2017-12-15 14:24:17 +01:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
2017-12-16 13:01:49 +01:00
|
|
|
import pandas as pd
|
|
|
|
|
2017-12-15 14:24:17 +01:00
|
|
|
def wczytaj_dane():
|
2017-12-16 13:01:49 +01:00
|
|
|
flats_data = pd.read_csv('mieszkania.csv',
|
|
|
|
sep=',', # separator
|
|
|
|
index_col='Id') # ustawienie indeksu na kolumnę 'Id'
|
|
|
|
flats_as_frame = pd.DataFrame(flats_data)
|
|
|
|
return flats_as_frame
|
2017-12-15 14:24:17 +01:00
|
|
|
|
|
|
|
def most_common_room_number(dane):
|
2017-12-16 13:01:49 +01:00
|
|
|
rooms = dane['Rooms']
|
|
|
|
counter = rooms.value_counts()
|
|
|
|
# new_dict = {}
|
|
|
|
# for i in counter:
|
|
|
|
# new_dict.update([i])
|
|
|
|
# print (new_dict)
|
|
|
|
print (max(counter))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-12-15 14:24:17 +01:00
|
|
|
|
|
|
|
def cheapest_flats(dane, n):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def find_borough(desc):
|
|
|
|
dzielnice = ['Stare Miasto',
|
|
|
|
'Wilda',
|
|
|
|
'Jeżyce',
|
|
|
|
'Rataje',
|
|
|
|
'Piątkowo',
|
|
|
|
'Winogrady',
|
|
|
|
'Miłostowo',
|
|
|
|
'Dębiec']
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def add_borough(dane):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def write_plot(dane, filename):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def mean_price(dane, room_number):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def find_13(dane):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def find_best_flats(dane):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def main():
|
|
|
|
dane = wczytaj_dane()
|
2017-12-16 13:01:49 +01:00
|
|
|
# print(dane[:5])
|
2017-12-15 14:24:17 +01:00
|
|
|
|
|
|
|
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
|
|
|
|
.format(most_common_room_number(dane)))
|
|
|
|
|
|
|
|
print("{} to najłądniejsza dzielnica w Poznaniu."
|
2017-12-16 13:01:49 +01:00
|
|
|
.format(find_borough("Grunwald i Jeżyce")))
|
2017-12-15 14:24:17 +01:00
|
|
|
|
|
|
|
print("Średnia cena mieszkania 3-pokojowego, to: {}"
|
|
|
|
.format(mean_price(dane, 3)))
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|