"* $y^{(i)} = x^{(i)} \\; \\Longrightarrow \\;$ Autoencoder próbuje nauczyć się funkcji $h(x) \\approx x$, czyli funkcji identycznościowej.\n",
"* Warstwy środkowe mają mniej neuronów niż warstwy zewnętrzne, więc żeby to osiągnąć, sieć musi znaleźć bardziej kompaktową (tu: $k$-wymiarową) reprezentację informacji zawartej w wektorach $x_{(i)}$.\n",
"* Otrzymujemy metodę kompresji danych."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Innymi słowy:\n",
"* Ograniczenia nałożone na reprezentację danych w warstwie ukrytej pozwala na „odkrycie” pewnej **struktury** w danych.\n",
"* _Decoder_ musi odtworzyć do pierwotnej postaci reprezentację danych skompresowaną przez _encoder_.\n",
"* Całkowita liczba warstw w sieci autoencodera może być większa niż 3.\n",
"* Jako funkcji kosztu na ogół używa się błędu średniokwadratowego (*mean squared error*, MSE) lub entropii krzyżowej (*binary crossentropy*).\n",
"* Autoencoder może wykryćciekawe struktury w danych nawet jeżeli $k \\geq n$, jeżeli na sieć nałoży się inne ograniczenia.\n",
"* W wyniku działania autoencodera uzyskujemy na ogół kompresję **stratną**."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Autoencoder a PCA\n",
"\n",
"Widzimy, że autoencoder można wykorzystać do redukcji liczby wymiarów. Podobną rolę pełni poznany na jednym z poprzednich wykładów algorytm PCA (analiza głównych składowych, *principal component analysis*).\n",
"\n",
"Faktycznie, jeżeli zastosujemy autoencoder z liniowymi funkcjami aktywacji i pojedynczą sigmoidalną warstwą ukrytą, to na podstawie uzyskanych wag można odtworzyć główne składowe używając rozkładu według wartości osobliwych (*singular value decomposition*, SVD)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Autoencoder – zastosowania\n",
"\n",
"Autoencoder sprawdza się gorzej niż inne algorytmy kompresji, więc nie stosuje się go raczej jako metody kompresji danych, ale ma inne zastosowania:\n",
"* odszumianie danych (jeżeli na wejściu zamiast „czystych” danych użyjemy danych zaszumionych, to otrzymamy sieć, która może usuwać szum z danych)\n",
"_Word embeddings_ – sposoby reprezentacji słów jako wektorów liczbowych"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Znaczenie wyrazu jest reprezentowane przez sąsiednie wyrazy:\n",
"\n",
"“A word is characterized by the company it keeps.” (John R. Firth, 1957)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Pomysł pojawił sie jeszcze w latach 60. XX w.\n",
"* _Word embeddings_ można uzyskiwać na różne sposoby, ale dopiero w ostatnim dziesięcioleciu stało się opłacalne użycie w tym celu sieci neuronowych."
"* Aby wykorzystać metody uczenia maszynowego do analizy danych tekstowych, musimy je jakoś reprezentować jako liczby.\n",
"* Najprostsza metoda to wektory jednostkowe:\n",
" * \"a\" = $(1, 0, 0, 0, 0)$\n",
" * \"day\" = $(0, 1, 0, 0, 0)$\n",
" * \"good\" = $(0, 0, 1, 0, 0)$\n",
" * \"great\" = $(0, 0, 0, 1, 0)$\n",
" * \"have\" = $(0, 0, 0, 0, 1)$\n",
"* Taka metoda nie uwzględnia jednak podobieństw i różnic między znaczeniami wyrazów."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Metody uzyskiwania *word embeddings*:\n",
"* Common Bag of Words (CBOW)\n",
"* Skip Gram\n",
"\n",
"Obie opierają się na odpowiednim użyciu autoencodera."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Skip Gram a CBOW\n",
"\n",
"* Skip Gram lepiej reprezentuje rzadkie wyrazy i lepiej działa, jeżeli mamy mało danych.\n",
"* CBOW jest szybszy i lepiej reprezentuje częste wyrazy."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Popularne modele _word embeddings_\n",
"* Word2Vec (Google)\n",
"* GloVe (Stanford)\n",
"* FastText (Facebook)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"Więcej o word embeddings: https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 14.4. Tłumaczenie neuronowe\n",
"\n",
"_Neural Machine Translation_ (NMT)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Neuronowe tłumaczenie maszynowe również opiera się na modelu *encoder-decoder*:\n",
"* *Encoder* koduje z języka źródłowego na abstrakcyjną reprezentację.\n",
"* *Decoder* odkodowuje z abstrakcyjnej reprezentacji na język docelowy."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In *Advances in neural information processing systems* (pp. 3104-3112)."