{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Prepare test set" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import scipy.sparse as sparse\n", "from collections import defaultdict\n", "from itertools import chain\n", "import random\n", "from tqdm import tqdm\n", "\n", "# In evaluation we do not load train set - it is not needed\n", "test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n", "test.columns=['user', 'item', 'rating', 'timestamp']\n", "\n", "test['user_code'] = test['user'].astype(\"category\").cat.codes\n", "test['item_code'] = test['item'].astype(\"category\").cat.codes\n", "\n", "user_code_id = dict(enumerate(test['user'].astype(\"category\").cat.categories))\n", "user_id_code = dict((v, k) for k, v in user_code_id.items())\n", "item_code_id = dict(enumerate(test['item'].astype(\"category\").cat.categories))\n", "item_id_code = dict((v, k) for k, v in item_code_id.items())\n", "\n", "test_ui = sparse.csr_matrix((test['rating'], (test['user_code'], test['item_code'])))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Estimations metrics" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "estimations_df=pd.read_csv('Recommendations generated/ml-100k/Ready_Baseline_estimations.csv', header=None)\n", "estimations_df.columns=['user', 'item' ,'score']\n", "\n", "estimations_df['user_code']=[user_id_code[user] for user in estimations_df['user']]\n", "estimations_df['item_code']=[item_id_code[item] for item in estimations_df['item']]\n", "estimations=sparse.csr_matrix((estimations_df['score'], (estimations_df['user_code'], estimations_df['item_code'])), shape=test_ui.shape)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def estimations_metrics(test_ui, estimations):\n", " result=[]\n", "\n", " RMSE=(np.sum((estimations.data-test_ui.data)**2)/estimations.nnz)**(1/2)\n", " result.append(['RMSE', RMSE])\n", "\n", " MAE=np.sum(abs(estimations.data-test_ui.data))/estimations.nnz\n", " result.append(['MAE', MAE])\n", " \n", " df_result=(pd.DataFrame(list(zip(*result))[1])).T\n", " df_result.columns=list(zip(*result))[0]\n", " return df_result" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
RMSEMAE
00.9494590.752487
\n", "
" ], "text/plain": [ " RMSE MAE\n", "0 0.949459 0.752487" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# in case of error (in the laboratories) you might have to switch to the other version of pandas\n", "# try !pip3 install pandas=='1.0.3' (or pip if you use python 2) and restart the kernel\n", "\n", "estimations_metrics(test_ui, estimations)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ranking metrics" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[663, 475, 62, ..., 472, 269, 503],\n", " [ 48, 313, 475, ..., 591, 175, 466],\n", " [351, 313, 475, ..., 591, 175, 466],\n", " ...,\n", " [259, 313, 475, ..., 11, 591, 175],\n", " [ 33, 313, 475, ..., 11, 591, 175],\n", " [ 77, 313, 475, ..., 11, 591, 175]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "reco = np.loadtxt('Recommendations generated/ml-100k/Ready_Baseline_reco.csv', delimiter=',')\n", "# Let's ignore scores - they are not used in evaluation: \n", "users=reco[:,:1]\n", "items=reco[:,1::2]\n", "# Let's use inner ids instead of real ones\n", "users=np.vectorize(lambda x: user_id_code.setdefault(x, -1))(users)\n", "items=np.vectorize(lambda x: item_id_code.setdefault(x, -1))(items) # maybe items we recommend are not in test set\n", "# Let's put them into one array\n", "reco=np.concatenate((users, items), axis=1)\n", "reco" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def ranking_metrics(test_ui, reco, super_reactions=[], topK=10):\n", " \n", " nb_items=test_ui.shape[1]\n", " relevant_users, super_relevant_users, prec, rec, F_1, F_05, prec_super, rec_super, ndcg, mAP, MRR, LAUC, HR=\\\n", " 