From ebf6db8ef142e862c94d179d776b51726b8509a2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Pawe=C5=82=20Sk=C3=B3rzewski?= Date: Fri, 28 Oct 2022 14:31:38 +0200 Subject: [PATCH] =?UTF-8?q?Po=20wyk=C5=82adzie=202=20i=203?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- wyk/02_Regresja_liniowa.ipynb | 37647 +++++++++++++++++++++++++++++- wyk/03_Regresja_liniowa_2.ipynb | 41 +- 2 files changed, 37610 insertions(+), 78 deletions(-) diff --git a/wyk/02_Regresja_liniowa.ipynb b/wyk/02_Regresja_liniowa.ipynb index 22e323f..0fcd330 100644 --- a/wyk/02_Regresja_liniowa.ipynb +++ b/wyk/02_Regresja_liniowa.ipynb @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 1, "metadata": { "slideshow": { "slide_type": "notes" @@ -81,7 +81,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 2, "metadata": { "slideshow": { "slide_type": "fragment" @@ -118,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 3, "metadata": { "slideshow": { "slide_type": "notes" @@ -258,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 4, "metadata": { "slideshow": { "slide_type": "notes" @@ -314,7 +314,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 5, "metadata": { "slideshow": { "slide_type": "subslide" @@ -323,7 +323,1057 @@ "outputs": [ { "data": { - "image/svg+xml": "\n\n\n \n \n \n \n 2022-10-14T11:18:51.560990\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2022-10-28T11:24:23.297410\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.6.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], "text/plain": [ "
" ] @@ -339,7 +1389,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 6, "metadata": { "slideshow": { "slide_type": "notes" @@ -356,7 +1406,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 7, "metadata": { "slideshow": { "slide_type": "notes" @@ -382,7 +1432,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 8, "metadata": { "slideshow": { "slide_type": "subslide" @@ -392,7 +1442,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4880be41c52643798571f509b333a025", + "model_id": "0672501afb5c4fca818b52c3fdd274fd", "version_major": 2, "version_minor": 0 }, @@ -409,7 +1459,7 @@ "" ] }, - "execution_count": 47, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -538,7 +1588,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 9, "metadata": { "slideshow": { "slide_type": "fragment" @@ -554,7 +1604,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 10, "metadata": { "slideshow": { "slide_type": "skip" @@ -614,7 +1664,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 11, "metadata": { "slideshow": { "slide_type": "subslide" @@ -624,7 +1674,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c67ea652bba946cf83a86485848bb0b0", + "model_id": "0e9e869c222b4f928c8b7c358ccdd973", "version_major": 