;" % var for var in exc_save_vars]
save_exc.putln("%s /* mark used */" % ' '.join(mark_vars_used))
def restore_saved_exception():
pass
code.error_label = except_error_label
code.return_label = except_return_label
normal_case_terminates = self.body.is_terminator
if self.else_clause:
code.mark_pos(self.else_clause.pos)
code.putln(
"/*else:*/ {")
self.else_clause.generate_execution_code(code)
code.putln(
"}")
if not normal_case_terminates:
normal_case_terminates = self.else_clause.is_terminator
if can_raise:
if not normal_case_terminates:
for var in exc_save_vars:
code.put_xdecref_clear(var, py_object_type)
code.put_goto(try_end_label)
code.put_label(our_error_label)
for temp_name, temp_type in temps_to_clean_up:
code.put_xdecref_clear(temp_name, temp_type)
outer_except = code.funcstate.current_except
# Currently points to self, but the ExceptClauseNode would also be ok. Change if needed.
code.funcstate.current_except = self
for except_clause in self.except_clauses:
except_clause.generate_handling_code(code, except_end_label)
code.funcstate.current_except = outer_except
if not self.has_default_clause:
code.put_goto(except_error_label)
for exit_label, old_label in [(except_error_label, old_error_label),
(try_break_label, old_break_label),
(try_continue_label, old_continue_label),
(try_return_label, old_return_label),
(except_return_label, old_return_label)]:
if code.label_used(exit_label):
if not normal_case_terminates and not code.label_used(try_end_label):
code.put_goto(try_end_label)
code.put_label(exit_label)
code.mark_pos(self.pos, trace=False)
if can_raise:
restore_saved_exception()
code.put_goto(old_label)
if code.label_used(except_end_label):
if not normal_case_terminates and not code.label_used(try_end_label):
code.put_goto(try_end_label)
code.put_label(except_end_label)
if can_raise:
restore_saved_exception()
if code.label_used(try_end_label):
code.put_label(try_end_label)
code.putln("}")
for cname in exc_save_vars:
code.funcstate.release_temp(cname)
code.return_label = old_return_label
code.break_label = old_break_label
code.continue_label = old_continue_label
code.error_label = old_error_label
def generate_function_definitions(self, env, code):
self.body.generate_function_definitions(env, code)
for except_clause in self.except_clauses:
except_clause.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
self.body.annotate(code)
for except_node in self.except_clauses:
except_node.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
class ExceptClauseNode(Node):
# Part of try ... except statement.
#
# pattern [ExprNode]
# target ExprNode or None
# body StatNode
# excinfo_target TupleNode(3*ResultRefNode) or None optional target for exception info (not owned here!)
# match_flag string result of exception match
# exc_value ExcValueNode used internally
# function_name string qualified name of enclosing function
# exc_vars (string * 3) local exception variables
# is_except_as bool Py3-style "except ... as xyz"
# excinfo_target is never set by the parser, but can be set by a transform
# in order to extract more extensive information about the exception as a
# sys.exc_info()-style tuple into a target variable
child_attrs = ["pattern", "target", "body", "exc_value"]
exc_value = None
excinfo_target = None
is_except_as = False
def analyse_declarations(self, env):
if self.target:
self.target.analyse_target_declaration(env)
self.body.analyse_declarations(env)
def analyse_expressions(self, env):
self.function_name = env.qualified_name
if self.pattern:
# normalise/unpack self.pattern into a list
for i, pattern in enumerate(self.pattern):
pattern = pattern.analyse_expressions(env)
self.pattern[i] = pattern.coerce_to_pyobject(env)
if self.target:
from . import ExprNodes
self.exc_value = ExprNodes.ExcValueNode(self.pos)
self.target = self.target.analyse_target_expression(env, self.exc_value)
self.body = self.body.analyse_expressions(env)
return self
def generate_handling_code(self, code, end_label):
code.mark_pos(self.pos)
if self.pattern:
has_non_literals = not all(
pattern.is_literal or pattern.is_simple() and not pattern.is_temp
for pattern in self.pattern)
if has_non_literals:
# For non-trivial exception check expressions, hide the live exception from C-API calls.
exc_vars = [code.funcstate.allocate_temp(py_object_type, manage_ref=True)
for _ in range(3)]
code.globalstate.use_utility_code(UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c"))
code.putln("__Pyx_ErrFetch(&%s, &%s, &%s);" % tuple(exc_vars))
code.globalstate.use_utility_code(UtilityCode.load_cached("FastTypeChecks", "ModuleSetupCode.c"))
exc_test_func = "__Pyx_PyErr_GivenExceptionMatches(%s, %%s)" % exc_vars[0]
else:
exc_vars = ()
code.globalstate.use_utility_code(UtilityCode.load_cached("PyErrExceptionMatches", "Exceptions.c"))
exc_test_func = "__Pyx_PyErr_ExceptionMatches(%s)"
exc_tests = []
for pattern in self.pattern:
pattern.generate_evaluation_code(code)
exc_tests.append(exc_test_func % pattern.py_result())
match_flag = code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
code.putln("%s = %s;" % (match_flag, ' || '.join(exc_tests)))
for pattern in self.pattern:
pattern.generate_disposal_code(code)
pattern.free_temps(code)
if has_non_literals:
code.putln("__Pyx_ErrRestore(%s, %s, %s);" % tuple(exc_vars))
code.putln(' '.join(["%s = 0;" % var for var in exc_vars]))
for temp in exc_vars:
code.funcstate.release_temp(temp)
code.putln(
"if (%s) {" %
match_flag)
code.funcstate.release_temp(match_flag)
else:
code.putln("/*except:*/ {")
if (not getattr(self.body, 'stats', True)
and self.excinfo_target is None
and self.target is None):
# most simple case: no exception variable, empty body (pass)
# => reset the exception state, done
code.globalstate.use_utility_code(UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c"))
code.putln("__Pyx_ErrRestore(0,0,0);")
code.put_goto(end_label)
code.putln("}")
return
exc_vars = [code.funcstate.allocate_temp(py_object_type, manage_ref=True)
for _ in range(3)]
code.put_add_traceback(self.function_name)
# We always have to fetch the exception value even if
# there is no target, because this also normalises the
# exception and stores it in the thread state.
code.globalstate.use_utility_code(get_exception_utility_code)
exc_args = "&%s, &%s, &%s" % tuple(exc_vars)
code.putln("if (__Pyx_GetException(%s) < 0) %s" % (
exc_args, code.error_goto(self.pos)))
for var in exc_vars:
code.put_gotref(var)
if self.target:
self.exc_value.set_var(exc_vars[1])
self.exc_value.generate_evaluation_code(code)
self.target.generate_assignment_code(self.exc_value, code)
if self.excinfo_target is not None:
for tempvar, node in zip(exc_vars, self.excinfo_target.args):
node.set_var(tempvar)
old_break_label, old_continue_label = code.break_label, code.continue_label
code.break_label = code.new_label('except_break')
code.continue_label = code.new_label('except_continue')
old_exc_vars = code.funcstate.exc_vars
code.funcstate.exc_vars = exc_vars
self.body.generate_execution_code(code)
code.funcstate.exc_vars = old_exc_vars
if not self.body.is_terminator:
for var in exc_vars:
# FIXME: XDECREF() is needed to allow re-raising (which clears the exc_vars),
# but I don't think it's the right solution.
code.put_xdecref_clear(var, py_object_type)
code.put_goto(end_label)
for new_label, old_label in [(code.break_label, old_break_label),
(code.continue_label, old_continue_label)]:
if code.label_used(new_label):
code.put_label(new_label)
for var in exc_vars:
code.put_decref_clear(var, py_object_type)
code.put_goto(old_label)
code.break_label = old_break_label
code.continue_label = old_continue_label
for temp in exc_vars:
code.funcstate.release_temp(temp)
code.putln(
"}")
def generate_function_definitions(self, env, code):
if self.target is not None:
self.target.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
def annotate(self, code):
if self.pattern:
for pattern in self.pattern:
pattern.annotate(code)
if self.target:
self.target.annotate(code)
self.body.annotate(code)
class TryFinallyStatNode(StatNode):
