46 lines
1.2 KiB
Python
Executable File
46 lines
1.2 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
import argparse
|
|
|
|
import numpy as np
|
|
|
|
# Parse arguments.
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-m', '--model', nargs='+', required=True,
|
|
help="Models to average")
|
|
parser.add_argument('-o', '--output', required=True,
|
|
help="Output path")
|
|
args = parser.parse_args()
|
|
|
|
# *average* holds the model matrix.
|
|
average = dict()
|
|
# No. of models.
|
|
n = len(args.model)
|
|
|
|
for filename in args.model:
|
|
print("Loading {}".format(filename))
|
|
with open(filename, "rb") as mfile:
|
|
# Loads matrix from model file.
|
|
m = np.load(mfile)
|
|
for k in m:
|
|
if k != "history_errs":
|
|
# Initialize the key.
|
|
if k not in average:
|
|
average[k] = m[k]
|
|
# Add to the appropriate value.
|
|
elif average[k].shape == m[k].shape and "special" not in k:
|
|
average[k] += m[k]
|
|
|
|
# Actual averaging.
|
|
for k in average:
|
|
if "special" not in k:
|
|
average[k] /= n
|
|
|
|
# Save averaged model to file.
|
|
print("Saving to {}".format(args.output))
|
|
np.savez(args.output, **average)
|