forked from tdwojak/Python2017
[homework lab6] ready for review
This commit is contained in:
parent
ff3181b92e
commit
2077881ae8
@ -1,15 +1,35 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
import os;
|
||||
os.chdir('J:\PycharmProjects\Python2017\labs06')
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib
|
||||
matplotlib.style.use('ggplot')
|
||||
plt.rcParams['figure.figsize'] = (15, 5)
|
||||
|
||||
def wczytaj_dane():
|
||||
dane = pd.read_csv('mieszkania.csv', sep=',')
|
||||
dane.rename(columns={'Unnamed: 11': 'Borough'}, inplace=True)
|
||||
#type(dane)
|
||||
#print(dane.head())
|
||||
return(dane)
|
||||
pass
|
||||
|
||||
|
||||
def most_common_room_number(dane):
|
||||
m = dane.groupby(['Rooms']).count()
|
||||
return(m['Id'].idxmax())
|
||||
pass
|
||||
|
||||
|
||||
def cheapest_flats(dane, n):
|
||||
dane2 = dane.sort_values(by=['Expected'])
|
||||
return(dane2.head(n))
|
||||
pass
|
||||
|
||||
|
||||
def find_borough(desc):
|
||||
dzielnice = ['Stare Miasto',
|
||||
'Wilda',
|
||||
@ -19,24 +39,54 @@ def find_borough(desc):
|
||||
'Winogrady',
|
||||
'Miłostowo',
|
||||
'Dębiec']
|
||||
tekst = desc.split(" ")
|
||||
for i in range(len(tekst)):
|
||||
for j in range(len(dzielnice)):
|
||||
if tekst[i] == dzielnice[j]:
|
||||
return(dzielnice[j])
|
||||
else:
|
||||
j = j + 1
|
||||
i = i + 1
|
||||
return('Inne')
|
||||
pass
|
||||
|
||||
|
||||
def add_borough(dane):
|
||||
for i in range(5000):#len(dane.axes[0])):
|
||||
dane['Borough'][i] = find_borough(dane['Location'][i])
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def write_plot(dane, filename):
|
||||
my_plot = dane['Borough'].hist()
|
||||
fig = my_plot.get_figure()
|
||||
|
||||
dir_name = 'J:/PycharmProjects/Python2017/labs06/'
|
||||
filename_suffix = 'pdf'
|
||||
fig.savefig(os.path.join(dir_name, filename + "." + filename_suffix))
|
||||
pass
|
||||
|
||||
|
||||
def mean_price(dane, room_number):
|
||||
m = dane.groupby(['Rooms']).mean()
|
||||
return(m['Expected'][room_number])
|
||||
pass
|
||||
|
||||
|
||||
def find_13(dane):
|
||||
df_filtered = dane[dane['Floor'] == 13]
|
||||
return(df_filtered['Borough'])
|
||||
pass
|
||||
|
||||
|
||||
def find_best_flats(dane):
|
||||
df_filtered = dane[dane['Floor'] == 1]
|
||||
df_filtered2=df_filtered[df_filtered['Borough']=='Winogrady']
|
||||
df_filtered3 = df_filtered2[df_filtered2['Rooms'] == 3]
|
||||
pass
|
||||
|
||||
|
||||
def main():
|
||||
dane = wczytaj_dane()
|
||||
print(dane[:5])
|
||||
@ -45,7 +95,7 @@ def main():
|
||||
.format(most_common_room_number(dane)))
|
||||
|
||||
print("{} to najłądniejsza dzielnica w Poznaniu."
|
||||
.format(find_borough("Grunwald i Jeżyce"))))
|
||||
.format(find_borough("Grunwald i Jeżyce")))
|
||||
|
||||
print("Średnia cena mieszkania 3-pokojowego, to: {}"
|
||||
.format(mean_price(dane, 3)))
|
||||
|
Loading…
Reference in New Issue
Block a user