# try ... finally statement
#
# body StatNode
# finally_clause StatNode
# finally_except_clause deep-copy of finally_clause for exception case
# in_generator inside of generator => must store away current exception also in return case
#
# Each of the continue, break, return and error gotos runs
# into its own deep-copy of the finally block code.
# In addition, if we're doing an error, we save the
# exception on entry to the finally block and restore
# it on exit.
child_attrs = ["body", "finally_clause", "finally_except_clause"]
preserve_exception = 1
# handle exception case, in addition to return/break/continue
handle_error_case = True
func_return_type = None
finally_except_clause = None
is_try_finally_in_nogil = False
in_generator = False
@staticmethod
def create_analysed(pos, env, body, finally_clause):
node = TryFinallyStatNode(pos, body=body, finally_clause=finally_clause)
return node
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
self.finally_except_clause = copy.deepcopy(self.finally_clause)
self.finally_except_clause.analyse_declarations(env)
self.finally_clause.analyse_declarations(env)
def analyse_expressions(self, env):
self.body = self.body.analyse_expressions(env)
self.finally_clause = self.finally_clause.analyse_expressions(env)
self.finally_except_clause = self.finally_except_clause.analyse_expressions(env)
if env.return_type and not env.return_type.is_void:
self.func_return_type = env.return_type
return self
nogil_check = Node.gil_error
gil_message = "Try-finally statement"
def generate_execution_code(self, code):
code.mark_pos(self.pos) # before changing the error label, in case of tracing errors
code.putln("/*try:*/ {")
old_error_label = code.error_label
old_labels = code.all_new_labels()
new_labels = code.get_all_labels()
new_error_label = code.error_label
if not self.handle_error_case:
code.error_label = old_error_label
catch_label = code.new_label()
was_in_try_finally = code.funcstate.in_try_finally
code.funcstate.in_try_finally = 1
self.body.generate_execution_code(code)
code.funcstate.in_try_finally = was_in_try_finally
code.putln("}")
temps_to_clean_up = code.funcstate.all_free_managed_temps()
code.mark_pos(self.finally_clause.pos)
code.putln("/*finally:*/ {")
# Reset labels only after writing out a potential line trace call for correct nogil error handling.
code.set_all_labels(old_labels)
def fresh_finally_clause(_next=[self.finally_clause]):
# generate the original subtree once and always keep a fresh copy
node = _next[0]
node_copy = copy.deepcopy(node)
if node is self.finally_clause:
_next[0] = node_copy
else:
node = node_copy
return node
preserve_error = self.preserve_exception and code.label_used(new_error_label)
needs_success_cleanup = not self.finally_clause.is_terminator
if not self.body.is_terminator:
code.putln('/*normal exit:*/{')
fresh_finally_clause().generate_execution_code(code)
if not self.finally_clause.is_terminator:
code.put_goto(catch_label)
code.putln('}')
if preserve_error:
code.put_label(new_error_label)
code.putln('/*exception exit:*/{')
if not self.in_generator:
code.putln("__Pyx_PyThreadState_declare")
if self.is_try_finally_in_nogil:
code.declare_gilstate()
if needs_success_cleanup:
exc_lineno_cnames = tuple([
code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
for _ in range(2)])
exc_filename_cname = code.funcstate.allocate_temp(
PyrexTypes.CPtrType(PyrexTypes.c_const_type(PyrexTypes.c_char_type)),
manage_ref=False)
else:
exc_lineno_cnames = exc_filename_cname = None
exc_vars = tuple([
code.funcstate.allocate_temp(py_object_type, manage_ref=False)
for _ in range(6)])
self.put_error_catcher(
code, temps_to_clean_up, exc_vars, exc_lineno_cnames, exc_filename_cname)
finally_old_labels = code.all_new_labels()
code.putln('{')
old_exc_vars = code.funcstate.exc_vars
code.funcstate.exc_vars = exc_vars[:3]
self.finally_except_clause.generate_execution_code(code)
code.funcstate.exc_vars = old_exc_vars
code.putln('}')
if needs_success_cleanup:
self.put_error_uncatcher(code, exc_vars, exc_lineno_cnames, exc_filename_cname)
if exc_lineno_cnames:
for cname in exc_lineno_cnames:
code.funcstate.release_temp(cname)
if exc_filename_cname:
code.funcstate.release_temp(exc_filename_cname)
code.put_goto(old_error_label)
for new_label, old_label in zip(code.get_all_labels(), finally_old_labels):
if not code.label_used(new_label):
continue
code.put_label(new_label)
self.put_error_cleaner(code, exc_vars)
code.put_goto(old_label)
for cname in exc_vars:
code.funcstate.release_temp(cname)
code.putln('}')
code.set_all_labels(old_labels)
return_label = code.return_label
exc_vars = ()
for i, (new_label, old_label) in enumerate(zip(new_labels, old_labels)):
if not code.label_used(new_label):
continue
if new_label == new_error_label and preserve_error:
continue # handled above
code.putln('%s: {' % new_label)
ret_temp = None
if old_label == return_label:
# return actually raises an (uncatchable) exception in generators that we must preserve
if self.in_generator:
exc_vars = tuple([
code.funcstate.allocate_temp(py_object_type, manage_ref=False)
for _ in range(6)])
self.put_error_catcher(code, [], exc_vars)
if not self.finally_clause.is_terminator:
# store away return value for later reuse
if (self.func_return_type and
not self.is_try_finally_in_nogil and
not isinstance(self.finally_clause, GILExitNode)):
ret_temp = code.funcstate.allocate_temp(
self.func_return_type, manage_ref=False)
code.putln("%s = %s;" % (ret_temp, Naming.retval_cname))
if self.func_return_type.is_pyobject:
code.putln("%s = 0;" % Naming.retval_cname)
fresh_finally_clause().generate_execution_code(code)
if old_label == return_label:
if ret_temp:
code.putln("%s = %s;" % (Naming.retval_cname, ret_temp))
if self.func_return_type.is_pyobject:
code.putln("%s = 0;" % ret_temp)
code.funcstate.release_temp(ret_temp)
ret_temp = None
if self.in_generator:
self.put_error_uncatcher(code, exc_vars)
if not self.finally_clause.is_terminator:
code.put_goto(old_label)
code.putln('}')
# End finally
code.put_label(catch_label)
code.putln(
"}")
def generate_function_definitions(self, env, code):
self.body.generate_function_definitions(env, code)
self.finally_clause.generate_function_definitions(env, code)
def put_error_catcher(self, code, temps_to_clean_up, exc_vars,
exc_lineno_cnames=None, exc_filename_cname=None):
code.globalstate.use_utility_code(restore_exception_utility_code)
code.globalstate.use_utility_code(get_exception_utility_code)
code.globalstate.use_utility_code(swap_exception_utility_code)
if self.is_try_finally_in_nogil:
code.put_ensure_gil(declare_gilstate=False)
code.putln("__Pyx_PyThreadState_assign")
code.putln(' '.join(["%s = 0;" % var for var in exc_vars]))
for temp_name, type in temps_to_clean_up:
code.put_xdecref_clear(temp_name, type)
# not using preprocessor here to avoid warnings about
# unused utility functions and/or temps
code.putln("if (PY_MAJOR_VERSION >= 3)"
" __Pyx_ExceptionSwap(&%s, &%s, &%s);" % exc_vars[3:])
code.putln("if ((PY_MAJOR_VERSION < 3) ||"
# if __Pyx_GetException() fails in Py3,
# store the newly raised exception instead
" unlikely(__Pyx_GetException(&%s, &%s, &%s) < 0)) "
"__Pyx_ErrFetch(&%s, &%s, &%s);" % (exc_vars[:3] * 2))
for var in exc_vars:
code.put_xgotref(var)
if exc_lineno_cnames:
code.putln("%s = %s; %s = %s; %s = %s;" % (
exc_lineno_cnames[0], Naming.lineno_cname,
exc_lineno_cnames[1], Naming.clineno_cname,
exc_filename_cname, Naming.filename_cname))
if self.is_try_finally_in_nogil:
code.put_release_ensured_gil()
def put_error_uncatcher(self, code, exc_vars, exc_lineno_cnames=None, exc_filename_cname=None):
code.globalstate.use_utility_code(restore_exception_utility_code)
code.globalstate.use_utility_code(reset_exception_utility_code)
if self.is_try_finally_in_nogil:
code.put_ensure_gil(declare_gilstate=False)
# not using preprocessor here to avoid warnings about
# unused utility functions and/or temps
code.putln("if (PY_MAJOR_VERSION >= 3) {")
for var in exc_vars[3:]:
code.put_xgiveref(var)
code.putln("__Pyx_ExceptionReset(%s, %s, %s);" % exc_vars[3:])
code.putln("}")
for var in exc_vars[:3]:
code.put_xgiveref(var)
code.putln("__Pyx_ErrRestore(%s, %s, %s);" % exc_vars[:3])
if self.is_try_finally_in_nogil:
code.put_release_ensured_gil()
code.putln(' '.join(["%s = 0;" % var for var in exc_vars]))
if exc_lineno_cnames:
code.putln("%s = %s; %s = %s; %s = %s;" % (
Naming.lineno_cname, exc_lineno_cnames[0],
Naming.clineno_cname, exc_lineno_cnames[1],
Naming.filename_cname, exc_filename_cname))
def put_error_cleaner(self, code, exc_vars):
code.globalstate.use_utility_code(reset_exception_utility_code)
if self.is_try_finally_in_nogil:
code.put_ensure_gil(declare_gilstate=False)
# not using preprocessor here to avoid warnings about
# unused utility functions and/or temps
code.putln("if (PY_MAJOR_VERSION >= 3) {")
for var in exc_vars[3:]:
code.put_xgiveref(var)
code.putln("__Pyx_ExceptionReset(%s, %s, %s);" % exc_vars[3:])
code.putln("}")
for var in exc_vars[:3]:
code.put_xdecref_clear(var, py_object_type)
if self.is_try_finally_in_nogil:
code.put_release_ensured_gil()
code.putln(' '.join(["%s = 0;"]*3) % exc_vars[3:])
def annotate(self, code):
self.body.annotate(code)
self.finally_clause.annotate(code)
class NogilTryFinallyStatNode(TryFinallyStatNode):
"""
A try/finally statement that may be used in nogil code sections.
