39 lines
1.4 KiB
Python
39 lines
1.4 KiB
Python
|
import pandas as pd
|
||
|
import math
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from sklearn.linear_model import LinearRegression
|
||
|
from sklearn.ensemble import RandomForestRegressor
|
||
|
from sklearn import metrics
|
||
|
|
||
|
df = pd.read_csv('data.csv')
|
||
|
|
||
|
scaler = StandardScaler()
|
||
|
X = scaler.fit_transform(df.iloc[:, :-1])
|
||
|
y = df.iloc[:, -1]
|
||
|
|
||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||
|
print("Podzielono zbiór na {} rekordów uczących i {} rekordów testowych".format(len(y_train), len(y_test)))
|
||
|
|
||
|
regressor_lin = LinearRegression()
|
||
|
regressor_lin.fit(X_train, y_train)
|
||
|
print("\nWyuczono model regresjii liniowej:")
|
||
|
predicted_prices_lin = regressor_lin.predict(X_test)
|
||
|
|
||
|
rmse_lin = math.sqrt(metrics.mean_squared_error(y_test, predicted_prices_lin))
|
||
|
mae_lin = metrics.mean_absolute_error(y_test, predicted_prices_lin)
|
||
|
|
||
|
print('RMSE: {:.2f} zł'.format(rmse_lin))
|
||
|
print('MAE: {:.2f} zł'.format(mae_lin))
|
||
|
|
||
|
regressor_RF = RandomForestRegressor(random_state=8)
|
||
|
regressor_RF.fit(X_train, y_train)
|
||
|
print("\nWyuczono model regresji drzew Random Forest:")
|
||
|
predicted_prices_RF = regressor_RF.predict(X_test)
|
||
|
|
||
|
rmse_RF = math.sqrt(metrics.mean_squared_error(y_test, predicted_prices_RF))
|
||
|
mae_RF = metrics.mean_absolute_error(y_test, predicted_prices_RF)
|
||
|
|
||
|
print('RMSE: {:.2f} zł'.format(rmse_RF))
|
||
|
print('MAE: {:.2f} zł'.format(mae_RF))
|