0,0,0,0,0,0,0,0,0,0,0,0,0\n", " \n", " cg = (1.0 / np.log2(np.arange(2, topK + 2)))\n", " cg_sum = np.cumsum(cg)\n", " \n", " for (nb_user, user) in tqdm(enumerate(reco[:,0])):\n", " u_rated_items=test_ui.indices[test_ui.indptr[user]:test_ui.indptr[user+1]]\n", " nb_u_rated_items=len(u_rated_items)\n", " if nb_u_rated_items>0: # skip users with no items in test set (still possible that there will be no super items)\n", " relevant_users+=1\n", " \n", " u_super_items=u_rated_items[np.vectorize(lambda x: x in super_reactions)\\\n", " (test_ui.data[test_ui.indptr[user]:test_ui.indptr[user+1]])]\n", " # more natural seems u_super_items=[item for item in u_rated_items if test_ui[user,item] in super_reactions]\n", " # but accesing test_ui[user,item] is expensive -we should avoid doing it\n", " if len(u_super_items)>0:\n", " super_relevant_users+=1\n", " \n", " user_successes=np.zeros(topK)\n", " nb_user_successes=0\n", " user_super_successes=np.zeros(topK)\n", " nb_user_super_successes=0\n", " \n", " # evaluation\n", " for (item_position,item) in enumerate(reco[nb_user,1:topK+1]):\n", " if item in u_rated_items:\n", " user_successes[item_position]=1\n", " nb_user_successes+=1\n", " if item in u_super_items:\n", " user_super_successes[item_position]=1\n", " nb_user_super_successes+=1\n", " \n", " prec_u=nb_user_successes/topK \n", " prec+=prec_u\n", " \n", " rec_u=nb_user_successes/nb_u_rated_items\n", " rec+=rec_u\n", " \n", " F_1+=2*(prec_u*rec_u)/(prec_u+rec_u) if prec_u+rec_u>0 else 0\n", " F_05+=(0.5**2+1)*(prec_u*rec_u)/(0.5**2*prec_u+rec_u) if prec_u+rec_u>0 else 0\n", " \n", " prec_super+=nb_user_super_successes/topK\n", " rec_super+=nb_user_super_successes/max(len(u_super_items),1) # to set 0 if no super items\n", " ndcg+=np.dot(user_successes,cg)/cg_sum[min(topK, nb_u_rated_items)-1]\n", " \n", " cumsum_successes=np.cumsum(user_successes)\n", " mAP+=np.dot(cumsum_successes/np.arange(1,topK+1), user_successes)/min(topK, nb_u_rated_items)\n", " MRR+=1/(user_successes.nonzero()[0][0]+1) if user_successes.nonzero()[0].size>0 else 0\n", " LAUC+=(np.dot(cumsum_successes, 1-user_successes)+\\\n", " (nb_user_successes+nb_u_rated_items)/2*((nb_items-nb_u_rated_items)-(topK-nb_user_successes)))/\\\n", " ((nb_items-nb_u_rated_items)*nb_u_rated_items)\n", " \n", " HR+=nb_user_successes>0\n", " \n", " \n", " result=[]\n", " result.append(('precision', prec/relevant_users))\n", " result.append(('recall', rec/relevant_users))\n", " result.append(('F_1', F_1/relevant_users))\n", " result.append(('F_05', F_05/relevant_users))\n", " result.append(('precision_super', prec_super/super_relevant_users))\n", " result.append(('recall_super', rec_super/super_relevant_users))\n", " result.append(('NDCG', ndcg/relevant_users))\n", " result.append(('mAP', mAP/relevant_users))\n", " result.append(('MRR', MRR/relevant_users))\n", " result.append(('LAUC', LAUC/relevant_users))\n", " result.append(('HR', HR/relevant_users))\n", "\n", " df_result=(pd.DataFrame(list(zip(*result))[1])).T\n", " df_result.columns=list(zip(*result))[0]\n", " return df_result" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "943it [00:00, 11673.30it/s]\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
precisionrecallF_1F_05precision_superrecall_superNDCGmAPMRRLAUCHR
00.091410.0376520.046030.0612860.0796140.0564630.0959570.0431780.1981930.5155010.437964
\n", "