2, "version_minor": 0 }, @@ -641,7 +1691,7 @@ "" ] }, - "execution_count": 50, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -676,7 +1726,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 12, "metadata": { "slideshow": { "slide_type": "notes" @@ -719,7 +1769,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 13, "metadata": { "slideshow": { "slide_type": "subslide" @@ -729,7 +1779,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f5ea28655cad4743b9e58a3ecd0b1fc3", + "model_id": "bbfe8cfd8e274970904cd2c9e12fce6f", "version_major": 2, "version_minor": 0 }, @@ -746,7 +1796,7 @@ "" ] }, - "execution_count": 52, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -757,7 +1807,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 14, "metadata": { "slideshow": { "slide_type": "notes" @@ -827,7 +1877,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 15, "metadata": { "slideshow": { "slide_type": "subslide" @@ -836,7 +1886,16717 @@ "outputs": [ { "data": { - "image/svg+xml": "\n\n\n \n \n \n \n 2022-10-14T11:19:26.563438\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2022-10-28T11:24:26.098085\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.6.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], "text/plain": [ "
" ] @@ -864,7 +18624,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 16, "metadata": { "slideshow": { "slide_type": "notes" @@ -929,7 +18689,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 17, "metadata": { "slideshow": { "slide_type": "subslide" @@ -938,7 +18698,3065 @@ "outputs": [ { "data": { - "image/svg+xml": "\n\n\n \n \n \n \n 2022-10-14T11:19:28.775965\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2022-10-28T11:24:28.270713\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.6.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], "text/plain": [ "
" ] @@ -1002,7 +21820,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 18, "metadata": { "slideshow": { "slide_type": "subslide" @@ -1011,7 +21829,16735 @@ "outputs": [ { "data": { - "image/svg+xml": "\n\n\n \n \n \n \n 2022-10-14T11:19:32.586581\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2022-10-28T11:24:32.960329\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.6.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], "text/plain": [ "
