forked from pms/uczenie-maszynowe
Uzupełnienie wykładu 13. CNN
This commit is contained in:
parent
a4f9c87756
commit
5c4f4b2d43
@ -8,6 +8,7 @@
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### Uczenie maszynowe\n",
|
||||
"# 13. Splotowe sieci neuronowe"
|
||||
]
|
||||
},
|
||||
@ -97,6 +98,17 @@
|
||||
"* nie wykrywa własności „lokalnych” wejścia"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-F.png\"/>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
@ -110,6 +122,28 @@
|
||||
"W tym celu tworzymy mniejszą sieć neuronową (mniej neuronów wejściowych) i _kopiujemy_ ją tak, żeby każda jej kopia działała na pewnym fragmencie wejścia (fragmenty mogą nachodzić na siebie)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-Conv2.png\"/>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-Conv3.png\"/>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
@ -123,6 +157,39 @@
|
||||
"Warstw konwolucyjnych może być więcej niż jedna."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"<img style=\"margin: auto\" width=\"60%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-Conv2Conv2.png\"/>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"<img style=\"margin: auto\" width=\"50%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv2-9x5-Conv2.png\"/>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"<img style=\"margin: auto\" width=\"50%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv2-9x5-Conv2Conv2.png\"/>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
@ -152,6 +219,19 @@
|
||||
"Więcej: https://en.wikipedia.org/wiki/Kernel_(image_processing)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Ilustracja działania funkcji splotu:\n",
|
||||
"\n",
|
||||
"<img style=\"margin: auto\" height=\"80%\" src=\"https://devblogs.nvidia.com/wp-content/uploads/2015/11/Convolution_schematic.gif\"/>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
|
Loading…
Reference in New Issue
Block a user