"""
preserve_exception = False
nogil_check = None
class GILStatNode(NogilTryFinallyStatNode):
# 'with gil' or 'with nogil' statement
#
# state string 'gil' or 'nogil'
state_temp = None
def __init__(self, pos, state, body):
self.state = state
self.create_state_temp_if_needed(pos, state, body)
TryFinallyStatNode.__init__(
self, pos,
body=body,
finally_clause=GILExitNode(
pos, state=state, state_temp=self.state_temp))
def create_state_temp_if_needed(self, pos, state, body):
from .ParseTreeTransforms import YieldNodeCollector
collector = YieldNodeCollector()
collector.visitchildren(body)
if not collector.yields:
return
if state == 'gil':
temp_type = PyrexTypes.c_gilstate_type
else:
temp_type = PyrexTypes.c_threadstate_ptr_type
from . import ExprNodes
self.state_temp = ExprNodes.TempNode(pos, temp_type)
def analyse_declarations(self, env):
env._in_with_gil_block = (self.state == 'gil')
if self.state == 'gil':
env.has_with_gil_block = True
return super(GILStatNode, self).analyse_declarations(env)
def analyse_expressions(self, env):
env.use_utility_code(
UtilityCode.load_cached("ForceInitThreads", "ModuleSetupCode.c"))
was_nogil = env.nogil
env.nogil = self.state == 'nogil'
node = TryFinallyStatNode.analyse_expressions(self, env)
env.nogil = was_nogil
return node
def generate_execution_code(self, code):
code.mark_pos(self.pos)
code.begin_block()
if self.state_temp:
self.state_temp.allocate(code)
variable = self.state_temp.result()
else:
variable = None
old_gil_config = code.funcstate.gil_owned
if self.state == 'gil':
code.put_ensure_gil(variable=variable)
code.funcstate.gil_owned = True
else:
code.put_release_gil(variable=variable)
code.funcstate.gil_owned = False
TryFinallyStatNode.generate_execution_code(self, code)
if self.state_temp:
self.state_temp.release(code)
code.funcstate.gil_owned = old_gil_config
code.end_block()
class GILExitNode(StatNode):
"""
Used as the 'finally' block in a GILStatNode
state string 'gil' or 'nogil'
"""
child_attrs = []
state_temp = None
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
if self.state_temp:
variable = self.state_temp.result()
else:
variable = None
if self.state == 'gil':
code.put_release_ensured_gil(variable)
else:
code.put_acquire_gil(variable)
class EnsureGILNode(GILExitNode):
"""
Ensure the GIL in nogil functions for cleanup before returning.
"""
def generate_execution_code(self, code):
code.put_ensure_gil(declare_gilstate=False)
def cython_view_utility_code():
from . import MemoryView
return MemoryView.view_utility_code
utility_code_for_cimports = {
# utility code (or inlining c) in a pxd (or pyx) file.
# TODO: Consider a generic user-level mechanism for importing
'cpython.array' : lambda : UtilityCode.load_cached("ArrayAPI", "arrayarray.h"),
'cpython.array.array' : lambda : UtilityCode.load_cached("ArrayAPI", "arrayarray.h"),
'cython.view' : cython_view_utility_code,
}
utility_code_for_imports = {
# utility code used when special modules are imported.
# TODO: Consider a generic user-level mechanism for importing
'asyncio': ("__Pyx_patch_asyncio", "PatchAsyncIO", "Coroutine.c"),
'inspect': ("__Pyx_patch_inspect", "PatchInspect", "Coroutine.c"),
}
class CImportStatNode(StatNode):
# cimport statement
#
# module_name string Qualified name of module being imported
# as_name string or None Name specified in "as" clause, if any
# is_absolute bool True for absolute imports, False otherwise
child_attrs = []
is_absolute = False
def analyse_declarations(self, env):
if not env.is_module_scope:
error(self.pos, "cimport only allowed at module level")
return
module_scope = env.find_module(
self.module_name, self.pos, relative_level=0 if self.is_absolute else -1)
if "." in self.module_name:
names = [EncodedString(name) for name in self.module_name.split(".")]
top_name = names[0]
top_module_scope = env.context.find_submodule(top_name)
module_scope = top_module_scope
for name in names[1:]:
submodule_scope = module_scope.find_submodule(name)
module_scope.declare_module(name, submodule_scope, self.pos)
module_scope = submodule_scope
if self.as_name:
env.declare_module(self.as_name, module_scope, self.pos)
else:
env.add_imported_module(module_scope)
env.declare_module(top_name, top_module_scope, self.pos)
else:
name = self.as_name or self.module_name
env.declare_module(name, module_scope, self.pos)
if self.module_name in utility_code_for_cimports:
env.use_utility_code(utility_code_for_cimports[self.module_name]())
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class FromCImportStatNode(StatNode):
# from ... cimport statement
#
# module_name string Qualified name of module
# relative_level int or None Relative import: number of dots before module_name
# imported_names [(pos, name, as_name, kind)] Names to be imported
child_attrs = []
module_name = None
relative_level = None
imported_names = None
def analyse_declarations(self, env):
if not env.is_module_scope:
error(self.pos, "cimport only allowed at module level")
return
if self.relative_level and self.relative_level > env.qualified_name.count('.'):
error(self.pos, "relative cimport beyond main package is not allowed")
return
module_scope = env.find_module(self.module_name, self.pos, relative_level=self.relative_level)
module_name = module_scope.qualified_name
env.add_imported_module(module_scope)
for pos, name, as_name, kind in self.imported_names:
if name == "*":
for local_name, entry in list(module_scope.entries.items()):
env.add_imported_entry(local_name, entry, pos)
else:
entry = module_scope.lookup(name)
if entry:
if kind and not self.declaration_matches(entry, kind):
entry.redeclared(pos)
entry.used = 1
else:
if kind == 'struct' or kind == 'union':
entry = module_scope.declare_struct_or_union(
name, kind=kind, scope=None, typedef_flag=0, pos=pos)
elif kind == 'class':
entry = module_scope.declare_c_class(name, pos=pos, module_name=module_name)
else:
submodule_scope = env.context.find_module(
name, relative_to=module_scope, pos=self.pos, absolute_fallback=False)
if submodule_scope.parent_module is module_scope:
env.declare_module(as_name or name, submodule_scope, self.pos)
else:
error(pos, "Name '%s' not declared in module '%s'" % (name, module_name))
if entry:
local_name = as_name or name
env.add_imported_entry(local_name, entry, pos)
if module_name.startswith('cpython') or module_name.startswith('cython'): # enough for now
if module_name in utility_code_for_cimports:
env.use_utility_code(utility_code_for_cimports[module_name]())
for _, name, _, _ in self.imported_names:
fqname = '%s.%s' % (module_name, name)
if fqname in utility_code_for_cimports:
env.use_utility_code(utility_code_for_cimports[fqname]())
def declaration_matches(self, entry, kind):
if not entry.is_type:
return 0
type = entry.type
if kind == 'class':
if not type.is_extension_type:
return 0
else:
if not type.is_struct_or_union:
return 0
if kind != type.kind:
return 0
return 1
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class FromImportStatNode(StatNode):
# from ... import statement
#
# module ImportNode
# items [(string, NameNode)]
# interned_items [(string, NameNode, ExprNode)]
# item PyTempNode used internally
# import_star boolean used internally
child_attrs = ["module"]
import_star = 0
def analyse_declarations(self, env):
for name, target in self.items:
if name == "*":
if not env.is_module_scope:
error(self.pos, "import * only allowed at module level")
return
env.has_import_star = 1
self.import_star = 1
else:
target.analyse_target_declaration(env)
def analyse_expressions(self, env):
from . import ExprNodes
self.module = self.module.analyse_expressions(env)
self.item = ExprNodes.RawCNameExprNode(self.pos, py_object_type)
self.interned_items = []
for name, target in self.items:
if name == '*':
for _, entry in env.entries.items():
if not entry.is_type and entry.type.is_extension_type:
env.use_utility_code(UtilityCode.load_cached("ExtTypeTest", "ObjectHandling.c"))
break
else:
entry = env.lookup(target.name)
# check whether or not entry is already cimported
if (entry.is_type and entry.type.name == name
and hasattr(entry.type, 'module_name')):
if entry.type.module_name == self.module.module_name.value:
# cimported with absolute name
continue
try:
# cimported with relative name
module = env.find_module(self.module.module_name.value, pos=self.pos,
relative_level=self.module.level)
if entry.type.module_name == module.qualified_name:
continue
except AttributeError:
pass
target = target.analyse_target_expression(env, None) # FIXME?
