##!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd def wczytaj_dane(): mieszkania = pd.read_csv('mieszkania.csv', # ścieżka do pliku sep=',', # separator encoding='UTF-8', usecols=[0,1,2,3,4,5,6]) return mieszkania def most_common_room_number(dane): return dane.mode(numeric_only =True)["Rooms"][0] def cheapest_flats(dane, n): return dane.sort_values("Expected")[:n] def find_borough(desc): dzielnice = ['Stare Miasto', 'Wilda', 'Jeżyce', 'Rataje', 'Piątkowo', 'Winogrady', 'Miłostowo', 'Dębiec'] inputList=desc.split(' ') for i in inputList: if i in dzielnice: return i return "Inne" def add_borough(dane): newcol=dane["Location"].apply(find_borough) dane["Borough"]=newcol return dane def write_plot(dane, filename): bar=dane["Borough"].value_counts().plot(kind="bar", figsize=(6,6)) fig=bar.get_figure() fig.savefig(filename) def mean_price(dane, room_number): return dane[dane["Rooms"]==room_number]["Expected"].mean() def find_13(dane): return dane[dane["Floor"]==13]["Borough"].unique() def find_best_flats(dane): return dane[(dane["Borough"]=="Winogrady") & (dane["Floor"]==1) & (dane["Rooms"]==3)] def main(): dane = wczytaj_dane() print(dane[:5]) print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}" .format(most_common_room_number(dane))) print("{} to najłądniejsza dzielnica w Poznaniu." .format(find_borough("Grunwald i Jeżyce"))) print("Średnia cena mieszkania 3-pokojowego, to: {}" .format(mean_price(dane, 3))) if __name__ == "__main__": main()