1
0
forked from tdwojak/Python2017
# Conflicts:
    #	labs02/test_task.py
This commit is contained in:
s45157 2018-01-02 15:51:05 +01:00
parent a6c2e3af77
commit 8b57f5b1cf
2 changed files with 80 additions and 33 deletions

View File

@ -28,7 +28,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": null,
"metadata": { "metadata": {
"collapsed": true, "collapsed": true,
"slideshow": { "slideshow": {
@ -299,30 +299,12 @@
] ]
}, },
{ {
"cell_type": "code", "cell_type": "markdown",
"execution_count": 16,
"metadata": { "metadata": {
"slideshow": { "slideshow": {
"slide_type": "slide" "slide_type": "slide"
} }
}, },
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"count 26.000000\n",
"mean 8.576923\n",
"std 5.375300\n",
"min 1.000000\n",
"25% 4.250000\n",
"50% 8.000000\n",
"75% 12.000000\n",
"max 18.000000\n",
"dtype: float64\n"
]
}
],
"source": [ "source": [
"print(dane.describe())" "print(dane.describe())"
] ]

View File

@ -1,14 +1,15 @@
#!/usr/bin/env python #!/usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import pandas as pd
def wczytaj_dane(): def wczytaj_dane():
pass return pd.read_csv('mieszkania.csv')
def most_common_room_number(dane): def most_common_room_number(dane):
pass return dane['Rooms'].mode()[0]
def cheapest_flats(dane, n): def cheapest_flats(dane, n):
pass return dane.sort_values(by=[u'Expected'], na_position='last').head(n)
def find_borough(desc): def find_borough(desc):
dzielnice = ['Stare Miasto', dzielnice = ['Stare Miasto',
@ -19,23 +20,54 @@ def find_borough(desc):
'Winogrady', 'Winogrady',
'Miłostowo', 'Miłostowo',
'Dębiec'] 'Dębiec']
pass histogram = {districtName: desc.find(districtName) for districtName in dzielnice if desc.find(districtName) != -1}
return 'Inne' if not histogram else min(histogram, key=histogram.get)
def add_borough(dane): def add_borough(dane):
pass dane['Borough'] = dane.apply( lambda row: find_borough( row['Location']), axis = 1)
def write_plot(dane, filename): def write_plot(dane, filename):
pass dane['Borough'].value_counts().plot.bar().get_figure().savefig(filename)
def mean_price(dane, room_number): def mean_price(dane, room_number):
pass return dane.loc[ dane['Rooms'] == room_number ].mean()[1]
def find_13(dane): def find_13(dane):
pass return dane.loc[dane['Floor'] == 13]['Borough'].unique()
def find_best_flats(dane): def find_best_flats(dane):
pass return dane.loc[(dane['Borough'] == 'Winogrady') & (dane['Rooms'] == 3) & (dane['Floor'] == 1)]
def predict(dane, col_name):
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score
d_X = pd.DataFrame(dane[col_name])
print('Dane z kolumny ', col_name)
print(d_X.head())
d_X_train = d_X[4000:]
d_X_test = d_X[:4000]
d_y = pd.DataFrame(dane['Expected'])
d_y_train = d_y[4000:]
d_y_test = d_y[:4000]
regr = linear_model.LinearRegression()
regr.fit(d_X_train, d_y_train)
y_pred = regr.predict(d_X_test)
print('MODEL(%s): pred_y = %f * x + %f' % (col_name, regr.coef_[0], regr.intercept_) )
print('Mean squared error: %.2f' % mean_squared_error(d_y_test, y_pred))
import matplotlib.pyplot as plt
plt.clf()
dataLine, = plt.plot(d_X_test, d_y_test, 'ro', label='collected data')
predLine, = plt.plot(d_X_test, y_pred, color='blue', linestyle='--', linewidth = 2, label='predictions')
ax = plt.gca().add_artist(plt.legend(handles=[dataLine], loc=1))
plt.legend(handles=[predLine], loc=4)
plt.xticks(())
plt.yticks(())
plt.xlabel(col_name)
plt.ylabel('Price')
plt.show()
def main(): def main():
dane = wczytaj_dane() dane = wczytaj_dane()
@ -44,11 +76,44 @@ def main():
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}" print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
.format(most_common_room_number(dane))) .format(most_common_room_number(dane)))
print("{} to najłądniejsza dzielnica w Poznaniu." print("7 najtańszych mieszkań to: ")
.format(find_borough("Grunwald i Jeżyce")))) print(cheapest_flats(dane, 7))
print("Średnia cena mieszkania 3-pokojowego, to: {}" print("{} to najłądniejsza dzielnica w Poznaniu.".format(find_borough("Grunwald i Jeżyce")))
.format(mean_price(dane, 3)))
add_borough(dane)
write_plot(dane, 'tmp_borough_hist.png')
for i in dane['Rooms'].unique():
print("Średnia cena mieszkania {}-pokojowego, to: {}".format(i, mean_price(dane, i)))
print('Dzielnice z mieszkaniami na 13 piętrze: {}'.format(find_13(dane)))
print('"Najlepsze" mieszkania: ')
print(find_best_flats(dane))
predict(dane, 'Rooms')
predict(dane, 'SqrMeters')
from sklearn import datasets, linear_model
import numbers as np
from sklearn.metrics import mean_squared_error, r2_score
#
# diabetes = datasets.load_diabetes()
# diabetes_X = diabetes.data[:, None, 3]
# diabetes_X_train = diabetes_X[:-20]
# diabetes_X_test = diabetes_X[-20:]
# diabetes_y_train = diabetes.target[:-20]
# diabetes_y_test = diabetes.target[-20:]
# regr = linear_model.LinearRegression()
# regr.fit(diabetes_X_train, diabetes_y_train)
# diabetes_y_pred = regr.predict(diabetes_X_test)
# print('Coefficients: \n', regr.coef_)
# print('Mean squared error: %.2f' % mean_squared_error(diabetes_y_test, diabetes_y_pred))
#
# print( diabetes.data[:, None, 3].shape )
if __name__ == "__main__": if __name__ == "__main__":
main() main()