1
0
forked from tdwojak/Python2017
Python2017/labs06/task02.py
2018-01-02 15:52:55 +01:00

98 lines
3.1 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pandas as pd
def wczytaj_dane():
return pd.read_csv('mieszkania.csv')
def most_common_room_number(dane):
return dane['Rooms'].mode()[0]
def cheapest_flats(dane, n):
return dane.sort_values(by=[u'Expected'], na_position='last').head(n)
def find_borough(desc):
dzielnice = ['Stare Miasto',
'Wilda',
'Jeżyce',
'Rataje',
'Piątkowo',
'Winogrady',
'Miłostowo',
'Dębiec']
histogram = {districtName: desc.find(districtName) for districtName in dzielnice if desc.find(districtName) != -1}
return 'Inne' if not histogram else min(histogram, key=histogram.get)
def add_borough(dane):
dane['Borough'] = dane.apply( lambda row: find_borough( row['Location']), axis = 1)
def write_plot(dane, filename):
dane['Borough'].value_counts().plot.bar().get_figure().savefig(filename)
def mean_price(dane, room_number):
return dane.loc[ dane['Rooms'] == room_number ].mean()[1]
def find_13(dane):
return dane.loc[dane['Floor'] == 13]['Borough'].unique()
def find_best_flats(dane):
return dane.loc[(dane['Borough'] == 'Winogrady') & (dane['Rooms'] == 3) & (dane['Floor'] == 1)]
def predict(dane, col_name):
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score
d_X = pd.DataFrame(dane[col_name])
print('Dane z kolumny ', col_name)
print(d_X.head())
d_X_train = d_X[4000:]
d_X_test = d_X[:4000]
d_y = pd.DataFrame(dane['Expected'])
d_y_train = d_y[4000:]
d_y_test = d_y[:4000]
regr = linear_model.LinearRegression()
regr.fit(d_X_train, d_y_train)
y_pred = regr.predict(d_X_test)
print('MODEL(%s): pred_y = %f * x + %f' % (col_name, regr.coef_[0], regr.intercept_) )
print('Mean squared error: %.2f' % mean_squared_error(d_y_test, y_pred))
import matplotlib.pyplot as plt
plt.clf()
dataLine, = plt.plot(d_X_test, d_y_test, 'ro', label='collected data')
predLine, = plt.plot(d_X_test, y_pred, color='blue', linestyle='--', linewidth = 2, label='predictions')
ax = plt.gca().add_artist(plt.legend(handles=[dataLine], loc=1))
plt.legend(handles=[predLine], loc=4)
plt.xticks(())
plt.yticks(())
plt.xlabel(col_name)
plt.ylabel('Price')
plt.show()
def main():
dane = wczytaj_dane()
print(dane[:5])
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
.format(most_common_room_number(dane)))
print("7 najtańszych mieszkań to: ")
print(cheapest_flats(dane, 7))
print("{} to najłądniejsza dzielnica w Poznaniu.".format(find_borough("Grunwald i Jeżyce")))
add_borough(dane)
write_plot(dane, 'tmp_borough_hist.png')
for i in dane['Rooms'].unique():
print("Średnia cena mieszkania {}-pokojowego, to: {}".format(i, mean_price(dane, i)))
print('Dzielnice z mieszkaniami na 13 piętrze: {}'.format(find_13(dane)))
print('"Najlepsze" mieszkania: ')
print(find_best_flats(dane))
predict(dane, 'Rooms')
predict(dane, 'SqrMeters')
if __name__ == "__main__":
main()