if target.type is py_object_type:
coerced_item = None
else:
coerced_item = self.item.coerce_to(target.type, env)
self.interned_items.append((name, target, coerced_item))
return self
def generate_execution_code(self, code):
code.mark_pos(self.pos)
self.module.generate_evaluation_code(code)
if self.import_star:
code.putln(
'if (%s(%s) < 0) %s;' % (
Naming.import_star,
self.module.py_result(),
code.error_goto(self.pos)))
item_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True)
self.item.set_cname(item_temp)
if self.interned_items:
code.globalstate.use_utility_code(
UtilityCode.load_cached("ImportFrom", "ImportExport.c"))
for name, target, coerced_item in self.interned_items:
code.putln(
'%s = __Pyx_ImportFrom(%s, %s); %s' % (
item_temp,
self.module.py_result(),
code.intern_identifier(name),
code.error_goto_if_null(item_temp, self.pos)))
code.put_gotref(item_temp)
if coerced_item is None:
target.generate_assignment_code(self.item, code)
else:
coerced_item.allocate_temp_result(code)
coerced_item.generate_result_code(code)
target.generate_assignment_code(coerced_item, code)
code.put_decref_clear(item_temp, py_object_type)
code.funcstate.release_temp(item_temp)
self.module.generate_disposal_code(code)
self.module.free_temps(code)
class ParallelNode(Node):
"""
Base class for cython.parallel constructs.
"""
nogil_check = None
class ParallelStatNode(StatNode, ParallelNode):
"""
Base class for 'with cython.parallel.parallel():' and 'for i in prange():'.
assignments { Entry(var) : (var.pos, inplace_operator_or_None) }
assignments to variables in this parallel section
parent parent ParallelStatNode or None
is_parallel indicates whether this node is OpenMP parallel
(true for #pragma omp parallel for and
#pragma omp parallel)
is_parallel is true for:
#pragma omp parallel
#pragma omp parallel for
sections, but NOT for
#pragma omp for
We need this to determine the sharing attributes.
privatization_insertion_point a code insertion point used to make temps
private (esp. the "nsteps" temp)
args tuple the arguments passed to the parallel construct
kwargs DictNode the keyword arguments passed to the parallel
construct (replaced by its compile time value)
"""
child_attrs = ['body', 'num_threads']
body = None
is_prange = False
is_nested_prange = False
error_label_used = False
num_threads = None
chunksize = None
parallel_exc = (
Naming.parallel_exc_type,
Naming.parallel_exc_value,
Naming.parallel_exc_tb,
)
parallel_pos_info = (
Naming.parallel_filename,
Naming.parallel_lineno,
Naming.parallel_clineno,
)
pos_info = (
Naming.filename_cname,
Naming.lineno_cname,
Naming.clineno_cname,
)
critical_section_counter = 0
def __init__(self, pos, **kwargs):
super(ParallelStatNode, self).__init__(pos, **kwargs)
# All assignments in this scope
self.assignments = kwargs.get('assignments') or {}
# All seen closure cnames and their temporary cnames
self.seen_closure_vars = set()
# Dict of variables that should be declared (first|last|)private or
# reduction { Entry: (op, lastprivate) }.
# If op is not None, it's a reduction.
self.privates = {}
# [NameNode]
self.assigned_nodes = []
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
self.num_threads = None
if self.kwargs:
# Try to find num_threads and chunksize keyword arguments
pairs = []
seen = set()
for dictitem in self.kwargs.key_value_pairs:
if dictitem.key.value in seen:
error(self.pos, "Duplicate keyword argument found: %s" % dictitem.key.value)
seen.add(dictitem.key.value)
if dictitem.key.value == 'num_threads':
if not dictitem.value.is_none:
self.num_threads = dictitem.value
elif self.is_prange and dictitem.key.value == 'chunksize':
if not dictitem.value.is_none:
self.chunksize = dictitem.value
else:
pairs.append(dictitem)
self.kwargs.key_value_pairs = pairs
try:
self.kwargs = self.kwargs.compile_time_value(env)
except Exception as e:
error(self.kwargs.pos, "Only compile-time values may be "
"supplied as keyword arguments")
else:
self.kwargs = {}
for kw, val in self.kwargs.items():
if kw not in self.valid_keyword_arguments:
error(self.pos, "Invalid keyword argument: %s" % kw)
else:
setattr(self, kw, val)
def analyse_expressions(self, env):
if self.num_threads:
self.num_threads = self.num_threads.analyse_expressions(env)
if self.chunksize:
self.chunksize = self.chunksize.analyse_expressions(env)
self.body = self.body.analyse_expressions(env)
self.analyse_sharing_attributes(env)
if self.num_threads is not None:
if self.parent and self.parent.num_threads is not None and not self.parent.is_prange:
error(self.pos, "num_threads already declared in outer section")
elif self.parent and not self.parent.is_prange:
error(self.pos, "num_threads must be declared in the parent parallel section")
elif (self.num_threads.type.is_int and
self.num_threads.is_literal and
self.num_threads.compile_time_value(env) <= 0):
error(self.pos, "argument to num_threads must be greater than 0")
if not self.num_threads.is_simple() or self.num_threads.type.is_pyobject:
self.num_threads = self.num_threads.coerce_to(
PyrexTypes.c_int_type, env).coerce_to_temp(env)
return self
def analyse_sharing_attributes(self, env):
"""
Analyse the privates for this block and set them in self.privates.
This should be called in a post-order fashion during the
analyse_expressions phase
"""
for entry, (pos, op) in self.assignments.items():
if self.is_prange and not self.is_parallel:
# closely nested prange in a with parallel block, disallow
# assigning to privates in the with parallel block (we
# consider it too implicit and magicky for users)
if entry in self.parent.assignments:
error(pos, "Cannot assign to private of outer parallel block")
continue
if not self.is_prange and op:
# Again possible, but considered to magicky
error(pos, "Reductions not allowed for parallel blocks")
continue
# By default all variables should have the same values as if
# executed sequentially
lastprivate = True
self.propagate_var_privatization(entry, pos, op, lastprivate)
def propagate_var_privatization(self, entry, pos, op, lastprivate):
"""
Propagate the sharing attributes of a variable. If the privatization is
determined by a parent scope, done propagate further.
