import argparse import cv2 import os import sys import re import warnings import pytesseract import numpy as np from PIL import Image def recognize(img: Image, debug: bool = False) -> Image: processed_img = preprocessor(img) pass def preprocessor(img: Image, debug: bool = False) -> Image: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) edged = cv2.Canny(gray, 75, 200) contours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) max_area_contour = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(max_area_contour) if debug: box_img = img.copy() cv2.rectangle(box_img, (x,y), (x+w, y+h), (0, 0, 255), thickness=2, lineType=8) cv2.imshow("MARK CROP", box_img) img_cut = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[y:y+h, x:x+w] img_out = cv2.cvtColor(img_cut, cv2.COLOR_BGR2RGB) if debug: cv2.imshow("CROPPED", img_out) return img_out def get_text(img: Image, debug: bool = False) -> str: text = pytesseract.image_to_string(Image.fromarray(img), config="-l pol") return text def get_products(ocr_text, debug: bool = False) -> list: out_list = [] text_lines = ocr_text.split('\n') index_start = 0 index_stop = len(text_lines) - 1 for i in range(len(text_lines) - 1): if(re.compile('PARAGON.*FISKALNY.*').match(text_lines[i])): index_start = i if(re.compile('SPRZEDA.*').match(text_lines[i])): index_stop = i for item_line in text_lines[index_start + 1: index_stop - 2]: # print(item_line) regex = re.compile("([ A-Za-ząćęłśźż]+).*(\d{1,3},\d{2})[A-E]$") m = regex.match(item_line) if m: out_list.append((item_line, m.group(1), m.group(2))) print(item_line, "===>", m.group(1), m.group(2)) else: print("skipped!") return out_list if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="Path to the image") ap.add_argument("-s", "--show-steps", required=False, help="Display image on every step", action='store_true') args = vars(ap.parse_args()) if (not os.path.isfile(args["image"])): print(f"Could not find an image '{args['image']}'") sys.exit(-1) DEBUG = args["show_steps"] img = cv2.imread(args["image"]) img_postproc = preprocessor(img, debug=DEBUG) ocr_text = get_text(img_postproc, debug=DEBUG) product_list = get_products(ocr_text, debug=DEBUG) # print(product_list) if(DEBUG): cv2.waitKey(0) cv2.destroyAllWindows() # out_img = img.copy() # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray = cv2.GaussianBlur(gray, (5, 5), 0) # edged = cv2.Canny(gray, 75, 200) # contours, hierarchy = cv2.findContours(edged.copy(), # cv2.RETR_LIST, # cv2.CHAIN_APPROX_SIMPLE) # max_area_contour = max(contours, key=cv2.contourArea) # x, y, w, h = cv2.boundingRect(max_area_contour) # # out_img = gray[y:y+h, x:x+w] # # ret, out_img = cv2.threshold(gray[y:y+h, x:x+w], 155, 255, cv2.THRESH_TOZERO) # img_cut = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[y:y+h, x:x+w] # img_out = cv2.cvtColor(img_cut, cv2.COLOR_BGR2RGB) # text = pytesseract.image_to_string(Image.fromarray(img_out), config="-l pol") # text_lines = text.split('\n') # index_start = 0 # index_stop = len(text_lines) - 1 # for i in range(len(text_lines) - 1): # if(re.compile('PARAGON.*FISKALNY.*').match(text_lines[i])): # index_start = i # if(re.compile('SPRZEDA.*').match(text_lines[i])): # index_stop = i # for item_line in text_lines[index_start + 1: index_stop - 2]: # print(item_line) # regex = re.compile("([ A-Za-ząćęłśźż]+).*(\d{1,3},\d{2})[A-E]$") # m = regex.match(item_line) # if m: # print(item_line, "===>", m.group(1), m.group(2)) # else: # print("skipped!") # # cv2.drawContours(out_img, contours, -1, (0, 255, 0), 3) # # cv2.rectangle(out_img, (x, y), (x+w, y+h), (0, 0, 255), 2) # cv2.imshow("cropped", img_out) # # cv2.imshow("Edged", edged) # cv2.waitKey(0) # cv2.destroyAllWindows()