TAU_22_sane_words_torch_nn

This commit is contained in:
ksanu 2019-12-02 14:41:07 +01:00
commit 8b4b2a5232
18 changed files with 122027 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
solution2.py
solution2_p.py

View File

@ -0,0 +1,11 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Python 3.7" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="TestRunnerService">
<option name="PROJECT_TEST_RUNNER" value="Unittests" />
</component>
</module>

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

4
.idea/misc.xml Normal file
View File

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7" project-jdk-type="Python SDK" />
</project>

8
.idea/modules.xml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/TAU_21_sane_words.iml" filepath="$PROJECT_DIR$/.idea/TAU_21_sane_words.iml" />
</modules>
</component>
</project>

6
.idea/vcs.xml Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

143
.idea/workspace.xml Normal file
View File

@ -0,0 +1,143 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ChangeListManager">
<list default="true" id="d25a65da-2ba0-4272-a0a5-c59cbecb6088" name="Default Changelist" comment="" />
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
<option name="SHOW_DIALOG" value="false" />
<option name="HIGHLIGHT_CONFLICTS" value="true" />
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
<option name="LAST_RESOLUTION" value="IGNORE" />
</component>
<component name="FileTemplateManagerImpl">
<option name="RECENT_TEMPLATES">
<list>
<option value="Python Script" />
</list>
</option>
</component>
<component name="Git.Settings">
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
</component>
<component name="ProjectId" id="1UAXhosCPbReL7U2TCbyyTVGpqs" />
<component name="ProjectLevelVcsManager" settingsEditedManually="true" />
<component name="PropertiesComponent">
<property name="last_opened_file_path" value="$PROJECT_DIR$" />
<property name="settings.editor.selected.configurable" value="com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable" />
</component>
<component name="RunDashboard">
<option name="ruleStates">
<list>
<RuleState>
<option name="name" value="ConfigurationTypeDashboardGroupingRule" />
</RuleState>
<RuleState>
<option name="name" value="StatusDashboardGroupingRule" />
</RuleState>
</list>
</option>
</component>
<component name="RunManager" selected="Python.s">
<configuration name="s" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="TAU_21_sane_words" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/s.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="solution" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="TAU_21_sane_words" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/solution.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="solution2" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="TAU_21_sane_words" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/solution2.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<recent_temporary>
<list>
<item itemvalue="Python.s" />
<item itemvalue="Python.solution2" />
<item itemvalue="Python.solution" />
</list>
</recent_temporary>
</component>
<component name="SvnConfiguration">
<configuration />
</component>
<component name="TaskManager">
<task active="true" id="Default" summary="Default task">
<changelist id="d25a65da-2ba0-4272-a0a5-c59cbecb6088" name="Default Changelist" comment="" />
<created>1574800494334</created>
<option name="number" value="Default" />
<option name="presentableId" value="Default" />
<updated>1574800494334</updated>
</task>
<servers />
</component>
<component name="Vcs.Log.Tabs.Properties">
<option name="TAB_STATES">
<map>
<entry key="MAIN">
<value>
<State />
</value>
</entry>
</map>
</option>
</component>
<component name="XDebuggerManager">
<watches-manager>
<configuration name="PythonConfigurationType">
<watch expression="dev_y" />
<watch expression="debug_yp" />
</configuration>
</watches-manager>
</component>
</project>

23
README.md Normal file
View File

@ -0,0 +1,23 @@
Sane words challenge
======================
Guess if a given word is a correct Polish word in a given domain. Additionally, you have the information on reported frequency of the word in source texts.
Each entry in training data set is of the form: __Sane (0 or 1), Domain, Word, Frequency__.
Evaluation metric is F2-score.
Directory structure
-------------------
* `README.md` — this file
* `config.txt` — configuration file
* `train/` — directory with training data
* `train/train.tsv` — train set
* `dev-0/` — directory with dev (test) data
* `dev-0/in.tsv` — input data for the dev set
* `dev-0/expected.tsv` — expected (reference) data for the dev set
* `test-A` — directory with test data
* `test-A/in.tsv` — input data for the test set
* `test-A/expected.tsv` — expected (reference) data for the test set