If we are a prange, we propagate our sharing attributes outwards to
other pranges. If we are a prange in parallel block and the parallel
block does not determine the variable private, we propagate to the
parent of the parent. Recursion stops at parallel blocks, as they have
no concept of lastprivate or reduction.
So the following cases propagate:
sum is a reduction for all loops:
for i in prange(n):
for j in prange(n):
for k in prange(n):
sum += i * j * k
sum is a reduction for both loops, local_var is private to the
parallel with block:
for i in prange(n):
with parallel:
local_var = ... # private to the parallel
for j in prange(n):
sum += i * j
Nested with parallel blocks are disallowed, because they wouldn't
allow you to propagate lastprivates or reductions:
#pragma omp parallel for lastprivate(i)
for i in prange(n):
sum = 0
#pragma omp parallel private(j, sum)
with parallel:
#pragma omp parallel
with parallel:
#pragma omp for lastprivate(j) reduction(+:sum)
for j in prange(n):
sum += i
# sum and j are well-defined here
# sum and j are undefined here
# sum and j are undefined here
"""
self.privates[entry] = (op, lastprivate)
if entry.type.is_memoryviewslice:
error(pos, "Memoryview slices can only be shared in parallel sections")
return
if self.is_prange:
if not self.is_parallel and entry not in self.parent.assignments:
# Parent is a parallel with block
parent = self.parent.parent
else:
parent = self.parent
# We don't need to propagate privates, only reductions and
# lastprivates
if parent and (op or lastprivate):
parent.propagate_var_privatization(entry, pos, op, lastprivate)
def _allocate_closure_temp(self, code, entry):
"""
Helper function that allocate a temporary for a closure variable that
is assigned to.
"""
if self.parent:
return self.parent._allocate_closure_temp(code, entry)
if entry.cname in self.seen_closure_vars:
return entry.cname
cname = code.funcstate.allocate_temp(entry.type, True)
# Add both the actual cname and the temp cname, as the actual cname
# will be replaced with the temp cname on the entry
self.seen_closure_vars.add(entry.cname)
self.seen_closure_vars.add(cname)
self.modified_entries.append((entry, entry.cname))
code.putln("%s = %s;" % (cname, entry.cname))
entry.cname = cname
def initialize_privates_to_nan(self, code, exclude=None):
first = True
for entry, (op, lastprivate) in sorted(self.privates.items()):
if not op and (not exclude or entry != exclude):
invalid_value = entry.type.invalid_value()
if invalid_value:
if first:
code.putln("/* Initialize private variables to "
"invalid values */")
first = False
code.putln("%s = %s;" % (entry.cname,
entry.type.cast_code(invalid_value)))
def evaluate_before_block(self, code, expr):
c = self.begin_of_parallel_control_block_point_after_decls
# we need to set the owner to ourselves temporarily, as
# allocate_temp may generate a comment in the middle of our pragma
# otherwise when DebugFlags.debug_temp_code_comments is in effect
owner = c.funcstate.owner
c.funcstate.owner = c
expr.generate_evaluation_code(c)
c.funcstate.owner = owner
return expr.result()
def put_num_threads(self, code):
"""
Write self.num_threads if set as the num_threads OpenMP directive
"""
if self.num_threads is not None:
code.put(" num_threads(%s)" % self.evaluate_before_block(code, self.num_threads))
def declare_closure_privates(self, code):
"""
If a variable is in a scope object, we need to allocate a temp and
assign the value from the temp to the variable in the scope object
after the parallel section. This kind of copying should be done only
in the outermost parallel section.
"""
self.modified_entries = []
for entry in sorted(self.assignments):
if entry.from_closure or entry.in_closure:
self._allocate_closure_temp(code, entry)
def release_closure_privates(self, code):
"""
Release any temps used for variables in scope objects. As this is the
outermost parallel block, we don't need to delete the cnames from
self.seen_closure_vars.
"""
for entry, original_cname in self.modified_entries:
code.putln("%s = %s;" % (original_cname, entry.cname))
code.funcstate.release_temp(entry.cname)
entry.cname = original_cname
def privatize_temps(self, code, exclude_temps=()):
"""
Make any used temporaries private. Before the relevant code block
code.start_collecting_temps() should have been called.
"""
c = self.privatization_insertion_point
self.privatization_insertion_point = None
if self.is_parallel:
self.temps = temps = code.funcstate.stop_collecting_temps()
privates, firstprivates = [], []
for temp, type in sorted(temps):
if type.is_pyobject or type.is_memoryviewslice:
firstprivates.append(temp)
else:
privates.append(temp)
if privates:
c.put(" private(%s)" % ", ".join(privates))
if firstprivates:
c.put(" firstprivate(%s)" % ", ".join(firstprivates))
if self.breaking_label_used:
shared_vars = [Naming.parallel_why]
if self.error_label_used:
shared_vars.extend(self.parallel_exc)
c.put(" private(%s, %s, %s)" % self.pos_info)
c.put(" shared(%s)" % ', '.join(shared_vars))
def cleanup_temps(self, code):
# Now clean up any memoryview slice and object temporaries
if self.is_parallel and not self.is_nested_prange:
code.putln("/* Clean up any temporaries */")
for temp, type in sorted(self.temps):
if type.is_memoryviewslice:
code.put_xdecref_memoryviewslice(temp, have_gil=False)
elif type.is_pyobject:
code.put_xdecref(temp, type)
code.putln("%s = NULL;" % temp)
def setup_parallel_control_flow_block(self, code):
"""
Sets up a block that surrounds the parallel block to determine
how the parallel section was exited. Any kind of return is
trapped (break, continue, return, exceptions). This is the idea:
{
int why = 0;
#pragma omp parallel
{
return # -> goto new_return_label;
goto end_parallel;
new_return_label:
why = 3;
goto end_parallel;
end_parallel:;
#pragma omp flush(why) # we need to flush for every iteration
}
if (why == 3)
goto old_return_label;
}
"""
self.old_loop_labels = code.new_loop_labels()
self.old_error_label = code.new_error_label()
self.old_return_label = code.return_label
code.return_label = code.new_label(name="return")
code.begin_block() # parallel control flow block
self.begin_of_parallel_control_block_point = code.insertion_point()
self.begin_of_parallel_control_block_point_after_decls = code.insertion_point()
self.undef_builtin_expect_apple_gcc_bug(code)
def begin_parallel_block(self, code):
"""
Each OpenMP thread in a parallel section that contains a with gil block
must have the thread-state initialized. The call to
PyGILState_Release() then deallocates our threadstate. If we wouldn't
do this, each with gil block would allocate and deallocate one, thereby
losing exception information before it can be saved before leaving the
parallel section.
"""
self.begin_of_parallel_block = code.insertion_point()
def end_parallel_block(self, code):
"""
To ensure all OpenMP threads have thread states, we ensure the GIL
in each thread (which creates a thread state if it doesn't exist),
after which we release the GIL.
On exit, reacquire the GIL and release the thread state.
If compiled without OpenMP support (at the C level), then we still have
to acquire the GIL to decref any object temporaries.
"""
begin_code = self.begin_of_parallel_block
self.begin_of_parallel_block = None
if self.error_label_used:
end_code = code
begin_code.putln("#ifdef _OPENMP")
begin_code.put_ensure_gil(declare_gilstate=True)
begin_code.putln("Py_BEGIN_ALLOW_THREADS")
begin_code.putln("#endif /* _OPENMP */")
end_code.putln("#ifdef _OPENMP")
end_code.putln("Py_END_ALLOW_THREADS")
end_code.putln("#else")
end_code.put_safe("{\n")
end_code.put_ensure_gil()
end_code.putln("#endif /* _OPENMP */")
self.cleanup_temps(end_code)
end_code.put_release_ensured_gil()
end_code.putln("#ifndef _OPENMP")
end_code.put_safe("}\n")
end_code.putln("#endif /* _OPENMP */")
def trap_parallel_exit(self, code, should_flush=False):
"""
Trap any kind of return inside a parallel construct. 'should_flush'
indicates whether the variable should be flushed, which is needed by
prange to skip the loop. It also indicates whether we need to register
a continue (we need this for parallel blocks, but not for prange
loops, as it is a direct jump there).
