TAU_22_sane_words_torch_nn/s2.py

305 lines
10 KiB
Python
Raw Normal View History

2019-12-04 22:52:59 +01:00
import torch
import random
from torch import nn
from torch import optim
import pandas
import numpy as np
import re
import timeit
import subprocess
from sklearn.metrics import precision_score, recall_score, accuracy_score, roc_auc_score
from torch.utils.data import Dataset, DataLoader
import string
#10 features: 4 normal + 6 from domain_onehot + 38 char labels
model = nn.Sequential(
nn.Linear(48, 40, bias=True),
nn.ReLU(),
nn.Linear(40,24,bias=True),
nn.ReLU(),
nn.Linear(24, 1, bias=True),
nn.Sigmoid())
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.00001, momentum=0.7)
#optimizer = optim.Adam(model.parameters())
minibatch_size = 200
def count_polish_diacritics(x):
x_counts = []
for i, word in x.iteritems():
c = len(re.findall(r'[ąćęłńóśźż]', str(word)))
c2 = c / len(str(word))
x_counts.append(c2)
return x_counts
def count_vowels(x):
out = []
for index,row in x.iteritems():
vowel_len = len(re.findall(r'[aąeęioóuy]', str(row)))
word_len = len(str(row))
out.append(vowel_len / word_len) #RATE
return out
def Normalize(data, d = None):
if (d is None):
d = data
r = data - d.min()
return r/(d.max() - d.min())
def f1_score(y_true, y_pred):
precision = precision_score(y_true, y_pred, average='micro')
recall = recall_score(y_true, y_pred, average='micro')
F1 = 2 * (precision * recall) / (precision + recall)
return F1
#Transforms df with categorical values to One Hot format
def ToOneHot(df_col):
out = []
df_labels = pandas.unique(df_col)
l_count = len(df_labels)
for index, row in df_col.iteritems():
blank_one_hot = np.full(l_count, 0)
for i in range(0, l_count):
if df_labels[i] == row:
blank_one_hot[i] = 1
out.append(blank_one_hot)
out_df = pandas.DataFrame(out, columns=df_labels)
return out_df, df_labels
def ToOneHot_preproces(df_col, df_labels):
out = []
l_count = len(df_labels)
for index, row in df_col.iteritems():
blank_one_hot = np.full(l_count, 0)
for i in range(0, l_count):
if df_labels[i] == row:
blank_one_hot[i] = 1
out.append(blank_one_hot)
out_df = pandas.DataFrame(out, columns=df_labels)
return out_df
def getAllchars(df_col):
all = []
for index, row in df_col.iteritems():
all = all + list(row)
return all
def wordToOneHot(df_col, ch_labels):
out = []
l_count = len(ch_labels)
for index, row in df_col.iteritems():
blank_one_hot = np.full(l_count, 0)
for ch in list(str(row)):
for i in range(0, l_count):
if ch_labels[i] == ch:
blank_one_hot[i] = 1
out.append(blank_one_hot)
out_df = pandas.DataFrame(out, columns=ch_labels)
return out_df
class TrainDataset(Dataset):
def __init__(self, X, y):
self.X = X
self.y = y
def __len__(self):
return self.X.shape[0]
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
#Load data:
#Train
train_data = pandas.read_csv('train/train.tsv', sep='\t', names=['Sane', 'Domain', 'Word', 'Frequency'], header=None)
char_labels = pandas.unique(getAllchars(train_data['Word']))
#print(char_labels)
#print(len(char_labels)) 38 liter
#debug_fq = train_data['Frequency']
x1 = Normalize(torch.tensor(train_data['Frequency'], dtype=torch.float))
x2 = Normalize(torch.tensor(count_vowels(train_data['Word']), dtype=torch.float))
domain_onehot, domain_labels = ToOneHot(train_data['Domain'])
x3 = torch.tensor(domain_onehot.values, dtype=torch.float)
x4 = Normalize(torch.tensor(count_polish_diacritics(train_data['Word']),dtype=torch.float))
x5 = Normalize(torch.tensor(train_data['Word'].str.len(), dtype=torch.float))
df_words_onehot = wordToOneHot(train_data['Word'], char_labels)
x_words_onehot = torch.tensor(df_words_onehot.values, dtype=torch.float)
x_temp1 = torch.stack((x1,x2,x4, x5),0)
x_temp2 = torch.cat([x_temp1.transpose(1,0), x3], 1)
x = torch.cat([x_temp2, x_words_onehot], 1)
l = list(["Freq", "Vovels", "pol_dia", "Len"])+list(domain_labels)+list(char_labels)
print(l)
print(len(l))
#debug_x = pandas.DataFrame(x.numpy(), columns=l)
y = torch.tensor(train_data['Sane'], dtype=torch.float)
#dev0
dev_y_test = pandas.DataFrame(pandas.read_csv('dev-0/expected.tsv', encoding="utf-8", delimiter='\t', header=None))
dev_data = pandas.read_csv('dev-0/in.tsv', sep='\t', names=['Domain', 'Word', 'Frequency'], header=None)
dev_x1 = Normalize(torch.tensor(dev_data['Frequency'], dtype=torch.float), x1)
dev_x2 = Normalize(torch.tensor(count_vowels(dev_data['Word']), dtype=torch.float), x2)
dev_x3 = torch.tensor(ToOneHot_preproces(dev_data['Domain'], domain_labels).values, dtype=torch.float)
dev_x4 = Normalize(torch.tensor(count_polish_diacritics(dev_data['Word']), dtype=torch.float), x4)