" ], "text/plain": [ " precision recall F_1 F_05 precision_super recall_super \\\n", "0 0.09141 0.037652 0.04603 0.061286 0.079614 0.056463 \n", "\n", " NDCG mAP MRR LAUC HR \n", "0 0.095957 0.043178 0.198193 0.515501 0.437964 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ranking_metrics(test_ui, reco, super_reactions=[4,5], topK=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Diversity metrics" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def diversity_metrics(test_ui, reco, topK=10):\n", " \n", " frequencies=defaultdict(int)\n", " \n", " # let's assign 0 to all items in test set\n", " for item in list(set(test_ui.indices)):\n", " frequencies[item]=0\n", " \n", " # counting frequencies\n", " for item in reco[:,1:].flat:\n", " frequencies[item]+=1\n", " \n", " nb_reco_outside_test=frequencies[-1]\n", " del frequencies[-1]\n", " \n", " frequencies=np.array(list(frequencies.values()))\n", " \n", " nb_rec_items=len(frequencies[frequencies>0])\n", " nb_reco_inside_test=np.sum(frequencies)\n", " \n", " frequencies=frequencies/np.sum(frequencies)\n", " frequencies=np.sort(frequencies)\n", " \n", " with np.errstate(divide='ignore'): # let's put zeros put items with 0 frequency and ignore division warning\n", " log_frequencies=np.nan_to_num(np.log(frequencies), posinf=0, neginf=0)\n", " \n", " result=[]\n", " result.append(('Reco in test', nb_reco_inside_test/(nb_reco_inside_test+nb_reco_outside_test)))\n", " result.append(('Test coverage', nb_rec_items/test_ui.shape[1]))\n", " result.append(('Shannon', -np.dot(frequencies, log_frequencies)))\n", " result.append(('Gini', np.dot(frequencies, np.arange(1-len(frequencies), len(frequencies), 2))/(len(frequencies)-1)))\n", " \n", " df_result=(pd.DataFrame(list(zip(*result))[1])).T\n", " df_result.columns=list(zip(*result))[0]\n", " return df_result" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Reco in testTest coverageShannonGini
01.00.0339112.8365130.991139
\n", "
" ], "text/plain": [ " Reco in test Test coverage Shannon Gini\n", "0 1.0 0.033911 2.836513 0.991139" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# in case of errors try !pip3 install numpy==1.18.4 (or pip if you use python 2) and restart the kernel\n", "\n", "import evaluation_measures as ev\n", "import imp\n", "imp.reload(ev)\n", "\n", "x=diversity_metrics(test_ui, reco, topK=10)\n", "x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# To be used in other notebooks" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "943it [00:00, 10629.42it/s]\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
RMSEMAEprecisionrecallF_1F_05precision_superrecall_superNDCGmAPMRRLAUCHRReco in testTest coverageShannonGini
00.9494590.7524870.091410.0376520.046030.0612860.0796140.0564630.0959570.0431780.1981930.5155010.4379641.00.0339112.8365130.991139
\n", "
" ], "text/plain": [ " RMSE MAE precision recall F_1 F_05 \\\n", "0 0.949459 0.752487 0.09141 0.037652 0.04603 0.061286 \n", "\n", " precision_super recall_super NDCG mAP MRR LAUC \\\n", "0 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 \n", "\n", " HR Reco in test Test coverage Shannon Gini \n", "0 0.437964 1.0 0.033911 2.836513 0.991139 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import evaluation_measures as ev\n", "import imp\n", "imp.reload(ev)\n", "\n", "estimations_df=pd.read_csv('Recommendations generated/ml-100k/Ready_Baseline_estimations.csv', header=None)\n", "reco=np.loadtxt('Recommendations generated/ml-100k/Ready_Baseline_reco.csv', delimiter=',')\n", "\n", "ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None),\n", " estimations_df=estimations_df, \n", " reco=reco,\n", " super_reactions=[4,5])\n", "#also you can just type ev.evaluate_all(estimations_df, reco) - I put above values as default" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "943it [00:00, 11391.79it/s]\n", "943it [00:00, 10740.34it/s]\n", "943it [00:00, 11967.55it/s]\n", "943it [00:00, 12152.51it/s]\n", "943it [00:00, 12581.48it/s]\n", "943it [00:00, 12607.27it/s]\n", "943it [00:00, 12116.29it/s]\n" ] } ], "source": [ "import evaluation_measures as ev\n", "import imp\n", "imp.reload(ev)\n", "\n", "dir_path=\"Recommendations generated/ml-100k/\"\n", "super_reactions=[4,5]\n", "test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n", "\n", "df=ev.evaluate_all(test, dir_path, super_reactions)\n", "#also you can just type ev.evaluate_all() - I put above values as default" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ModelRMSEMAEprecisionrecallF_1F_05precision_superrecall_super