1
config.txt Normal file
View File

@ -0,0 +1 @@
--metric F2 --precision 4

11026
dev-0/expected.tsv Normal file

File diff suppressed because it is too large Load Diff

11026
dev-0/in.tsv Normal file

File diff suppressed because it is too large Load Diff

11026
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

11026
dev-0/out_float.tsv Normal file

File diff suppressed because it is too large Load Diff

192
s.py Normal file
View File

@ -0,0 +1,192 @@
import torch
import random
from torch import nn
from torch import optim
import pandas
import numpy as np
import re
import timeit
from sklearn.metrics import precision_score, recall_score, accuracy_score
from torch.utils.data import Dataset, DataLoader
#10 features: 4 normal + 6 from domain_onehot
model = nn.Sequential(
nn.Linear(10, 16),
nn.ReLU(),
nn.Linear(16,1),
nn.Sigmoid())
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.000001, momentum=0.8)
#optimizer = optim.Adam(model.parameters())
minibatch_size = 5
def count_polish_diacritics(x):
x_counts = []
for i, word in x.iteritems():
c = len(re.findall(r'[ąćęłńóśźż]', str(word)))
c2 = c / len(str(word))
x_counts.append(c2)
return x_counts
def count_vowels(x):
out = []
for index,row in x.iteritems():
vowel_len = len(re.findall(r'[aąeęioóuy]', str(row)))
word_len = len(str(row))
out.append(vowel_len / word_len) #RATE
return out
def Normalize(data, d = None):
if (d is None):
d = data
r = data - d.min()
return r/(d.max() - d.min())
def f1_score(y_true, y_pred):
precision = precision_score(y_true, y_pred, average='micro')
recall = recall_score(y_true, y_pred, average='micro')
F1 = 2 * (precision * recall) / (precision + recall)
return F1
#Transforms df with categorical values to One Hot format
def ToOneHot(df_col):
out = []
df_labels = pandas.unique(df_col)
l_count = len(df_labels)
for index, row in df_col.iteritems():
blank_one_hot = np.full(l_count, 0)
for i in range(0, l_count):
if df_labels[i] == row:
blank_one_hot[i] = 1
out.append(blank_one_hot)
out_df = pandas.DataFrame(out, columns=df_labels)
return out_df, df_labels
def ToOneHot_preproces(df_col, df_labels):
out = []
l_count = len(df_labels)
for index, row in df_col.iteritems():
blank_one_hot = np.full(l_count, 0)
for i in range(0, l_count):
if df_labels[i] == row:
blank_one_hot[i] = 1
out.append(blank_one_hot)
out_df = pandas.DataFrame(out, columns=df_labels)
return out_df
class TrainDataset(Dataset):
def __init__(self, X, y):
self.X = X
self.y = y
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
#Load data:
#Train
train_data = pandas.read_csv('train/train.tsv', sep='\t', names=['Sane', 'Domain', 'Word', 'Frequency'], header=None)
x1 = Normalize(torch.tensor(train_data['Frequency'], dtype=torch.float))
x2 = Normalize(torch.tensor(count_vowels(train_data['Word']), dtype=torch.float))
domain_onehot, domain_labels = ToOneHot(train_data['Domain'])
x3 = torch.tensor(domain_onehot.values, dtype=torch.float)
x4 = Normalize(torch.tensor(count_polish_diacritics(train_data['Word']),dtype=torch.float))
x5 = Normalize(torch.tensor(train_data['Word'].str.len(), dtype=torch.float))
x_temp = torch.stack((x1,x2,x4, x5),0)
x = torch.cat([x_temp.transpose(1,0), x3], 1)
#debug_x = pandas.DataFrame(x.numpy())
y = torch.tensor(train_data['Sane'], dtype=torch.float)
#dev0
dev_data = pandas.read_csv('dev-0/in.tsv', sep='\t', names=['Domain', 'Word', 'Frequency'], header=None)
