scalenie modułów
8
.idea/.gitignore
vendored
@ -1,8 +0,0 @@
|
||||
# Default ignored files
|
||||
/shelf/
|
||||
/workspace.xml
|
||||
# Editor-based HTTP Client requests
|
||||
/httpRequests/
|
||||
# Datasource local storage ignored files
|
||||
/dataSources/
|
||||
/dataSources.local.xml
|
@ -1,8 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
@ -1,6 +0,0 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
@ -1,4 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" />
|
||||
</project>
|
@ -1,8 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/SI-projekt-smieciarka2.iml" filepath="$PROJECT_DIR$/.idea/SI-projekt-smieciarka2.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
@ -1,6 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
@ -4,10 +4,10 @@ import pathlib
|
||||
temp = pathlib.PosixPath
|
||||
pathlib.PosixPath = pathlib.WindowsPath
|
||||
|
||||
DATASET_PATH = Path('../dataset')
|
||||
DATASET_PATH = pathlib.Path('../dataset')
|
||||
|
||||
learn = load_learner(DATASET_PATH/'export.pkl')
|
||||
path = Path(DATASET_PATH/'glass/glass1.jpg')
|
||||
path = pathlib.Path(DATASET_PATH / 'others/trash1.jpg')
|
||||
|
||||
def getPredict(learner, path):
|
||||
prediction = learner.predict(path)
|
||||
|
BIN
src/__pycache__/astar.cpython-39.pyc
Normal file
BIN
src/__pycache__/snn.cpython-39.pyc
Normal file
43
src/astar.py
@ -1,12 +1,16 @@
|
||||
from queue import PriorityQueue
|
||||
import numpy as np
|
||||
|
||||
|
||||
def heuristic(xy1, xy2):
|
||||
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
|
||||
|
||||
def neighbours(point):
|
||||
|
||||
def neighbours(point, collisionsMap):
|
||||
x, y = point
|
||||
list=((x+1,y), (x,y+1), (x,y-1), (x-1,y))
|
||||
return list
|
||||
list = [(x + 1, y), (x, y + 1), (x, y - 1), (x - 1, y)]
|
||||
return [(x, y) for x, y in list if 0 <= x <= 14 and 0 <= y <= 14 and not collisionsMap[x][y]]
|
||||
|
||||
|
||||
# determining the cost of a specific field in the grid
|
||||
def checkCost(grid, xy):
|
||||
@ -14,38 +18,41 @@ def checkCost(grid, xy):
|
||||
cost = grid[x][y]
|
||||
return cost
|
||||
|
||||
def aStar(grid, start, goal):
|
||||
|
||||
def aStar(grid, collisionsMap, start, goal):
|
||||
openlist = PriorityQueue()
|
||||
openlist.put(start, 0)
|
||||
|
||||
fScore = {}
|
||||
gScore = {}
|
||||
origin = {start: None}
|
||||
fScore[start] = 0
|
||||
closedlist=[]
|
||||
fScore[start] = heuristic(start, goal)
|
||||
gScore[start] = 0
|
||||
|
||||
while openlist!= {} :
|
||||
while not openlist.empty():
|
||||
current = openlist.get()
|
||||
|
||||
if current == goal:
|
||||
path = []
|
||||
# following from the succesors to the root our starting point
|
||||
while current != start:
|
||||
while current is not None:
|
||||
path.append(current)
|
||||
current = origin[current]
|
||||
path.reverse()
|
||||
break
|
||||
return path
|
||||
|
||||
# successor function
|
||||
for succ in neighbours(current):
|
||||
for succ in neighbours(current, collisionsMap):
|
||||
# checking if didn't go out of the maze
|
||||
if(succ[0] < 0 or succ[1] < 0 or succ[0] > 14 or succ[1] > 14):
|
||||
if succ[0] < 0 or succ[1] < 0 or succ[0] > 14 or succ[1] > 14:
|
||||
continue
|
||||
|
||||
gScore = fScore[current[0],current[1]] + checkCost(grid, current)
|
||||
if succ not in closedlist or gScore < fScore[succ[0],succ[1]]:
|
||||
closedlist.append(succ)
|
||||
origin[succ[0],succ[1]] = current
|
||||
fScore[succ[0],succ[1]] = gScore
|
||||
priority = gScore + heuristic(goal, succ)
|
||||
tentiative_gScore = gScore.get(current, np.inf) + checkCost(grid, succ)