dev_x5 = Normalize(torch.tensor(dev_data['Word'].str.len(), dtype=torch.float), x5)
dev_df_words_onehot = wordToOneHot(dev_data['Word'], char_labels)
dev_x_words_onehot = torch.tensor(dev_df_words_onehot.values, dtype=torch.float)
dev_x_temp = torch.stack((dev_x1, dev_x2, dev_x4, dev_x5), 0)
dev_x_temp2 = torch.cat([dev_x_temp.transpose(1,0), dev_x3], 1)
dev_x = torch.cat([dev_x_temp2, dev_x_words_onehot], 1)
#test-A
testA_data = pandas.read_csv('test-A/in.tsv', sep='\t', names=['Domain', 'Word', 'Frequency'], header=None)
testA_x1 = Normalize(torch.tensor(testA_data['Frequency'], dtype=torch.float), x1)
testA_x2 = Normalize(torch.tensor(count_vowels(testA_data['Word']), dtype=torch.float), x2)
testA_x3 = torch.tensor(ToOneHot_preproces(testA_data['Domain'], domain_labels).values, dtype=torch.float)
testA_x4 = Normalize(torch.tensor(count_polish_diacritics(testA_data['Word']),dtype=torch.float), x4)
testA_x5 = Normalize(torch.tensor(testA_data['Word'].str.len(), dtype=torch.float), x5)
testA_df_words_onehot = wordToOneHot(testA_data['Word'], char_labels)
testA_x_words_onehot = torch.tensor(testA_df_words_onehot.values, dtype=torch.float)
testA_x_temp = torch.stack((testA_x1,testA_x2,testA_x4, testA_x5),0)
testA_x_temp2 = torch.cat([testA_x_temp.transpose(1,0), testA_x3], 1)
testA_x = torch.cat([testA_x_temp2, testA_x_words_onehot], 1)
threshold = 0.25
"""
def pred_save_dev():
dev_y = model(dev_x)
file = open("dev-0/out.tsv", "w")
file2 = open("dev-0/out_float.tsv", "w")
for i in range(0, 11026):
file2.write(str(dev_y[i].data.item()) + "\n")
var = dev_y[i].data.item()
if var > threshold:
file.write(f'{1}\n')
else:
file.write(f'{0}\n')
file.close()
file2.close()
"""
def pred_save(name, data_train_x, f_threshold):
pred_y = model(data_train_x)
file = open(name + "/out.tsv", "w")
file2 = open(name + "/out_float.tsv", "w")
for i in range(0, len(data_train_x)):
file2.write(str(pred_y[i].data.item()) + "\n")
var = pred_y[i].data.item()
if var > f_threshold:
file.write(f'{1}\n')
else:
file.write(f'{0}\n')
file.close()
file2.close()
def optim_threshold(min_thr, step = 0.01):
best_thr = min_thr
best=0.1
while min_thr < 1:
pred_save("dev-0", dev_x, min_thr)
metric = float(subprocess.check_output(["/home/students/s452101/TAU/geval/geval", "-t", "dev-0"]))
print("optimTHR; geval metric: ", float(metric), "\tbest: ", best, "\tthreshold: ", min_thr)
if float(metric) > best:
best = float(metric)
best_thr = min_thr
min_thr += step
return best_thr
dataset_train = TrainDataset(x, y)
trainloader=DataLoader(dataset=dataset_train, batch_size=minibatch_size, shuffle=True)
def train_loop(i = 50, best = 0.01, threshold = 0.5):
for i in range(i):
for xb, yb_expected in trainloader:
optimizer.zero_grad()
yp = model(xb)
# debug
"""
debug_xb = pandas.DataFrame(xb.numpy())
debug_yb_expected = pandas.DataFrame(yb_expected.numpy())
"""
#debug_yp = pandas.DataFrame(yp.detach().numpy())
loss = criterion(torch.squeeze(yp), yb_expected)
"""
dev_y_pred_float_tensor = model(dev_x)
dev_y_pred_float_df = pandas.DataFrame(dev_y_pred_float_tensor.detach().numpy())
auc_score = roc_auc_score(dev_y_test, dev_y_pred_float_df)
print("auc:\t", auc_score, "\tloss:\t", loss.item())
if ((auc_score > 0.90)):
break
"""
#metric = float(subprocess.check_output(["/home/students/s452101/TAU/geval/geval", "-t", "dev-0"]))
loss.backward()
optimizer.step()
pred_save("dev-0", dev_x, threshold)
metric = float(subprocess.check_output(["/home/students/s452101/TAU/geval/geval", "-t", "dev-0"]))
print("geval metric: ", float(metric),"\tbest: ", best, "\tLoss: ", loss.item())
if float(metric) > best:
best_threshold = optim_threshold(float(torch.min(yp)))
threshold = best_threshold
best = float(metric)
pred_save("dev-0/best", dev_x, threshold)
pred_save("test-A/best", testA_x, threshold)
#4 200 ~7h
#elapsed_time = timeit.timeit(train_loop, number=1)
#print("Training time: ", elapsed_time, "seconds")
train_loop()
#saving results:
#dev0:
y_test = pandas.DataFrame(pandas.read_csv('dev-0/expected.tsv', encoding="utf-8", delimiter='\t', header=None))
dev_y_pred = pandas.DataFrame(pandas.read_csv('dev-0/out.tsv', encoding="utf-8", delimiter='\t', header=None))
score = f1_score(y_test, dev_y_pred)
print("f1_score_dev0 after training: ", score,"\nAcc: ", accuracy_score(dev_y_test, dev_y_pred),
"\nroc_auc: ", )
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
#testA:
testA_y = model(testA_x)
file=open("test-A/out.tsv","w")
file2=open("test-A/out_float.tsv","w")
for i in range(0,11061):
file2.write(str(testA_y[i].data.item()) + "\n")
if testA_y[i].data.item() > threshold:
file.write(f'{1}\n')
else:
file.write(f'{0}\n')
file.close()
file2.close()