0Self_TopPop2.5082582.2179090.1888650.1169190.1187320.1415840.1304720.137473
0Ready_Baseline0.9494590.7524870.0914100.0376520.0460300.0612860.0796140.056463
0Self_GlobalAvg1.1257600.9435340.0611880.0259680.0313830.0413430.0405580.032107
0Self_TopRated1.2440261.0004000.0611880.0259680.0313830.0413430.0405580.032107
0Ready_Random1.5189621.2166590.0469780.0199050.0232810.0309510.0293990.019829
0Self_BaselineIU0.9581360.7540510.0009540.0001880.0002980.0004810.0006440.000223
0Self_BaselineUI0.9675850.7627400.0009540.0001700.0002780.0004630.0006440.000189
\n", "
" ], "text/plain": [ " Model RMSE MAE precision recall F_1 \\\n", "0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n", "0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n", "0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 \n", "0 Self_TopRated 1.244026 1.000400 0.061188 0.025968 0.031383 \n", "0 Ready_Random 1.518962 1.216659 0.046978 0.019905 0.023281 \n", "0 Self_BaselineIU 0.958136 0.754051 0.000954 0.000188 0.000298 \n", "0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n", "\n", " F_05 precision_super recall_super \n", "0 0.141584 0.130472 0.137473 \n", "0 0.061286 0.079614 0.056463 \n", "0 0.041343 0.040558 0.032107 \n", "0 0.041343 0.040558 0.032107 \n", "0 0.030951 0.029399 0.019829 \n", "0 0.000481 0.000644 0.000223 \n", "0 0.000463 0.000644 0.000189 " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[:,:9]" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ModelNDCGmAPMRRLAUCHRReco in testTest coverageShannonGini
0Self_TopPop0.2146510.1117070.4009390.5555460.7656421.0000000.0389613.1590790.987317
0Ready_Baseline0.0959570.0431780.1981930.5155010.4379641.0000000.0339112.8365130.991139
0Self_GlobalAvg0.0676950.0274700.1711870.5095460.3849421.0000000.0259742.7117720.992003
0Self_TopRated0.0676950.0274700.1711870.5095460.3849421.0000000.0259742.7117720.992003
0Ready_Random0.0520660.0211010.1292830.5064630.3149520.9879110.1847045.1102690.905724
0Self_BaselineIU0.0010430.0003350.0033480.4964330.0095440.6990460.0050511.9459100.995669
0Self_BaselineUI0.0007520.0001680.0016770.4964240.0095440.6005300.0050511.8031260.996380
\n", "
" ], "text/plain": [ " Model NDCG mAP MRR LAUC HR \\\n", "0 Self_TopPop 0.214651 0.111707 0.400939 0.555546 0.765642 \n", "0 Ready_Baseline 0.095957 0.043178 0.198193 0.515501 0.437964 \n", "0 Self_GlobalAvg 0.067695 0.027470 0.171187 0.509546 0.384942 \n", "0 Self_TopRated 0.067695 0.027470 0.171187 0.509546 0.384942 \n", "0 Ready_Random 0.052066 0.021101 0.129283 0.506463 0.314952 \n", "0 Self_BaselineIU 0.001043 0.000335 0.003348 0.496433 0.009544 \n", "0 Self_BaselineUI 0.000752 0.000168 0.001677 0.496424 0.009544 \n", "\n", " Reco in test Test coverage Shannon Gini \n", "0 1.000000 0.038961 3.159079 0.987317 \n", "0 1.000000 0.033911 2.836513 0.991139 \n", "0 1.000000 0.025974 2.711772 0.992003 \n", "0 1.000000 0.025974 2.711772 0.992003 \n", "0 0.987911 0.184704 5.110269 0.905724 \n", "0 0.699046 0.005051 1.945910 0.995669 \n", "0 0.600530 0.005051 1.803126 0.996380 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[:,np.append(0,np.arange(9, df.shape[1]))]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Check metrics on toy dataset" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "3it [00:00, 3005.95it/s]\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ModelRMSEMAEprecisionrecallF_1F_05precision_superrecall_superNDCGmAPMRRLAUCHRReco in testTest coverageShannonGini
0Self_BaselineUI1.6124521.40.4444440.8888890.5555560.4786320.3333330.750.6769070.5740740.6111110.6388891.00.8888890.81.3862940.25