It uses the same mechanism as try/finally:
1 continue
2 break
3 return
4 error
"""
save_lastprivates_label = code.new_label()
dont_return_label = code.new_label()
self.any_label_used = False
self.breaking_label_used = False
self.error_label_used = False
self.parallel_private_temps = []
all_labels = code.get_all_labels()
# Figure this out before starting to generate any code
for label in all_labels:
if code.label_used(label):
self.breaking_label_used = (self.breaking_label_used or
label != code.continue_label)
self.any_label_used = True
if self.any_label_used:
code.put_goto(dont_return_label)
for i, label in enumerate(all_labels):
if not code.label_used(label):
continue
is_continue_label = label == code.continue_label
code.put_label(label)
if not (should_flush and is_continue_label):
if label == code.error_label:
self.error_label_used = True
self.fetch_parallel_exception(code)
code.putln("%s = %d;" % (Naming.parallel_why, i + 1))
if (self.breaking_label_used and self.is_prange and not
is_continue_label):
code.put_goto(save_lastprivates_label)
else:
code.put_goto(dont_return_label)
if self.any_label_used:
if self.is_prange and self.breaking_label_used:
# Don't rely on lastprivate, save our lastprivates
code.put_label(save_lastprivates_label)
self.save_parallel_vars(code)
code.put_label(dont_return_label)
if should_flush and self.breaking_label_used:
code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_why)
def save_parallel_vars(self, code):
"""
The following shenanigans are instated when we break, return or
propagate errors from a prange. In this case we cannot rely on
lastprivate() to do its job, as no iterations may have executed yet
in the last thread, leaving the values undefined. It is most likely
that the breaking thread has well-defined values of the lastprivate
variables, so we keep those values.
"""
section_name = "__pyx_parallel_lastprivates%d" % self.critical_section_counter
code.putln_openmp("#pragma omp critical(%s)" % section_name)
ParallelStatNode.critical_section_counter += 1
code.begin_block() # begin critical section
c = self.begin_of_parallel_control_block_point
temp_count = 0
for entry, (op, lastprivate) in sorted(self.privates.items()):
if not lastprivate or entry.type.is_pyobject:
continue
type_decl = entry.type.empty_declaration_code()
temp_cname = "__pyx_parallel_temp%d" % temp_count
private_cname = entry.cname
temp_count += 1
invalid_value = entry.type.invalid_value()
if invalid_value:
init = ' = ' + entry.type.cast_code(invalid_value)
else:
init = ''
# Declare the parallel private in the outer block
c.putln("%s %s%s;" % (type_decl, temp_cname, init))
# Initialize before escaping
code.putln("%s = %s;" % (temp_cname, private_cname))
self.parallel_private_temps.append((temp_cname, private_cname))
code.end_block() # end critical section
def fetch_parallel_exception(self, code):
"""
As each OpenMP thread may raise an exception, we need to fetch that
exception from the threadstate and save it for after the parallel
section where it can be re-raised in the master thread.
Although it would seem that __pyx_filename, __pyx_lineno and
__pyx_clineno are only assigned to under exception conditions (i.e.,
when we have the GIL), and thus should be allowed to be shared without
any race condition, they are in fact subject to the same race
conditions that they were previously when they were global variables
and functions were allowed to release the GIL:
thread A thread B
acquire
set lineno
release
acquire
set lineno
release
acquire
fetch exception
release
skip the fetch
deallocate threadstate deallocate threadstate
"""
code.begin_block()
code.put_ensure_gil(declare_gilstate=True)
code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_exc_type)
code.putln(
"if (!%s) {" % Naming.parallel_exc_type)
code.putln("__Pyx_ErrFetchWithState(&%s, &%s, &%s);" % self.parallel_exc)
pos_info = chain(*zip(self.parallel_pos_info, self.pos_info))
code.funcstate.uses_error_indicator = True
code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info))
code.put_gotref(Naming.parallel_exc_type)
code.putln(
"}")
code.put_release_ensured_gil()
code.end_block()
def restore_parallel_exception(self, code):
"Re-raise a parallel exception"
code.begin_block()
code.put_ensure_gil(declare_gilstate=True)
code.put_giveref(Naming.parallel_exc_type)
code.putln("__Pyx_ErrRestoreWithState(%s, %s, %s);" % self.parallel_exc)
pos_info = chain(*zip(self.pos_info, self.parallel_pos_info))
code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info))
code.put_release_ensured_gil()
code.end_block()
def restore_labels(self, code):
"""
Restore all old labels. Call this before the 'else' clause to for
loops and always before ending the parallel control flow block.
"""
code.set_all_labels(self.old_loop_labels + (self.old_return_label,
self.old_error_label))
def end_parallel_control_flow_block(
self, code, break_=False, continue_=False, return_=False):
"""
This ends the parallel control flow block and based on how the parallel
section was exited, takes the corresponding action. The break_ and
continue_ parameters indicate whether these should be propagated
outwards:
for i in prange(...):
with cython.parallel.parallel():
continue
Here break should be trapped in the parallel block, and propagated to
the for loop.
"""
c = self.begin_of_parallel_control_block_point
self.begin_of_parallel_control_block_point = None
self.begin_of_parallel_control_block_point_after_decls = None
# Firstly, always prefer errors over returning, continue or break
if self.error_label_used:
c.putln("const char *%s = NULL; int %s = 0, %s = 0;" % self.parallel_pos_info)
c.putln("PyObject *%s = NULL, *%s = NULL, *%s = NULL;" % self.parallel_exc)
code.putln(
"if (%s) {" % Naming.parallel_exc_type)
code.putln("/* This may have been overridden by a continue, "
"break or return in another thread. Prefer the error. */")
code.putln("%s = 4;" % Naming.parallel_why)
code.putln(
"}")
if continue_:
any_label_used = self.any_label_used
else:
any_label_used = self.breaking_label_used
if any_label_used:
# __pyx_parallel_why is used, declare and initialize
c.putln("int %s;" % Naming.parallel_why)
c.putln("%s = 0;" % Naming.parallel_why)
code.putln(
"if (%s) {" % Naming.parallel_why)
for temp_cname, private_cname in self.parallel_private_temps:
code.putln("%s = %s;" % (private_cname, temp_cname))
code.putln("switch (%s) {" % Naming.parallel_why)
if continue_:
code.put(" case 1: ")
code.put_goto(code.continue_label)
if break_:
code.put(" case 2: ")
code.put_goto(code.break_label)
if return_:
code.put(" case 3: ")
code.put_goto(code.return_label)
if self.error_label_used:
code.globalstate.use_utility_code(restore_exception_utility_code)
code.putln(" case 4:")
self.restore_parallel_exception(code)
code.put_goto(code.error_label)
code.putln("}") # end switch
code.putln(
"}") # end if
code.end_block() # end parallel control flow block
self.redef_builtin_expect_apple_gcc_bug(code)
# FIXME: improve with version number for OS X Lion
buggy_platform_macro_condition = "(defined(__APPLE__) || defined(__OSX__))"
have_expect_condition = "(defined(__GNUC__) && " \
"(__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))"
redef_condition = "(%s && %s)" % (buggy_platform_macro_condition, have_expect_condition)
def undef_builtin_expect_apple_gcc_bug(self, code):
"""
A bug on OS X Lion disallows __builtin_expect macros. This code avoids them
"""
if not self.parent:
code.undef_builtin_expect(self.redef_condition)
def redef_builtin_expect_apple_gcc_bug(self, code):
if not self.parent:
code.redef_builtin_expect(self.redef_condition)
class ParallelWithBlockNode(ParallelStatNode):
"""
This node represents a 'with cython.parallel.parallel():' block
"""
valid_keyword_arguments = ['num_threads']
num_threads = None
def analyse_declarations(self, env):
super(ParallelWithBlockNode, self).analyse_declarations(env)
if self.args:
error(self.pos, "cython.parallel.parallel() does not take "
"positional arguments")
def generate_execution_code(self, code):
self.declare_closure_privates(code)
self.setup_parallel_control_flow_block(code)
code.putln("#ifdef _OPENMP")
code.put("#pragma omp parallel ")
if self.privates:
privates = [e.cname for e in self.privates
if not e.type.is_pyobject]
code.put('private(%s)' % ', '.join(sorted(privates)))
self.privatization_insertion_point = code.insertion_point()
self.put_num_threads(code)
code.putln("")
code.putln("#endif /* _OPENMP */")
code.begin_block() # parallel block
self.begin_parallel_block(code)
self.initialize_privates_to_nan(code)
code.funcstate.start_collecting_temps()
self.body.generate_execution_code(code)
self.trap_parallel_exit(code)
self.privatize_temps(code)
self.end_parallel_block(code)
code.end_block() # end parallel block
continue_ = code.label_used(code.continue_label)
break_ = code.label_used(code.break_label)
return_ = code.label_used(code.return_label)
self.restore_labels(code)
self.end_parallel_control_flow_block(code, break_=break_,
continue_=continue_,
return_=return_)
self.release_closure_privates(code)
class ParallelRangeNode(ParallelStatNode):
"""
This node represents a 'for i in cython.parallel.prange():' construct.