|
||||
if tentiative_gScore < gScore.get(succ, np.inf):
|
||||
origin[succ] = current
|
||||
priority = tentiative_gScore + heuristic(goal, succ)
|
||||
fScore[succ] = priority
|
||||
gScore[succ] = tentiative_gScore
|
||||
openlist.put(succ, priority)
|
||||
return path
|
||||
|
||||
raise RuntimeError("No path found")
|
||||
|
86
src/board.py
@ -1,10 +1,32 @@
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
import astar
|
||||
import pygame
|
||||
import snn
|
||||
import joblib
|
||||
import os
|
||||
|
||||
screen = []
|
||||
objectArray = []
|
||||
collisionsMap = []
|
||||
|
||||
decision_tree = joblib.load(Path('../tree/decisionTreeClassifier'))
|
||||
|
||||
type_map = {
|
||||
'glass': 2,
|
||||
'others': 0,
|
||||
'paper': 4,
|
||||
'plastic': 3
|
||||
}
|
||||
testset_path = Path('../testset')
|
||||
testset = [Path(f'{testset_path}/{file}') for file in os.listdir(testset_path)]
|
||||
|
||||
season = 2
|
||||
truck_full = 0
|
||||
truck_working = 0
|
||||
|
||||
weightsMap = ([1, 2, 1, 4, 5, 2, 7, 8, 5, 4, 15, 3, 4, 5, 8],
|
||||
[1, 2, 1, 4, 5, 2, 7, 8, 1, 4, 1, 3, 4, 5, 1],
|
||||
[1, 2, 1, 4, 5, 2, 7, 8, 1, 4, 1, 3, 4, 5, 3],
|
||||
@ -65,10 +87,8 @@ class Agent(Object):
|
||||
truck = pygame.transform.scale(truck, (square, square))
|
||||
screen.blit(truck, (circleX, circleY))
|
||||
|
||||
def move(self, gridLength, path):
|
||||
for (x, y) in path:
|
||||
newPos = self.pos.get_moved(x, y)
|
||||
self.move_if_possible(newPos, gridLength)
|
||||
def move(self, newPos):
|
||||
self.pos = newPos
|
||||
|
||||
def move_if_possible(self, newPos, gridLength):
|
||||
if movement_allowed(newPos, gridLength):
|
||||
@ -76,13 +96,13 @@ class Agent(Object):
|
||||
|
||||
|
||||
class House(Object):
|
||||
def __init__(self, name, pos):
|
||||
def __init__(self, name, pos, **kwargs):
|
||||
super().__init__(name, pos)
|
||||
self.trash_cans = {
|
||||
"paper": False,
|
||||
"glass": False,
|
||||
"plastic": False,
|
||||
"others": False
|
||||
self.trash_can = {
|
||||
"type": kwargs.get('type', np.random.choice(testset)),
|
||||
'animal': kwargs.get('animal', np.random.randint(0, 2)),
|
||||
'quantity': kwargs.get('quantity', np.random.random() * 0.7 + 0.3),
|
||||
'time': kwargs.get('time', np.random.randint(0, 6))
|
||||
}
|
||||
|
||||
def draw(self, square):
|
||||
@ -167,7 +187,8 @@ if __name__ == '__main__':
|
||||
(7, 4), (3, 10), (8, 10), (4, 5), (1, 2), (10, 4), (13, 14), (6, 9)
|
||||
]])]
|
||||
holes = [Hole(f'dziura-{i}', pos) for i, pos in enumerate([Position(x, y) for x, y in [
|
||||
(4, 9), (5, 11), (11, 7), (13, 8)
|
||||
(4, 9), (5, 11), (11, 7), (13, 8), (0, 1), (1, 1), (2, 1), (14, 13),
|
||||
(13, 13), (4, 8), (5, 9), (7, 9), (6, 8), (3, 5), (4, 6), (5, 5)
|
||||
]])]
|
||||
objectArray.append(agent)
|
||||
objectArray.append(junkyard)
|
||||
@ -175,7 +196,7 @@ if __name__ == '__main__':
|
||||
objectArray += holes
|
||||
|
||||
collisionsMap = [[False] * gridSize for _ in range(gridSize)]
|
||||
for object in objectArray[1:]:
|
||||
for object in holes:
|
||||
collisionsMap[object.pos.x][object.pos.y] = True
|
||||
|
||||
width = 610
|
||||
@ -184,12 +205,51 @@ if __name__ == '__main__':
|
||||
|
||||
startPos = (0, 0)
|
||||
finalPos = (14, 14)
|
||||
astarPath = astar.aStar(weightsMap, startPos, finalPos)
|
||||
astarPath = astar.aStar(weightsMap, collisionsMap, startPos, finalPos)
|
||||
checkpoints = [startPos]
|
||||
for house in houses:
|
||||
checkpoints.append((house.pos.x, house.pos.y))
|
||||
checkpoints.append(finalPos)
|
||||
astarPath = []
|
||||