\n", "
" ], "text/plain": [ " Model RMSE MAE precision recall F_1 F_05 \\\n", "0 Self_BaselineUI 1.612452 1.4 0.444444 0.888889 0.555556 0.478632 \n", "\n", " precision_super recall_super NDCG mAP MRR LAUC HR \\\n", "0 0.333333 0.75 0.676907 0.574074 0.611111 0.638889 1.0 \n", "\n", " Reco in test Test coverage Shannon Gini \n", "0 0.888889 0.8 1.386294 0.25 " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Training data:\n" ] }, { "data": { "text/plain": [ "matrix([[3, 4, 0, 0, 5, 0, 0, 4],\n", " [0, 1, 2, 3, 0, 0, 0, 0],\n", " [0, 0, 0, 5, 0, 3, 4, 0]], dtype=int64)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Test data:\n" ] }, { "data": { "text/plain": [ "matrix([[0, 0, 0, 0, 0, 0, 3, 0],\n", " [0, 0, 0, 0, 5, 0, 0, 0],\n", " [5, 0, 4, 0, 0, 0, 0, 2]], dtype=int64)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Recommendations:\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123456
00305.0204.0604.0
110403.0602.0702.0
220405.0204.0704.0
\n", "
" ], "text/plain": [ " 0 1 2 3 4 5 6\n", "0 0 30 5.0 20 4.0 60 4.0\n", "1 10 40 3.0 60 2.0 70 2.0\n", "2 20 40 5.0 20 4.0 70 4.0" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Estimations:\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
useritemest_score
00604.0
110403.0
22003.0
320204.0
420704.0
\n", "
" ], "text/plain": [ " user item est_score\n", "0 0 60 4.0\n", "1 10 40 3.0\n", "2 20 0 3.0\n", "3 20 20 4.0\n", "4 20 70 4.0" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import evaluation_measures as ev\n", "import imp\n", "import helpers\n", "imp.reload(ev)\n", "\n", "dir_path=\"Recommendations generated/toy-example/\"\n", "super_reactions=[4,5]\n", "test=pd.read_csv('./Datasets/toy-example/test.csv', sep='\\t', header=None)\n", "\n", "display(ev.evaluate_all(test, dir_path, super_reactions, topK=3))\n", "#also you can just type ev.evaluate_all() - I put above values as default\n", "\n", "toy_train_read=pd.read_csv('./Datasets/toy-example/train.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n", "toy_test_read=pd.read_csv('./Datasets/toy-example/test.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n", "reco=pd.read_csv('Recommendations generated/toy-example/Self_BaselineUI_reco.csv', header=None)\n", "estimations=pd.read_csv('Recommendations generated/toy-example/Self_BaselineUI_estimations.csv', names=['user', 'item', 'est_score'])\n", "toy_train_ui, toy_test_ui, toy_user_code_id, toy_user_id_code, \\\n", "toy_item_code_id, toy_item_id_code = helpers.data_to_csr(toy_train_read, toy_test_read)\n", "\n", "print('Training data:')\n", "display(toy_train_ui.todense())\n", "\n", "print('Test data:')\n", "display(toy_test_ui.todense())\n", "\n", "print('Recommendations:')\n", "display(reco)\n", "\n", "print('Estimations:')\n", "display(estimations)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Sample recommendations" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Here is what user rated high:\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
userratingtitlegenres
245781634One Flew Over the Cuckoo's Nest (1975)Drama
127601634Dances with Wolves (1990)Adventure, Drama, Western
438661634Pulp Fiction (1994)Crime, Drama
373311634Contact (1997)Drama, Sci-Fi
360571634Silence of the Lambs, The (1991)Drama, Thriller
318381634Shawshank Redemption, The (1994)Drama
673761634Good Will Hunting (1997)Drama
217141633In & Out (1997)Comedy
221531633Groundhog Day (1993)Comedy, Romance
191551633Scream (1996)Horror, Thriller
264571633Air Force One (1997)Action, Thriller
179241633English Patient, The (1996)Drama, Romance, War
164101633Apollo 13 (1995)Action, Drama, Thriller
388491633Full Monty, The (1997)Comedy
39921633G.I. Jane (1997)Action, Drama, War
\n", "