target NameNode the target iteration variable
else_clause Node or None the else clause of this loop
"""
child_attrs = ['body', 'target', 'else_clause', 'args', 'num_threads',
'chunksize']
body = target = else_clause = args = None
start = stop = step = None
is_prange = True
nogil = None
schedule = None
valid_keyword_arguments = ['schedule', 'nogil', 'num_threads', 'chunksize']
def __init__(self, pos, **kwds):
super(ParallelRangeNode, self).__init__(pos, **kwds)
# Pretend to be a ForInStatNode for control flow analysis
self.iterator = PassStatNode(pos)
def analyse_declarations(self, env):
super(ParallelRangeNode, self).analyse_declarations(env)
self.target.analyse_target_declaration(env)
if self.else_clause is not None:
self.else_clause.analyse_declarations(env)
if not self.args or len(self.args) > 3:
error(self.pos, "Invalid number of positional arguments to prange")
return
if len(self.args) == 1:
self.stop, = self.args
elif len(self.args) == 2:
self.start, self.stop = self.args
else:
self.start, self.stop, self.step = self.args
if hasattr(self.schedule, 'decode'):
self.schedule = self.schedule.decode('ascii')
if self.schedule not in (None, 'static', 'dynamic', 'guided', 'runtime'):
error(self.pos, "Invalid schedule argument to prange: %s" % (self.schedule,))
def analyse_expressions(self, env):
was_nogil = env.nogil
if self.nogil:
env.nogil = True
if self.target is None:
error(self.pos, "prange() can only be used as part of a for loop")
return self
self.target = self.target.analyse_target_types(env)
if not self.target.type.is_numeric:
# Not a valid type, assume one for now anyway
if not self.target.type.is_pyobject:
# nogil_check will catch the is_pyobject case
error(self.target.pos,
"Must be of numeric type, not %s" % self.target.type)
self.index_type = PyrexTypes.c_py_ssize_t_type
else:
self.index_type = self.target.type
if not self.index_type.signed:
warning(self.target.pos,
"Unsigned index type not allowed before OpenMP 3.0",
level=2)
# Setup start, stop and step, allocating temps if needed
self.names = 'start', 'stop', 'step'
start_stop_step = self.start, self.stop, self.step
for node, name in zip(start_stop_step, self.names):
if node is not None:
node.analyse_types(env)
if not node.type.is_numeric:
error(node.pos, "%s argument must be numeric" % name)
continue
if not node.is_literal:
node = node.coerce_to_temp(env)
setattr(self, name, node)
# As we range from 0 to nsteps, computing the index along the
# way, we need a fitting type for 'i' and 'nsteps'
self.index_type = PyrexTypes.widest_numeric_type(
self.index_type, node.type)
if self.else_clause is not None:
self.else_clause = self.else_clause.analyse_expressions(env)
# Although not actually an assignment in this scope, it should be
# treated as such to ensure it is unpacked if a closure temp, and to
# ensure lastprivate behaviour and propagation. If the target index is
# not a NameNode, it won't have an entry, and an error was issued by
# ParallelRangeTransform
if hasattr(self.target, 'entry'):
self.assignments[self.target.entry] = self.target.pos, None
node = super(ParallelRangeNode, self).analyse_expressions(env)
if node.chunksize:
if not node.schedule:
error(node.chunksize.pos,
"Must provide schedule with chunksize")
elif node.schedule == 'runtime':
error(node.chunksize.pos,
"Chunksize not valid for the schedule runtime")
elif (node.chunksize.type.is_int and
node.chunksize.is_literal and
node.chunksize.compile_time_value(env) <= 0):
error(node.chunksize.pos, "Chunksize must not be negative")
node.chunksize = node.chunksize.coerce_to(
PyrexTypes.c_int_type, env).coerce_to_temp(env)
if node.nogil:
env.nogil = was_nogil
node.is_nested_prange = node.parent and node.parent.is_prange
if node.is_nested_prange:
parent = node
while parent.parent and parent.parent.is_prange:
parent = parent.parent
parent.assignments.update(node.assignments)
parent.privates.update(node.privates)
parent.assigned_nodes.extend(node.assigned_nodes)
return node
def nogil_check(self, env):
names = 'start', 'stop', 'step', 'target'
nodes = self.start, self.stop, self.step, self.target
for name, node in zip(names, nodes):
if node is not None and node.type.is_pyobject:
error(node.pos, "%s may not be a Python object "
"as we don't have the GIL" % name)
def generate_execution_code(self, code):
"""
Generate code in the following steps
1) copy any closure variables determined thread-private
into temporaries
2) allocate temps for start, stop and step
3) generate a loop that calculates the total number of steps,
which then computes the target iteration variable for every step:
for i in prange(start, stop, step):
...
becomes
nsteps = (stop - start) / step;
i = start;
#pragma omp parallel for lastprivate(i)
for (temp = 0; temp < nsteps; temp++) {
i = start + step * temp;
...
}
Note that accumulation of 'i' would have a data dependency
between iterations.
Also, you can't do this
for (i = start; i < stop; i += step)
...
as the '<' operator should become '>' for descending loops.
'for i from x < i < y:' does not suffer from this problem
as the relational operator is known at compile time!
4) release our temps and write back any private closure variables
"""
self.declare_closure_privates(code)
# This can only be a NameNode
target_index_cname = self.target.entry.cname
# This will be used as the dict to format our code strings, holding
# the start, stop , step, temps and target cnames
fmt_dict = {
'target': target_index_cname,
'target_type': self.target.type.empty_declaration_code()
}
# Setup start, stop and step, allocating temps if needed
start_stop_step = self.start, self.stop, self.step
defaults = '0', '0', '1'
for node, name, default in zip(start_stop_step, self.names, defaults):
if node is None:
result = default
elif node.is_literal:
result = node.get_constant_c_result_code()
else:
node.generate_evaluation_code(code)
result = node.result()
fmt_dict[name] = result
fmt_dict['i'] = code.funcstate.allocate_temp(self.index_type, False)
fmt_dict['nsteps'] = code.funcstate.allocate_temp(self.index_type, False)
# TODO: check if the step is 0 and if so, raise an exception in a
# 'with gil' block. For now, just abort
code.putln("if (%(step)s == 0) abort();" % fmt_dict)
self.setup_parallel_control_flow_block(code) # parallel control flow block
# Note: nsteps is private in an outer scope if present
code.putln("%(nsteps)s = (%(stop)s - %(start)s + %(step)s - %(step)s/abs(%(step)s)) / %(step)s;" % fmt_dict)
# The target iteration variable might not be initialized, do it only if
# we are executing at least 1 iteration, otherwise we should leave the
# target unaffected. The target iteration variable is firstprivate to
# shut up compiler warnings caused by lastprivate, as the compiler
# erroneously believes that nsteps may be <= 0, leaving the private
# target index uninitialized
code.putln("if (%(nsteps)s > 0)" % fmt_dict)
code.begin_block() # if block
self.generate_loop(code, fmt_dict)
code.end_block() # end if block
self.restore_labels(code)
if self.else_clause:
if self.breaking_label_used:
code.put("if (%s < 2)" % Naming.parallel_why)
code.begin_block() # else block
code.putln("/* else */")
self.else_clause.generate_execution_code(code)
code.end_block() # end else block
# ------ cleanup ------
self.end_parallel_control_flow_block(code) # end parallel control flow block
# And finally, release our privates and write back any closure
# variables
for temp in start_stop_step + (self.chunksize, self.num_threads):
if temp is not None:
temp.generate_disposal_code(code)
temp.free_temps(code)
code.funcstate.release_temp(fmt_dict['i'])
code.funcstate.release_temp(fmt_dict['nsteps'])
self.release_closure_privates(code)
def generate_loop(self, code, fmt_dict):
