
Practical examples
Recommender system - definition and problems

Content-based and collaborative filtering models
Implicit and explicit datasets

Netflix Prize Competition
Python implementation

References

Part 1: Introduction and baseline

Robert Kwieciński

OLX Group and Adam Mickiewicz University

May 22, 2020

Robert Kwieciński Part 1: Introduction and baseline

Passing the workshops

Students will be asked to do 7 tasks which they can complete during
the workshops or finish later.

All solutions should be sent to r.kwiecinskipl@gmail.com with
[MLRS] in the title.
Preferable form is a link to the repository on git.wmi.amu.edu.pl.
Please remember to give me the access (robkw).

Each correctly solved task is worth 1 point. In case of mistakes 0,
0.5 or 1 point will be given.

Grade from this part of workshops is:

3 - for 3 points
3.5 - for 3.5 points
4 - for 4 points
4.5 - for 4.5 points
5 - for 5 and more points

The deadline is 14.06.

Examples of recommender systems

Some examples:

movie recommendations (Netflix),

friends suggestions (Facebook, LinkedIn),

products recommendations (Amazon),

job recommendations (OLX),

playlists building (Spotify),

recipe recommendations.

Business examples

Netflix

75% of movies watched on Netflix came from recommendations. Netflix
said that they save yearly about 1 billion dollars thanks to
recommendations.

Amazon

Changes in recommender system in 2016 were crucial for 29% increase in
sale.
Amazon credits recommender systems with 35% of their total revenue.

Source: https://sigmoidal.io/recommender-systems-recommendation-engine/

https://sigmoidal.io/recommender-systems-recommendation-engine/

Properties of a good recommender system

It strongly depends on the use case. Some examples are:

scalability,

fast updating (after each rating, user/item profile change),

recommending new users/items,

good predictions.

Typical problems in recommender systems

sparsity (sometimes more than 99,99% unknown (item, user) pairs),

long-tail (most of the items have a small number of ratings),

cold-start (new items/users),

changing preferences (over day/week, after user already bought
something),

attack resistance.

Recommender systems - what is it?

Recommender system should suggest users’ items which they will like.
Suppose we have M users, N items and matrix R ∈ RM×N :

R =


r1,1 ? r1,3 . . . r1,M
r2,1 r2,2 ? . . . ?
? r3,2 ? . . . r2,M
...

...
...

. . .
...

rM,1 ? rM,2
. . . rM,N

,

where ru,i denotes the preference of user u to item i . The most of entries
ru,i are unknown, because most of the users have not rated most of the
items.
Crucial part of the recommendation problem is to estimate missing
entries of the matrix R. Namely, predicts rating r̂u,i of ru,i using
information about previous ratings, items’ and users’ properties.

Approaches

Most commonly we distinguish:

Content-based filtering - we use some similarity measures of the
items based on their attributes. Usually we use given user’s ratings.
In case when we do not use any ratings we call the system
knowledge-based.

Collaborative filtering - we use some measure of similarity based
on the ratings (for example we recommend items which similar users
already liked).

Hybrid - when we mix both of these approaches.

Difference between collaborative and content-based
filtering

Sample content-based approach

Let R(u, i) be the set of k movies which are already rated by user u and
have the greatest number of common actors with movie i .
Predict a rating r̂u,i as

r̂u,i =
1

k

∑
t∈R(u,i)

ru,t .

Sample collaborative approach

Let R(u, i) be the set of k movies which are already rated by user u and
have the greatest number of users who rated movie i and given
movie.

Content-based filtering

Content-based filtering

Show me more items similar to what I have liked.

Pros:

no cold-start problem for items,

no risk of recommending totally irrelevant items.

Cons:

knowledge about items needed,

cold-start problem for users (if the system is not knowledge-based),

no surprises.

Collaborative filtering

Collaborative filtering

Show me items based on the other users’ ratings.

Memory based - we need to go through all ratings in memory to
make predictions. It is sometimes called neighborhood based
approach. There are two main conceptions:

user-based - looking for similar users (”show me items liked by users
similar to me”),
item-based - looking for similar items (”show me items which are
rated similar to items I have rated high”).

Model based - we do not store everything in memory, but we have
some model (Matrix Factorization, Restricted Boltzmann Machine).

Hybrid.

Model-based models usually have many parameters, whereas memory
based models might have only hyperparameters.

Implicit and explicit datasets

Usually different models are used depending on type of feedback from
users.

Explicit feedback

Explicit feedback - user directly specify his preference towards the
product by liking/disliking or giving 1-5 stars.

Implicit feedback

Implicit feedback - users preference are not directly specified, but shown
by purchase/visiting the site/reading longer than x minutes etc.

In implicit case:

usually lack of negative feedback,

much more data,

noise (clicking accidently),

assumption that user probably does not like unseen items,

different evaluation measures.

Implicit and explicit datasets

Usually different models are used depending on type of feedback from
users.

Explicit feedback

Explicit feedback - user directly specify his preference towards the
product by liking/disliking or giving 1-5 stars.

Implicit feedback

Implicit feedback - users preference are not directly specified, but shown
by purchase/visiting the site/reading longer than x minutes etc.

In implicit case:

usually lack of negative feedback,

much more data,

noise (clicking accidently),

assumption that user probably does not like unseen items,

different evaluation measures.

Netflix Prize Competition

Problem

Improve RMSE of prediction of users’ ratings on movies.

Prize

1 million dollars for improvement by 10%.

Training set

100 480 507 ratings (from 1 to 5) of 17 770 movies by 480 189
users (user id, movie id, rating, date)

Information about movies (movie id, date of release, title)

Netflix Prize Competition

Problem

Improve RMSE of prediction of users’ ratings on movies.