" ], "text/plain": [ " user rating title \\\n", "24578 163 4 One Flew Over the Cuckoo's Nest (1975) \n", "12760 163 4 Dances with Wolves (1990) \n", "43866 163 4 Pulp Fiction (1994) \n", "37331 163 4 Contact (1997) \n", "36057 163 4 Silence of the Lambs, The (1991) \n", "31838 163 4 Shawshank Redemption, The (1994) \n", "67376 163 4 Good Will Hunting (1997) \n", "21714 163 3 In & Out (1997) \n", "22153 163 3 Groundhog Day (1993) \n", "19155 163 3 Scream (1996) \n", "26457 163 3 Air Force One (1997) \n", "17924 163 3 English Patient, The (1996) \n", "16410 163 3 Apollo 13 (1995) \n", "38849 163 3 Full Monty, The (1997) \n", "3992 163 3 G.I. Jane (1997) \n", "\n", " genres \n", "24578 Drama \n", "12760 Adventure, Drama, Western \n", "43866 Crime, Drama \n", "37331 Drama, Sci-Fi \n", "36057 Drama, Thriller \n", "31838 Drama \n", "67376 Drama \n", "21714 Comedy \n", "22153 Comedy, Romance \n", "19155 Horror, Thriller \n", "26457 Action, Thriller \n", "17924 Drama, Romance, War \n", "16410 Action, Drama, Thriller \n", "38849 Comedy \n", "3992 Action, Drama, War " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Here is what we recommend:\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
userrec_nbtitlegenres
161163.01Great Day in Harlem, A (1994)Documentary
1104163.02Tough and Deadly (1995)Action, Drama, Thriller
2046163.03Aiqing wansui (1994)Drama
2988163.04Delta of Venus (1994)Drama
3930163.05Someone Else's America (1995)Drama
4872163.06Saint of Fort Washington, The (1993)Drama
5813163.07Celestial Clockwork (1994)Comedy
6756163.08Some Mother's Son (1996)Drama
8650163.09Maya Lin: A Strong Clear Vision (1994)Documentary
7696163.010Prefontaine (1997)Drama
\n", "
" ], "text/plain": [ " user rec_nb title \\\n", "161 163.0 1 Great Day in Harlem, A (1994) \n", "1104 163.0 2 Tough and Deadly (1995) \n", "2046 163.0 3 Aiqing wansui (1994) \n", "2988 163.0 4 Delta of Venus (1994) \n", "3930 163.0 5 Someone Else's America (1995) \n", "4872 163.0 6 Saint of Fort Washington, The (1993) \n", "5813 163.0 7 Celestial Clockwork (1994) \n", "6756 163.0 8 Some Mother's Son (1996) \n", "8650 163.0 9 Maya Lin: A Strong Clear Vision (1994) \n", "7696 163.0 10 Prefontaine (1997) \n", "\n", " genres \n", "161 Documentary \n", "1104 Action, Drama, Thriller \n", "2046 Drama \n", "2988 Drama \n", "3930 Drama \n", "4872 Drama \n", "5813 Comedy \n", "6756 Drama \n", "8650 Documentary \n", "7696 Drama " ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\\t', header=None, names=['user', 'item', 'rating', 'timestamp'])\n", "items=pd.read_csv('./Datasets/ml-100k/movies.csv')\n", "\n", "user=random.choice(list(set(train['user'])))\n", "\n", "train_content=pd.merge(train, items, left_on='item', right_on='id')\n", "\n", "print('Here is what user rated high:')\n", "display(train_content[train_content['user']==user][['user', 'rating', 'title', 'genres']]\\\n", " .sort_values(by='rating', ascending=False)[:15])\n", "\n", "reco = np.loadtxt('Recommendations generated/ml-100k/Self_BaselineUI_reco.csv', delimiter=',')\n", "items=pd.read_csv('./Datasets/ml-100k/movies.csv')\n", "\n", "# Let's ignore scores - they are not used in evaluation: \n", "reco_users=reco[:,:1]\n", "reco_items=reco[:,1::2]\n", "# Let's put them into one array\n", "reco=np.concatenate((reco_users, reco_items), axis=1)\n", "\n", "# Let's rebuild it user-item dataframe\n", "recommended=[]\n", "for row in reco:\n", " for rec_nb, entry in enumerate(row[1:]):\n", " recommended.append((row[0], rec_nb+1, entry))\n", "recommended=pd.DataFrame(recommended, columns=['user','rec_nb', 'item'])\n", "\n", "recommended_content=pd.merge(recommended, items, left_on='item', right_on='id')\n", "\n", "print('Here is what we recommend:')\n", "recommended_content[recommended_content['user']==user][['user', 'rec_nb', 'title', 'genres']].sort_values(by='rec_nb')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# project