if self.is_nested_prange:
code.putln("#if 0")
else:
code.putln("#ifdef _OPENMP")
if not self.is_parallel:
code.put("#pragma omp for")
self.privatization_insertion_point = code.insertion_point()
reduction_codepoint = self.parent.privatization_insertion_point
else:
code.put("#pragma omp parallel")
self.privatization_insertion_point = code.insertion_point()
reduction_codepoint = self.privatization_insertion_point
code.putln("")
code.putln("#endif /* _OPENMP */")
code.begin_block() # pragma omp parallel begin block
# Initialize the GIL if needed for this thread
self.begin_parallel_block(code)
if self.is_nested_prange:
code.putln("#if 0")
else:
code.putln("#ifdef _OPENMP")
code.put("#pragma omp for")
for entry, (op, lastprivate) in sorted(self.privates.items()):
# Don't declare the index variable as a reduction
if op and op in "+*-&^|" and entry != self.target.entry:
if entry.type.is_pyobject:
error(self.pos, "Python objects cannot be reductions")
else:
#code.put(" reduction(%s:%s)" % (op, entry.cname))
# This is the only way reductions + nesting works in gcc4.5
reduction_codepoint.put(
" reduction(%s:%s)" % (op, entry.cname))
else:
if entry == self.target.entry:
code.put(" firstprivate(%s)" % entry.cname)
code.put(" lastprivate(%s)" % entry.cname)
continue
if not entry.type.is_pyobject:
if lastprivate:
private = 'lastprivate'
else:
private = 'private'
code.put(" %s(%s)" % (private, entry.cname))
if self.schedule:
if self.chunksize:
chunksize = ", %s" % self.evaluate_before_block(code, self.chunksize)
else:
chunksize = ""
code.put(" schedule(%s%s)" % (self.schedule, chunksize))
self.put_num_threads(reduction_codepoint)
code.putln("")
code.putln("#endif /* _OPENMP */")
code.put("for (%(i)s = 0; %(i)s < %(nsteps)s; %(i)s++)" % fmt_dict)
code.begin_block() # for loop block
guard_around_body_codepoint = code.insertion_point()
# Start if guard block around the body. This may be unnecessary, but
# at least it doesn't spoil indentation
code.begin_block()
code.putln("%(target)s = (%(target_type)s)(%(start)s + %(step)s * %(i)s);" % fmt_dict)
self.initialize_privates_to_nan(code, exclude=self.target.entry)
if self.is_parallel:
code.funcstate.start_collecting_temps()
self.body.generate_execution_code(code)
self.trap_parallel_exit(code, should_flush=True)
self.privatize_temps(code)
if self.breaking_label_used:
# Put a guard around the loop body in case return, break or
# exceptions might be used
guard_around_body_codepoint.putln("if (%s < 2)" % Naming.parallel_why)
code.end_block() # end guard around loop body
code.end_block() # end for loop block
if self.is_parallel:
# Release the GIL and deallocate the thread state
self.end_parallel_block(code)
code.end_block() # pragma omp parallel end block
class CnameDecoratorNode(StatNode):
"""
This node is for the cname decorator in CythonUtilityCode:
@cname('the_cname')
cdef func(...):
...
In case of a cdef class the cname specifies the objstruct_cname.
node the node to which the cname decorator is applied
cname the cname the node should get
"""
child_attrs = ['node']
def analyse_declarations(self, env):
self.node.analyse_declarations(env)
node = self.node
if isinstance(node, CompilerDirectivesNode):
node = node.body.stats[0]
self.is_function = isinstance(node, FuncDefNode)
is_struct_or_enum = isinstance(node, (CStructOrUnionDefNode, CEnumDefNode))
e = node.entry
if self.is_function:
e.cname = self.cname
e.func_cname = self.cname
e.used = True
if e.pyfunc_cname and '.' in e.pyfunc_cname:
e.pyfunc_cname = self.mangle(e.pyfunc_cname)
elif is_struct_or_enum:
e.cname = e.type.cname = self.cname
else:
scope = node.scope
e.cname = self.cname
e.type.objstruct_cname = self.cname + '_obj'
e.type.typeobj_cname = Naming.typeobj_prefix + self.cname
e.type.typeptr_cname = self.cname + '_type'
e.type.scope.namespace_cname = e.type.typeptr_cname
e.as_variable.cname = e.type.typeptr_cname
scope.scope_prefix = self.cname + "_"
for name, entry in scope.entries.items():
if entry.func_cname:
entry.func_cname = self.mangle(entry.cname)
if entry.pyfunc_cname:
entry.pyfunc_cname = self.mangle(entry.pyfunc_cname)
def mangle(self, cname):
if '.' in cname:
# remove __pyx_base from func_cname
cname = cname.split('.')[-1]
return '%s_%s' % (self.cname, cname)
def analyse_expressions(self, env):
self.node = self.node.analyse_expressions(env)
return self
def generate_function_definitions(self, env, code):
"Ensure a prototype for every @cname method in the right place"
if self.is_function and env.is_c_class_scope:
# method in cdef class, generate a prototype in the header
h_code = code.globalstate['utility_code_proto']
if isinstance(self.node, DefNode):
self.node.generate_function_header(
h_code, with_pymethdef=False, proto_only=True)
else:
from . import ModuleNode
entry = self.node.entry
cname = entry.cname
entry.cname = entry.func_cname
ModuleNode.generate_cfunction_declaration(
entry,
env.global_scope(),
h_code,
definition=True)
entry.cname = cname
self.node.generate_function_definitions(env, code)
def generate_execution_code(self, code):
self.node.generate_execution_code(code)
#------------------------------------------------------------------------------------
#
# Runtime support code
#
#------------------------------------------------------------------------------------
if Options.gcc_branch_hints:
branch_prediction_macros = """
/* Test for GCC > 2.95 */
#if defined(__GNUC__) \
&& (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else /* !__GNUC__ or GCC < 2.95 */
#define likely(x) (x)
#define unlikely(x) (x)
#endif /* __GNUC__ */
"""
else:
branch_prediction_macros = """
#define likely(x) (x)
#define unlikely(x) (x)
"""
#------------------------------------------------------------------------------------
printing_utility_code = UtilityCode.load_cached("Print", "Printing.c")
printing_one_utility_code = UtilityCode.load_cached("PrintOne", "Printing.c")
#------------------------------------------------------------------------------------
# Exception raising code
#
# Exceptions are raised by __Pyx_Raise() and stored as plain
# type/value/tb in PyThreadState->curexc_*. When being caught by an
# 'except' statement, curexc_* is moved over to exc_* by
# __Pyx_GetException()
restore_exception_utility_code = UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c")
raise_utility_code = UtilityCode.load_cached("RaiseException", "Exceptions.c")
get_exception_utility_code = UtilityCode.load_cached("GetException", "Exceptions.c")
swap_exception_utility_code = UtilityCode.load_cached("SwapException", "Exceptions.c")
reset_exception_utility_code = UtilityCode.load_cached("SaveResetException", "Exceptions.c")
traceback_utility_code = UtilityCode.load_cached("AddTraceback", "Exceptions.c")
#------------------------------------------------------------------------------------
get_exception_tuple_utility_code = UtilityCode(
proto="""
static PyObject *__Pyx_GetExceptionTuple(PyThreadState *__pyx_tstate); /*proto*/
""",
# I doubt that calling __Pyx_GetException() here is correct as it moves
# the exception from tstate->curexc_* to tstate->exc_*, which prevents
# exception handlers later on from receiving it.
# NOTE: "__pyx_tstate" may be used by __Pyx_GetException() macro
impl = """
static PyObject *__Pyx_GetExceptionTuple(CYTHON_UNUSED PyThreadState *__pyx_tstate) {
PyObject *type = NULL, *value = NULL, *tb = NULL;
if (__Pyx_GetException(&type, &value, &tb) == 0) {
PyObject* exc_info = PyTuple_New(3);
if (exc_info) {
Py_INCREF(type);
Py_INCREF(value);
Py_INCREF(tb);
PyTuple_SET_ITEM(exc_info, 0, type);
PyTuple_SET_ITEM(exc_info, 1, value);
PyTuple_SET_ITEM(exc_info, 2, tb);
return exc_info;
}
}
return NULL;
}
""",
requires=[get_exception_utility_code])