dev_x1 = Normalize(torch.tensor(dev_data['Frequency'], dtype=torch.float), x1)
dev_x2 = Normalize(torch.tensor(count_vowels(dev_data['Word']), dtype=torch.float), x2)
dev_x3 = torch.tensor(ToOneHot_preproces(dev_data['Domain'], domain_labels).values, dtype=torch.float)
dev_x4 = Normalize(torch.tensor(count_polish_diacritics(dev_data['Word']), dtype=torch.float), x4)
dev_x5 = Normalize(torch.tensor(dev_data['Word'].str.len(), dtype=torch.float), x5)
dev_x_temp = torch.stack((dev_x1, dev_x2, dev_x4, dev_x5), 0)
dev_x = torch.cat([dev_x_temp.transpose(1,0), dev_x3], 1)
#test-A
testA_data = pandas.read_csv('test-A/in.tsv', sep='\t', names=['Domain', 'Word', 'Frequency'], header=None)
testA_x1 = Normalize(torch.tensor(testA_data['Frequency'], dtype=torch.float), x1)
testA_x2 = Normalize(torch.tensor(count_vowels(testA_data['Word']), dtype=torch.float), x2)
testA_x3 = torch.tensor(ToOneHot_preproces(testA_data['Domain'], domain_labels).values, dtype=torch.float)
testA_x4 = Normalize(torch.tensor(count_polish_diacritics(testA_data['Word']),dtype=torch.float), x4)
testA_x5 = Normalize(torch.tensor(testA_data['Word'].str.len(), dtype=torch.float), x5)
testA_x_temp = torch.stack((testA_x1,testA_x2,testA_x4, testA_x5),0)
testA_x = torch.cat([testA_x_temp.transpose(1,0), testA_x3], 1)
dataset_train = TrainDataset(x, y)
trainloader=DataLoader(dataset=dataset_train,batch_size=5)
def train_loop(i = 4200): #~7h
for i in range(i):
for xb, yb_expected in trainloader: # for each iteration a bach of samples is taken from loader(currently batch_size=5)
yp = model(xb)
# debug
"""
debug_xb = pandas.DataFrame(xb.numpy())
debug_yb_expected = pandas.DataFrame(yb_expected.numpy())
debug_yp = pandas.DataFrame(yp.detach().numpy())
"""
loss = criterion(yp, yb_expected)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(loss)
#4 200
elapsed_time = timeit.timeit(train_loop, number=1)
print("Training time: ", elapsed_time, "seconds")
#saving results:
#dev0:
dev_y_test = pandas.DataFrame(pandas.read_csv('dev-0/expected.tsv', encoding="utf-8", delimiter='\t', header=None))
dev_y = model(dev_x)
file=open("dev-0/out.tsv","w")
file2=open("dev-0/out_float.tsv","w")
for i in range(0,11026):
file2.write(str(dev_y[i].data.item()) + "\n")
var = dev_y[i].data.item()
if var < 0.5:
file.write("0" + "\n")
else:
file.write("1" + "\n")
file.close()
file2.close()
y_test = pandas.DataFrame(pandas.read_csv('dev-0/expected.tsv', encoding="utf-8", delimiter='\t', header=None))
dev_y_pred = pandas.DataFrame(pandas.read_csv('dev-0/out.tsv', encoding="utf-8", delimiter='\t', header=None))
score = f1_score(y_test, dev_y_pred)
print("f1_score_dev0 after training: ", score,"\nAcc: ", accuracy_score(dev_y_test, dev_y_pred))
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
#testA:
testA_y = model(testA_x)
file=open("test-A/out.tsv","w")
file2=open("test-A/out_float.tsv","w")
for i in range(0,11061):
file2.write(str(testA_y[i].data.item()) + "\n")
if testA_y[i].data.item() < 0.5:
file.write("0" + "\n")
else:
file.write("1" + "\n")
file.close()
file2.close()

11061
test-A/in.tsv Normal file

File diff suppressed because it is too large Load Diff

11061
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff

11061
test-A/out_float.tsv Normal file

File diff suppressed because it is too large Load Diff

44344
train/train.tsv Normal file

File diff suppressed because it is too large Load Diff