task 3: implement some other evaluation measure" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# it may be your idea, modification of what we have already implemented \n", "# (for example Hit2 rate which would count as a success users whoreceived at least 2 relevant recommendations) \n", "# or something well-known\n", "# expected output: modification of evaluation_measures.py such that evaluate_all will also display your measure" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "943it [00:00, 11530.77it/s]\n", "943it [00:00, 11386.61it/s]\n", "943it [00:00, 12285.65it/s]\n", "943it [00:00, 11963.28it/s]\n", "943it [00:00, 12440.68it/s]\n", "943it [00:00, 11968.68it/s]\n", "943it [00:00, 11530.37it/s]\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ModelRMSEMAEprecisionrecallF_1F_05precision_superrecall_superNDCGmAPMRRLAUCHRReco in testTest coverageShannonGini
0Self_TopPop2.5082582.2179090.1888650.1169190.1187320.1415840.1304720.1374730.2146510.1117070.4009390.5555460.7656421.0000000.0389613.1590790.987317
0Ready_Baseline0.9494590.7524870.0914100.0376520.0460300.0612860.0796140.0564630.0959570.0431780.1981930.5155010.4379641.0000000.0339112.8365130.991139
0Self_GlobalAvg1.1257600.9435340.0611880.0259680.0313830.0413430.0405580.0321070.0676950.0274700.1711870.5095460.3849421.0000000.0259742.7117720.992003
0Self_TopRated1.2440261.0004000.0611880.0259680.0313830.0413430.0405580.0321070.0676950.0274700.1711870.5095460.3849421.0000000.0259742.7117720.992003
0Ready_Random1.5189621.2166590.0469780.0199050.0232810.0309510.0293990.0198290.0520660.0211010.1292830.5064630.3149520.9879110.1847045.1102690.905724
0Self_BaselineIU0.9581360.7540510.0009540.0001880.0002980.0004810.0006440.0002230.0010430.0003350.0033480.4964330.0095440.6990460.0050511.9459100.995669
0Self_BaselineUI0.9675850.7627400.0009540.0001700.0002780.0004630.0006440.0001890.0007520.0001680.0016770.4964240.0095440.6005300.0050511.8031260.996380
\n", "
" ], "text/plain": [ " Model RMSE MAE precision recall F_1 \\\n", "0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n", "0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n", "0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 \n", "0 Self_TopRated 1.244026 1.000400 0.061188 0.025968 0.031383 \n", "0 Ready_Random 1.518962 1.216659 0.046978 0.019905 0.023281 \n", "0 Self_BaselineIU 0.958136 0.754051 0.000954 0.000188 0.000298 \n", "0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n", "\n", " F_05 precision_super recall_super NDCG mAP MRR \\\n", "0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n", "0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n", "0 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 \n", "0 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 \n", "0 0.030951 0.029399 0.019829 0.052066 0.021101 0.129283 \n", "0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n", "0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n", "\n", " LAUC HR Reco in test Test coverage Shannon Gini \n", "0 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317 \n", "0 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139 \n", "0 0.509546 0.384942 1.000000 0.025974 2.711772 0.992003 \n", "0 0.509546 0.384942 1.000000 0.025974 2.711772 0.992003 \n", "0 0.506463 0.314952 0.987911 0.184704 5.110269 0.905724 \n", "0 0.496433 0.009544 0.699046 0.005051 1.945910 0.995669 \n", "0 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380 " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dir_path=\"Recommendations generated/ml-100k/\"\n", "super_reactions=[4,5]\n", "test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\\t', header=None)\n", "\n", "ev.evaluate_all(test, dir_path, super_reactions)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }