Pracownia_programowania/venv/Lib/site-packages/Cython/Compiler/Pythran.py
2020-02-01 20:05:44 +01:00

219 lines
6.8 KiB
Python

# cython: language_level=3
from __future__ import absolute_import
from .PyrexTypes import CType, CTypedefType, CStructOrUnionType
import cython
try:
import pythran
pythran_is_pre_0_9 = tuple(map(int, pythran.__version__.split('.')[0:2])) < (0, 9)
except ImportError:
pythran = None
pythran_is_pre_0_9 = True
# Pythran/Numpy specific operations
def has_np_pythran(env):
if env is None:
return False
directives = getattr(env, 'directives', None)
return (directives and directives.get('np_pythran', False))
@cython.ccall
def is_pythran_supported_dtype(type_):
if isinstance(type_, CTypedefType):
return is_pythran_supported_type(type_.typedef_base_type)
return type_.is_numeric
def pythran_type(Ty, ptype="ndarray"):
if Ty.is_buffer:
ndim,dtype = Ty.ndim, Ty.dtype
if isinstance(dtype, CStructOrUnionType):
ctype = dtype.cname
elif isinstance(dtype, CType):
ctype = dtype.sign_and_name()
elif isinstance(dtype, CTypedefType):
ctype = dtype.typedef_cname
else:
raise ValueError("unsupported type %s!" % dtype)
if pythran_is_pre_0_9:
return "pythonic::types::%s<%s,%d>" % (ptype,ctype, ndim)
else:
return "pythonic::types::%s<%s,pythonic::types::pshape<%s>>" % (ptype,ctype, ",".join(("long",)*ndim))
if Ty.is_pythran_expr:
return Ty.pythran_type
#if Ty.is_none:
# return "decltype(pythonic::__builtin__::None)"
if Ty.is_numeric:
return Ty.sign_and_name()
raise ValueError("unsupported pythran type %s (%s)" % (Ty, type(Ty)))
@cython.cfunc
def type_remove_ref(ty):
return "typename std::remove_reference<%s>::type" % ty
def pythran_binop_type(op, tA, tB):
if op == '**':
return 'decltype(pythonic::numpy::functor::power{}(std::declval<%s>(), std::declval<%s>()))' % (
pythran_type(tA), pythran_type(tB))
else:
return "decltype(std::declval<%s>() %s std::declval<%s>())" % (
pythran_type(tA), op, pythran_type(tB))
def pythran_unaryop_type(op, type_):
return "decltype(%sstd::declval<%s>())" % (
op, pythran_type(type_))
@cython.cfunc
def _index_access(index_code, indices):
indexing = ",".join([index_code(idx) for idx in indices])
return ('[%s]' if len(indices) == 1 else '(%s)') % indexing
def _index_type_code(index_with_type):
idx, index_type = index_with_type
if idx.is_slice:
n = 2 + int(not idx.step.is_none)
return "pythonic::__builtin__::functor::slice{}(%s)" % (",".join(["0"]*n))
elif index_type.is_int:
return "std::declval<%s>()" % index_type.sign_and_name()
elif index_type.is_pythran_expr:
return "std::declval<%s>()" % index_type.pythran_type
raise ValueError("unsupported indexing type %s!" % index_type)
def _index_code(idx):
if idx.is_slice:
values = idx.start, idx.stop, idx.step
if idx.step.is_none:
func = "contiguous_slice"
values = values[:2]
else:
func = "slice"
return "pythonic::types::%s(%s)" % (
func, ",".join((v.pythran_result() for v in values)))
elif idx.type.is_int:
return to_pythran(idx)
elif idx.type.is_pythran_expr:
return idx.pythran_result()
raise ValueError("unsupported indexing type %s" % idx.type)
def pythran_indexing_type(type_, indices):
return type_remove_ref("decltype(std::declval<%s>()%s)" % (
pythran_type(type_),
_index_access(_index_type_code, indices),
))
def pythran_indexing_code(indices):
return _index_access(_index_code, indices)
def np_func_to_list(func):
if not func.is_numpy_attribute:
return []
return np_func_to_list(func.obj) + [func.attribute]
if pythran is None:
def pythran_is_numpy_func_supported(name):
return False
else:
def pythran_is_numpy_func_supported(func):
CurF = pythran.tables.MODULES['numpy']
FL = np_func_to_list(func)
for F in FL:
CurF = CurF.get(F, None)
if CurF is None:
return False
return True
def pythran_functor(func):
func = np_func_to_list(func)
submodules = "::".join(func[:-1] + ["functor"])
return "pythonic::numpy::%s::%s" % (submodules, func[-1])
def pythran_func_type(func, args):
args = ",".join(("std::declval<%s>()" % pythran_type(a.type) for a in args))
return "decltype(%s{}(%s))" % (pythran_functor(func), args)
@cython.ccall
def to_pythran(op, ptype=None):
op_type = op.type
if op_type.is_int:
# Make sure that integer literals always have exactly the type that the templates expect.
return op_type.cast_code(op.result())
if is_type(op_type, ["is_pythran_expr", "is_numeric", "is_float", "is_complex"]):
return op.result()
if op.is_none:
return "pythonic::__builtin__::None"
if ptype is None:
ptype = pythran_type(op_type)
assert op.type.is_pyobject
return "from_python<%s>(%s)" % (ptype, op.py_result())
@cython.cfunc
def is_type(type_, types):
for attr in types:
if getattr(type_, attr, False):
return True
return False
def is_pythran_supported_node_or_none(node):
return node.is_none or is_pythran_supported_type(node.type)
@cython.ccall
def is_pythran_supported_type(type_):
pythran_supported = (
"is_pythran_expr", "is_int", "is_numeric", "is_float", "is_none", "is_complex")
return is_type(type_, pythran_supported) or is_pythran_expr(type_)
def is_pythran_supported_operation_type(type_):
pythran_supported = (
"is_pythran_expr", "is_int", "is_numeric", "is_float", "is_complex")
return is_type(type_,pythran_supported) or is_pythran_expr(type_)
@cython.ccall
def is_pythran_expr(type_):
return type_.is_pythran_expr
def is_pythran_buffer(type_):
return (type_.is_numpy_buffer and is_pythran_supported_dtype(type_.dtype) and
type_.mode in ("c", "strided") and not type_.cast)
def pythran_get_func_include_file(func):
func = np_func_to_list(func)
return "pythonic/numpy/%s.hpp" % "/".join(func)
def include_pythran_generic(env):
# Generic files
env.add_include_file("pythonic/core.hpp")
env.add_include_file("pythonic/python/core.hpp")
env.add_include_file("pythonic/types/bool.hpp")
env.add_include_file("pythonic/types/ndarray.hpp")
env.add_include_file("pythonic/numpy/power.hpp")
env.add_include_file("pythonic/__builtin__/slice.hpp")
env.add_include_file("<new>") # for placement new
for i in (8, 16, 32, 64):
env.add_include_file("pythonic/types/uint%d.hpp" % i)
env.add_include_file("pythonic/types/int%d.hpp" % i)
for t in ("float", "float32", "float64", "set", "slice", "tuple", "int",
"complex", "complex64", "complex128"):
env.add_include_file("pythonic/types/%s.hpp" % t)