BuyAndKnow/bk_api/ocr_module/main.py
Stanislaw-Golebiewski b75abf6935 Django init setup
2019-12-08 22:11:51 +01:00

131 lines
4.4 KiB
Python

import argparse
import cv2
import os
import sys
import re
import warnings
import pytesseract
import numpy as np
from PIL import Image
def recognize(img: Image, debug: bool = False) -> Image:
processed_img = preprocessor(img)
pass
def preprocessor(img: Image, debug: bool = False) -> Image:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 75, 200)
contours, hierarchy = cv2.findContours(edged.copy(),
cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
max_area_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(max_area_contour)
if debug:
box_img = img.copy()
cv2.rectangle(box_img, (x,y), (x+w, y+h), (0, 0, 255), thickness=2, lineType=8)
cv2.imshow("MARK CROP", box_img)
img_cut = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[y:y+h, x:x+w]
img_out = cv2.cvtColor(img_cut, cv2.COLOR_BGR2RGB)
if debug:
cv2.imshow("CROPPED", img_out)
return img_out
def get_text(img: Image, debug: bool = False) -> str:
text = pytesseract.image_to_string(Image.fromarray(img), config="-l pol")
return text
def get_products(ocr_text, debug: bool = False) -> list:
out_list = []
text_lines = ocr_text.split('\n')
index_start = 0
index_stop = len(text_lines) - 1
for i in range(len(text_lines) - 1):
if(re.compile('PARAGON.*FISKALNY.*').match(text_lines[i])):
index_start = i
if(re.compile('SPRZEDA.*').match(text_lines[i])):
index_stop = i
for item_line in text_lines[index_start + 1: index_stop - 2]:
# print(item_line)
regex = re.compile("([ A-Za-ząćęłśźż]+).*(\d{1,3},\d{2})[A-E]$")
m = regex.match(item_line)
if m:
out_list.append((item_line, m.group(1), m.group(2)))
print(item_line, "===>", m.group(1), m.group(2))
else:
print("skipped!")
return out_list
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the image")
ap.add_argument("-s", "--show-steps", required=False, help="Display image on every step", action='store_true')
args = vars(ap.parse_args())
if (not os.path.isfile(args["image"])):
print(f"Could not find an image '{args['image']}'")
sys.exit(-1)
DEBUG = args["show_steps"]
img = cv2.imread(args["image"])
img_postproc = preprocessor(img, debug=DEBUG)
ocr_text = get_text(img_postproc, debug=DEBUG)
product_list = get_products(ocr_text, debug=DEBUG)
# print(product_list)
if(DEBUG):
cv2.waitKey(0)
cv2.destroyAllWindows()
# out_img = img.copy()
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = cv2.GaussianBlur(gray, (5, 5), 0)
# edged = cv2.Canny(gray, 75, 200)
# contours, hierarchy = cv2.findContours(edged.copy(),
# cv2.RETR_LIST,
# cv2.CHAIN_APPROX_SIMPLE)
# max_area_contour = max(contours, key=cv2.contourArea)
# x, y, w, h = cv2.boundingRect(max_area_contour)
# # out_img = gray[y:y+h, x:x+w]
# # ret, out_img = cv2.threshold(gray[y:y+h, x:x+w], 155, 255, cv2.THRESH_TOZERO)
# img_cut = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[y:y+h, x:x+w]
# img_out = cv2.cvtColor(img_cut, cv2.COLOR_BGR2RGB)
# text = pytesseract.image_to_string(Image.fromarray(img_out), config="-l pol")
# text_lines = text.split('\n')
# index_start = 0
# index_stop = len(text_lines) - 1
# for i in range(len(text_lines) - 1):
# if(re.compile('PARAGON.*FISKALNY.*').match(text_lines[i])):
# index_start = i
# if(re.compile('SPRZEDA.*').match(text_lines[i])):
# index_stop = i
# for item_line in text_lines[index_start + 1: index_stop - 2]:
# print(item_line)
# regex = re.compile("([ A-Za-ząćęłśźż]+).*(\d{1,3},\d{2})[A-E]$")
# m = regex.match(item_line)
# if m:
# print(item_line, "===>", m.group(1), m.group(2))
# else:
# print("skipped!")
# # cv2.drawContours(out_img, contours, -1, (0, 255, 0), 3)
# # cv2.rectangle(out_img, (x, y), (x+w, y+h), (0, 0, 255), 2)
# cv2.imshow("cropped", img_out)
# # cv2.imshow("Edged", edged)
# cv2.waitKey(0)
# cv2.destroyAllWindows()