Prize

1 million dollars for improvement by 10%.

Training set

100 480 507 ratings (from 1 to 5) of 17 770 movies by 480 189
users (user id, movie id, rating, date)

Information about movies (movie id, date of release, title)

Netflix Prize Competition

Problem

Improve RMSE of prediction of users’ ratings on movies.

Prize

1 million dollars for improvement by 10%.

Training set

100 480 507 ratings (from 1 to 5) of 17 770 movies by 480 189
users (user id, movie id, rating, date)

Information about movies (movie id, date of release, title)

Winner algorithm

Winners

On July 26, 2009 BellKor’s Pragmatic Chaos won with RMSE=10.06%.
Full description of algorithm can be found in [1] (other results in [2]).

Some conclusions

Best results after blending many models (101 models blended).

Good model - if decreases RMSE after blending with previous
models. Not necessarily with low RMSE itself.

Train model on residuals of other models.

Many models learned without gradient descent (APT).

Despite the best RMSE Netflix has never implemented model in
production due to its complexity (and also new sources of valuable
clickstream data, which have not been used in the model).

Winner algorithm

Winners

On July 26, 2009 BellKor’s Pragmatic Chaos won with RMSE=10.06%.
Full description of algorithm can be found in [1] (other results in [2]).

Some conclusions

Best results after blending many models (101 models blended).

Good model - if decreases RMSE after blending with previous
models. Not necessarily with low RMSE itself.

Train model on residuals of other models.

Many models learned without gradient descent (APT).

Despite the best RMSE Netflix has never implemented model in
production due to its complexity (and also new sources of valuable
clickstream data, which have not been used in the model).

Global Effects

Before training model it might be good to exclude some simple
dependencies like:

user’s/movie’s average rating,

user’s/movie’s change in average rating over time,

impact of movie average/ratings on user’s rating.

For user specific parameters we set:

ru,i = θuxu,i + error .

Then in the next model we use error instead of ru,i .

Example - User × Time(user)
1
2

xu,i =
√
tu,i −

1

|N(u)|
∑

j∈N(u)

√
tu,j ,

tu,j is a number of days between first user’s u rating and rating item j .

Global Effects - Netflix

Figure: RMSE for Netflix probe data after adding a series of global effects to
the model introduced in [3].

Note that the RMSE Cinematch achieved on the probe dataset is 0.9474.

Python implementation

To do (especially for absent students):

Go through - P0. Data preparation notebook to:

split data for train and test
understand the data structure and properties

Go through - P1. Baseline notebook to:

preprocess data
learn about Scipy sparse matrices
look at implementation of simple recommender systems:
TopPopular, GlobalAverage
project task 1: implement TopRated
look at implementation of self-made BaselineUI
project task 2: implement self-made BaselineIU
read next 2 slides to understand Surprise implementation of Baseline
and Random
look at Surprise ready-made implementations in the notebook

Surprise-Baseline

The prediction is:
r̂ui = µ+ bu + bi ,

where µ, bu and bi are parameters minimizing:∑
(u,i)∈R

(rui − µ− bu − bi)
2 + λ(b2

i + b2
u),

where λ is used for regularization and R is a set of training pairs (u, i)
Usually we find them by stochastic gradient descent (sgd).

Instead of sgd we can minimize the function in different procedure (als).
We can initialize weights (in Surprise: to zeros) and consecutively set:

bi =

∑
(u,i)∈R(rui − µ− bu)

λ2 + |{u|(u, i) ∈ R}|
,

bu =

∑
(u,i)∈R(rui − µ− bi)

λ3 + |{i |(u, i) ∈ R}|
.

Surprise-Baseline

The prediction is:
r̂ui = µ+ bu + bi ,

where µ, bu and bi are parameters minimizing:∑
(u,i)∈R

(rui − µ− bu − bi)
2 + λ(b2

i + b2
u),

where λ is used for regularization and R is a set of training pairs (u, i)
Usually we find them by stochastic gradient descent (sgd).

Instead of sgd we can minimize the function in different procedure (als).
We can initialize weights (in Surprise: to zeros) and consecutively set:

bi =

∑
(u,i)∈R(rui − µ− bu)

λ2 + |{u|(u, i) ∈ R}|
,

bu =

∑
(u,i)∈R(rui − µ− bi)

λ3 + |{i |(u, i) ∈ R}|
.

Surprise-Random

Figure: Source: surprise package documentation [4]

Practical examples
Recommender system - definition and problems

Content-based and collaborative filtering models
Implicit and explicit datasets

Netflix Prize Competition
Python implementation

References

References I

[1] A. Töscher and M. Jahrer, “The bigchaos solution to the netflix
grand prize,”, Sep. 2009, http://https://www.netflixprize.
com/assets/GrandPrize2009_BPC_BigChaos.pdf/.

[2] Netflix, “Netflix prize competition,”,
https://netflixprize.com/.

[3] R. M. Bell and Y. Koren, “Scalable collaborative filtering with
jointly derived neighborhood interpolation weights,” in Proceedings
of the 2007 Seventh IEEE International Conference on Data Mining,
ser. ICDM ’07, Washington, DC, USA: IEEE Computer Society,
2007. [Online]. Available:
https://doi.org/10.1109/ICDM.2007.90.

[4] Surprise, “Surprise package documentation,”,
https://surprise.readthedocs.io/.

Robert Kwieciński Part 1: Introduction and baseline

http://https://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf/
http://https://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf/
https://netflixprize.com/
https://doi.org/10.1109/ICDM.2007.90
https://surprise.readthedocs.io/

	Practical examples
	Recommender system - definition and problems
	Content-based and collaborative filtering models
	Implicit and explicit datasets
	Netflix Prize Competition
	Python implementation
	References