for i in range(len(checkpoints) - 1):
|
||||
path = astar.aStar(weightsMap, collisionsMap, checkpoints[i], checkpoints[i + 1])
|
||||
if i == 0:
|
||||
astarPath += path
|
||||
else:
|
||||
astarPath += path[1:]
|
||||
|
||||
print(astarPath)
|
||||
|
||||
pathPos = 0
|
||||
nextCheckpoint = 1
|
||||
while True:
|
||||
agent_x, agent_y = astarPath[pathPos]
|
||||
checkpoint_x, checkpoint_y = checkpoints[nextCheckpoint]
|
||||
agent.pos = Position(agent_x, agent_y)
|
||||
for house in houses:
|
||||
if house.pos.x == agent_x and house.pos.y == agent_y \
|
||||
and agent_x == checkpoint_x and agent_y == checkpoint_y:
|
||||
nextCheckpoint += 1
|
||||
house.trash_can['evaluated_type'] = type_map[snn.getPredict(house.trash_can['type'])[0]]
|
||||
print('House:', house.name, 'pos:', astarPath[pathPos], 'type:', house.trash_can['type'],
|
||||
'evaluated_type:', house.trash_can['evaluated_type'])
|
||||
tree_input = np.array([
|
||||
house.trash_can['evaluated_type'],
|
||||
season,
|
||||
house.trash_can['animal'],
|
||||
truck_full,
|
||||
house.trash_can['quantity'],
|
||||
house.trash_can['time'],
|
||||
truck_working
|
||||
]).reshape(1, -1)
|
||||
should_get = decision_tree.predict(tree_input)
|
||||
print('Desicion tree input:', tree_input, 'result:', should_get)
|
||||
pathPos = pathPos + 1 if pathPos < len(astarPath) - 1 else pathPos
|
||||
c = (255, 255, 255) # tymczasowy kolor tła - do usunięcia, jak już będzie zdjęcie
|
||||
screen.fill(c)
|
||||
draw(gridSize, objectArray)
|
||||
kb_listen(objectArray, gridSize, astarPath)
|
||||
pygame.display.update() # by krata pojawiła się w okienku - update powierzc
|
||||
pygame.time.wait(100)
|
||||
|
||||
|
||||
|
16
src/snn.py
Normal file
@ -0,0 +1,16 @@
|
||||
from fastai.vision.all import *
|
||||
import pathlib
|
||||
|
||||
temp = pathlib.PosixPath
|
||||
pathlib.PosixPath = pathlib.WindowsPath
|
||||
|
||||
DATASET_PATH = pathlib.Path('../dataset')
|
||||
|
||||
learn = load_learner(DATASET_PATH/'export.pkl')
|
||||
path = pathlib.Path(DATASET_PATH / 'others/trash1.jpg')
|
||||
|
||||
def getPredict(path):
|
||||
prediction = learn.predict(path)
|
||||
predictionName = learn.predict(path)[0]
|
||||
# print(prediction, '\n\n','prediction:', predictionName, 'path:', path)
|
||||
return prediction
|
BIN
testset/glass0.jpg
Normal file
After Width: | Height: | Size: 18 KiB |
BIN
testset/glass1.jpg
Normal file
After Width: | Height: | Size: 22 KiB |
BIN
testset/glass2.jpg
Normal file
After Width: | Height: | Size: 8.4 KiB |
BIN
testset/others0.jpg
Normal file
After Width: | Height: | Size: 49 KiB |
BIN
testset/others1.jpg
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
testset/others2.jpg
Normal file
After Width: | Height: | Size: 41 KiB |
BIN
testset/paper0.jpg
Normal file
After Width: | Height: | Size: 53 KiB |
BIN
testset/paper1.jpg
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
testset/plastic0.jpg
Normal file
After Width: | Height: | Size: 93 KiB |
BIN
testset/plastic1.jpg
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
testset/plastic2.jpg
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
tree/decisionTreeClassifier
Normal file
@ -1,5 +1,6 @@
|
||||
import pandas as pd
|
||||
from sklearn import tree
|
||||
import joblib
|
||||
|
||||
df = pd.read_csv('data.csv')
|
||||
print(df.head())
|
||||
@ -19,6 +20,8 @@ print(pred)
|
||||
print('Jedynki: ', len(df[df['Y'] == 1]))
|
||||
print('Zera: ', len(df[df['Y'] == 0]))
|
||||
|
||||
joblib.dump(clf, 'decisionTreeClassifier')
|
||||
|
||||
|
||||
#Legenda
|
||||
#czy wywiezc zmieci 1 tak 0 nie
|
||||
|