" ] @@ -1026,7 +38572,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 19, "metadata": { "slideshow": { "slide_type": "notes" @@ -1057,7 +38603,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 20, "metadata": { "slideshow": { "slide_type": "subslide" @@ -1067,7 +38613,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ba49ab01f3694550a13b124b599f9d17", + "model_id": "4b3e33d96ad447e08dace02f0ea543d2", "version_major": 2, "version_minor": 0 }, @@ -1084,7 +38630,7 @@ "" ] }, - "execution_count": 59, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1193,7 +38739,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 21, "metadata": { "slideshow": { "slide_type": "notes" @@ -1216,7 +38762,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 22, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1250,28 +38796,15 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": null, "metadata": { "slideshow": { "slide_type": "subslide" } }, - "outputs": [ - { - "data": { - "text/latex": [ - "$\\displaystyle \\large\\textrm{Wynik:}\\quad \\theta = \\left[\\begin{array}{r}-1.8792 \\\\ 1.0231 \\\\ \\end{array}\\right] \\quad J(\\theta) = 5.0010 \\quad \\textrm{po 4114 iteracjach}$" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "best_theta, history = gradient_descent(h, J, [0.0, 0.0], x, y, alpha=0.001, eps=0.0001)\n", + "best_theta, history = gradient_descent(h, J, [0.0, 0.0], x, y, alpha=0.05, eps=0.0001)\n", "\n", "display(\n", " Math(\n", @@ -1285,7 +38818,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 24, "metadata": { "slideshow": { "slide_type": "notes" @@ -1306,7 +38839,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 25, "metadata": { "scrolled": true, "slideshow": { @@ -1317,7 +38850,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59091adc5a5f4d20bf2ad5e92c17b234", + "model_id": "e2f6797395434b26b93f0392c7b58207", "version_major": 2, "version_minor": 0 }, @@ -1334,7 +38867,7 @@ "" ] }, - "execution_count": 64, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1420,7 +38953,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 26, "metadata": { "slideshow": { "slide_type": "subslide" @@ -1510,7 +39043,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 27, "metadata": { "slideshow": { "slide_type": "skip" @@ -1528,7 +39061,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 28, "metadata": { "slideshow": { "slide_type": "subslide" diff --git a/wyk/03_Regresja_liniowa_2.ipynb b/wyk/03_Regresja_liniowa_2.ipynb index bac5820..b0a4dfc 100644 --- a/wyk/03_Regresja_liniowa_2.ipynb +++ b/wyk/03_Regresja_liniowa_2.ipynb @@ -47,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": { "slideshow": { "slide_type": "subslide" @@ -223,7 +223,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "slideshow": { "slide_type": "skip" @@ -289,7 +289,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { "slideshow": { "slide_type": "notes" @@ -363,7 +363,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "slideshow": { "slide_type": "notes" @@ -424,7 +424,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "slideshow": { "slide_type": "notes" @@ -447,7 +447,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { "slideshow": { "slide_type": "notes" @@ -513,10 +513,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": { "slideshow": { - "slide_type": "notes" + "slide_type": "subslide" } }, "outputs": [], @@ -539,7 +539,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": { "slideshow": { "slide_type": "subslide" @@ -627,7 +627,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": { "slideshow": { "slide_type": "subslide" @@ -666,7 +666,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": { "slideshow": { "slide_type": "notes" @@ -689,7 +689,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": { "slideshow": { "slide_type": "subslide" @@ -698,7 +698,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApoAAAHECAYAAACZYIrlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEGElEQVR4nO3deVxU5f4H8M+wDIsw7LIIKEqiuKBiIuYuSsZ172Zqaa5pWimlXirT7q3w2mqldu+v0qzMLTVvroQiLrihuKEoigIKuLLvM8/vj4mBERQGGc4An/frNa+Y5zxz5jNHcr4+5zzPkQkhBIiIiIiI6piR1AGIiIiIqHFioUlEREREesFCk4iIiIj0goUmEREREekFC00iIiIi0gsWmkRERESkFyw0iYiIiEgvWGgSERERkV6w0CQiIiIivWChSURERER6wUKTiIiIDFZ0dDSGDRsGNzc3yGQybNu2TafXFxYW4pVXXkGnTp1gYmKCkSNHVtkvKioK3bp1g5mZGby9vbFmzZonzk4sNImIiMiA5eXlwc/PDytWrKjV65VKJSwsLPDGG28gKCioyj5JSUkICQnBgAEDEBcXh7lz52LatGnYs2fPk0QnADIhhJA6BBEREVF1ZDIZtm7dqjUqWVRUhHfffRe//vorMjMz0bFjR/z73/9G//79K73+lVdeQWZmZqVR0YULF2LHjh04f/68pu3FF19EZmYmdu/eradP0zRwRJOIiIgarDlz5iAmJgbr16/H2bNn8fe//x3PPvssrly5UuN9xMTEVBrtDA4ORkxMTF3HbXJYaBIREVGDlJycjNWrV2PTpk3o06cP2rRpg7fffhu9e/fG6tWra7yf9PR0ODs7a7U5OzsjOzsbBQUFdR27STGROgARERFRbZw7dw5KpRJt27bVai8qKoKDg4NEqagiFppERETUIOXm5sLY2BixsbEwNjbW2mZlZVXj/bi4uCAjI0OrLSMjAwqFAhYWFnWStalioUlEREQNUteuXaFUKnH79m306dOn1vsJDAzEzp07tdoiIiIQGBj4pBGbPBaaREREZLByc3ORmJioeZ6UlIS4uDjY29ujbdu2mDBhAiZOnIjPPvsMXbt2xZ07dxAZGYnOnTsjJCQEABAfH4/i4mLcv38fOTk5iIuLAwB06dIFADBz5kx88803WLBgAaZMmYJ9+/Zh48aN2LFjR31/3EaHyxsRERGRwYqKisKAAQMqtU+aNAlr1qxBSUkJPvzwQ6xduxY3b96Eo6MjevbsiQ8++ACdOnUCALRq1Qo3btyotI+KJVBUVBTmzZuH+Ph4uLu7Y9GiRXjllVf09rmaChaaRERERKQXXN6IiIiIiPSChSYRERER6QUnA9Wj0tJSnD59Gs7OzjAyYo1PRETUEKhUKmRkZKBr164wMWHppAserXp0+vRp9OjRQ+oYREREVAvHjx/H008/LXWMBoWFZj0qu73V8ePH4erqKnEaIiIiqom0tDT06NGj0m0qqXosNOtR2elyV1dXuLu7S5yGiIiIdMHL3nTHI0ZEREREesFCk4iIiIj0goUmEREREekFC00iIiIi0gsWmkRERESkFyw0iYiIiEgvWGgSERERkV6w0CQiIiIiveCC7Q1UclYy7ubffeR2R0tHeNp41mMiIiIiiaiUwJ2DQEEaYOEKOPUBjIylTkVgodkgJWclw+cbHxSWFj6yj7mJORLmJLDYJCKixi1lCxD7JpCfWt5m6Q74Lwc8RkuXiwDw1HmDdDf/7mOLTAAoLC187IgnERFRg5eyBTj4vHaRCQD5N9XtKVukyUUaLDSJiIio4VEp1SOZEFVs/Kstdq66H0mGhSYRERE1PHcOVh7J1CKA/BR1P5IMC00iIiJqeArS6rYf6QULTSIiImp4LFzrth/pBQtNIiIianic+qhnl0P2iA4ywNJD3Y8kw0KTiIiIGh4jY/USRlX6q/j0/5LraUqMhWYD5GjpCHMT88f2MTcxh6OlYz0lIiIikoDHaKDXL5XbLd2BPpu5jqYB4ILtDZCnjScS5iRUWifzdNppTPvfNJjITHBg0gEu1k5ERI2f27NA+wVA+p9Au7cASzfeGciAsNBsoDxtPCsVkt1cu+HHMz/iYPJB/J7wO3q495AoHRERUT2R2wFd/y11CnoEFpqNzIcDP0T8nXi80uUVqaMQERFRE8dCs5Hp27Iv+rbsK3UMIiIi/cu/CRTdAWz9ANmjZp+TlDgZqBFTqpQoKi2SOgYREZF+XP0e2NUVODZV6iT0CCw0G6ntCdvRYWUHfHH0C6mjEBER6UdpLmBsATg9I3USegQWmo1UVmEWEu4l4POYz5Ffki91HCIiorrXdRkw5h7QcpzUSegRWGg2Ui92fBGtbFvhTv4dfH/qe6njEBER6YeJBWBiKXUKegQWmo2UqbEpFj6zEADwyZFPUKwsljgRERFRHeL3WoPAQrMRe6XLK3C1ckVKdgp+Pvuz1HGIiIjqRmkBsMUZ2BcMFGdKnYYeg4VmI2ZuYo63At8CACw9tBRKlVLiRERERHXgziGgJBPIvgiY2kidhh6DhWYj92r3V2Fnbocr968g4lqE1HGIiIienEsQEHIRCPie62caOC7Y3shZya3wzXPfwNXKFf1b9Zc6DhER0ZOTyQCbduoHGTQWmk3A+E7jpY5ARERETRBPnTcx2UXZEEJIHYOIiKh2rqwCYucBD85InYRqQNJCc9WqVejcuTMUCgUUCgUCAwOxa9cuzfb+/ftDJpNpPWbOnKm1j+TkZISEhMDS0hLNmzfH/PnzUVpaqtUnKioK3bp1g5mZGby9vbFmzZpKWVasWIFWrVrB3NwcAQEBOH78uNb2wsJCzJ49Gw4ODrCyssKYMWOQkZFRdwejHiyJWgL3z91x4MYBqaMQERHVztXvgYQvgfunpE5CNSBpoenu7o6lS5ciNjYWJ0+exMCBAzFixAhcuHBB02f69OlIS0vTPJYtW6bZplQqERISguLiYhw5cgQ//vgj1qxZg/fff1/TJykpCSEhIRgwYADi4uIwd+5cTJs2DXv27NH02bBhA0JDQ7F48WKcOnUKfn5+CA4Oxu3btzV95s2bh//973/YtGkTDhw4gFu3bmH06NF6PkJ1607eHeQU5+Djgx9LHYWIiKh2OrwLtH4FcHtO6iRUE8LA2NnZie+++04IIUS/fv3Em2+++ci+O3fuFEZGRiI9PV3TtmrVKqFQKERRUZEQQogFCxaIDh06aL1u7NixIjg4WPO8R48eYvbs2ZrnSqVSuLm5ifDwcCGEEJmZmcLU1FRs2rRJ0+fixYsCgIiJianxZ0tJSREAREpKSo1fU5eSHiQJ4w+MBZZAHE89LkkGIiKihkbq7++GzGCu0VQqlVi/fj3y8vIQGBioaf/ll1/g6OiIjh07IiwsDPn55fftjomJQadOneDs7KxpCw4ORnZ2tmZUNCYmBkFBQVrvFRwcjJiYGABAcXExYmNjtfoYGRkhKChI0yc2NhYlJSVafdq1awdPT09Nn6oUFRUhOztb88jJyanNoakzrWxb4aXOLwEAPj7EUU0iIiLSL8kLzXPnzsHKygpmZmaYOXMmtm7dCl9fXwDA+PHj8fPPP2P//v0ICwvDTz/9hJdeeknz2vT0dK0iE4DmeXp6+mP7ZGdno6CgAHfv3oVSqayyT8V9yOVy2NraPrJPVcLDw2FjY6N5lH0uKS18ZiFkkGHbpW24cPtC9S8gIiIyBKX5QOL/AQVpUichHUheaPr4+CAuLg7Hjh3DrFmzMGnSJMTHxwMAZsyYgeDgYHTq1AkTJkzA2rVrsXXrVly9elXi1DUTFhaGrKwszaPsc0mpvVN7jG6vvrY0/FC4xGmIiIhqKD0SOD4D2NsL4OopDYbkhaZcLoe3tzf8/f0RHh4OPz8/LF++vMq+AQEBAIDExEQAgIuLS6WZ32XPXVxcHttHoVDAwsICjo6OMDY2rrJPxX0UFxcjMzPzkX2qYmZmpplRr1AoYG1t/bhDUW/e6fMOAGBz/Gbcy78ncRoiIqIakBkDDj2AFsN4N6AGRPJC82EqlQpFRUVVbouLiwMAuLq6AgACAwNx7tw5rdnhERERUCgUmtPUgYGBiIyM1NpPRESE5jpQuVwOf39/rT4qlQqRkZGaPv7+/jA1NdXqk5CQgOTkZK3rSRuKbq7d8M3Qb3BpziU4WDpIHYeIiKh6LZ4Dgo8B/l9KnYR0IOmdgcLCwjB06FB4enoiJycH69atQ1RUFPbs2YOrV69i3bp1eO655+Dg4ICzZ89i3rx56Nu3Lzp37gwAGDJkCHx9ffHyyy9j2bJlSE9Px3vvvYfZs2fDzMwMADBz5kx88803WLBgAaZMmYJ9+/Zh48aN2LFjhyZHaGgoJk2ahO7du6NHjx748ssvkZeXh8mTJwMAbGxsMHXqVISGhsLe3h4KhQKvv/46AgMD0bNnz/o/cHVgdo/ZUkcgIiLSnczgxsjocaSc8j5lyhTRsmVLIZfLhZOTkxg0aJDYu3evEEKI5ORk0bdvX2Fvby/MzMyEt7e3mD9/vsjKytLax/Xr18XQoUOFhYWFcHR0FG+99ZYoKSnR6rN//37RpUsXIZfLRevWrcXq1asrZfn666+Fp6enkMvlokePHuLo0aNa2wsKCsRrr70m7OzshKWlpRg1apRIS0vT6fMa6vIId/LuSB2BiIjo0fJShVCWSvb2hvr93RDIhOAVtfUlNTUVHh4eSElJgbu7u9RxkF2UjVe2vYKIaxFIejMJjpaOUkciIiKqbFc3ID8Z6LMVaN6n3t/e0L6/GxKOPzdh1nJr3Mi6gdziXCw/WvUELCIiIkkVZwF514Gi+4CindRpSEcsNJswmUyGd3qrZ6B/ffxrZBdlS5yIiIjoIXIbYHQG8OwJwNxJ6jSkIxaaTdyo9qPQzrEdsoqysPLESqnjEBERVWZkCtj7S52CaoGFZhNnJDNCWO8wAMDnMZ8jvyS/mlcQERER1QwLTcK4juPQyrYV7uTfwQ+nf5A6DhERkdrNP4C9zwCJ30mdhGqJhSbB1NgUC3otAACsiVsDLkRAREQGIXUbcPcIkHlW6iRUS5Iu2E6GY3JX9eL0k7pMgoy39iIiIkPQcTFg1w1wDJA6CdUSC00CAJibmGPW07OkjkFERFSumQfQ9jWpU9AT4KlzqkQlVEjLSZM6BhERETVwLDRJy9mMs+i8qjOG/jKU12oSEZF0zn0ApG4HlEVSJ6EnwEKTtLgr3HEj6wbOZJzBzis7pY5DRERNUV4ycG4JcHAUUJIjdRp6Aiw0SYu9hT1mdVdfq/nRwY84qklERBIQQNs5gOcLgLmj1GF0Fh0djWHDhsHNzQ0ymQzbtm2r9jVRUVHo1q0bzMzM4O3tjTVr1mhtX7VqFTp37gyFQgGFQoHAwEDs2rVLs/369euQyWRVPjZt2lTHn7DmWGhSJfN6zoOZsRliUmMQfSNa6jhERNTUNGsJdP8aeOZXqZPUSl5eHvz8/LBixYoa9U9KSkJISAgGDBiAuLg4zJ07F9OmTcOePXs0fdzd3bF06VLExsbi5MmTGDhwIEaMGIELFy4AADw8PJCWlqb1+OCDD2BlZYWhQ4fq5XPWhExwyKrepKamwsPDAykpKXB3d5c6zmPN3jEbK0+uxODWg7H35b1SxyEiIpLMk3x/y2QybN26FSNHjnxkn4ULF2LHjh04f/68pu3FF19EZmYmdu/e/cjX2dvb45NPPsHUqVOr3N61a1d069YN33//vU6Z6xJHNKlK85+ZD2OZMSKuReDEzRNSxyEioqYiJ1H9MEA5OTnIzs7WPIqK6maiUkxMDIKCgrTagoODERMTU2V/pVKJ9evXIy8vD4GBgVX2iY2NRVxc3COL0PrCQpOq1Mq2FSZ0ngAA2HBhg8RpiIioybgQDvzvKeDcv6ROUomvry9sbGw0j/Dw8DrZb3p6OpydnbXanJ2dkZ2djYKCAk3buXPnYGVlBTMzM8ycORNbt26Fr69vlfv8/vvv0b59e/Tq1atOMtYWF2ynR1rUdxHGdxyPIW2GSB2FiIiaCmUBIDMBnKQtkKoSHx+PFi1aaJ6bmZnV6/v7+PggLi4OWVlZ2Lx5MyZNmoQDBw5UKjYLCgqwbt06LFq0qF7zVYWFJj2St703vO29pY5BRERNyTPrgKdXAibNpE5SibW1NRQKRZ3v18XFBRkZGVptGRkZUCgUsLCw0LTJ5XJ4e6u/l/39/XHixAksX74c//nPf7Reu3nzZuTn52PixIl1nlVXPHVONZJdlI07eXekjkFERE2B3BYwMpU6Rb0JDAxEZGSkVltERMQjr78so1KpqrxO9Pvvv8fw4cPh5ORUpzlrg4UmVeuXs7+g5ZctsWi/9EPwRETUiKlKpE5QJ3JzcxEXF4e4uDgA6uWL4uLikJycDAAICwvTGm2cOXMmrl27hgULFuDSpUtYuXIlNm7ciHnz5mn6hIWFITo6GtevX8e5c+cQFhaGqKgoTJgwQeu9ExMTER0djWnTpun/g9YAC02qlqeNJzILM7E6bjVuZt+UOg4RETVGeTeAzQ7AobGAUEmd5omcPHkSXbt2RdeuXQEAoaGh6Nq1K95//30AQFpamqboBAAvLy/s2LEDERER8PPzw2effYbvvvsOwcHBmj63b9/GxIkT4ePjg0GDBuHEiRPYs2cPBg8erPXeP/zwA9zd3TFkiGHMr+A6mvWoIa2j+bC+q/viYPJBhPYMxWfBn0kdh4iIGpvE/wOOzwCcegODD0qdRktD/v6WGkc0qUbe6fMOAODb2G9xN/+uxGmIiKjRaTMVCD4B+NXNkkFkGFhoUo0EtwlGN9duyC/Jx1fHvpI6DhERNTYyI8ChO9C8t9RJqA6x0KQakclkeKe3elTz6+NfI7soW+JEREREZOhYaFKNjWo/Cu0c2yG7KBv7k/ZLHYeIiBqL8x8CZxYBuUlSJ6E6xgXbqcaMZEb4fvj3aN6sORdyJyKiuqFSAglfAUV3AOcBgJWX1ImoDrHQJJ308jC8W4IREVFDpgK6fgqk7wWa95E6DNUxnjqnWrt87zKKlcVSxyAioobMyBRoPRHo9XOTuhtQU8FCk2rljV1voN037fDL2V+kjkJEREQGioUm1YqnjScEBJYeXgqlSil1HCIiaojybwHXfwWKM6VOQnrCQpNq5VX/V2FnbofL9y7jt4u/SR2HiIgaopQtwJHxQPQoqZOQnrDQpFqxNrPGmwFvAgA+PvgxeCdTIiLSmUkzwMYXaBEidRLSExaaVGuvB7yOZqbNcCbjDHYl7pI6DhERNTRtJgMhFwCfeVInIT1hoUm1Zm9hj1ndZwEAPjr4EUc1iYiodoyMpU5AesJCk55IaGAozIzNcOnuJdzMuSl1HCIiaijybwIcoGj0uGA7PRFXa1f8Mf4P9HTvCSu5ldRxiIioIVApgV1dAGNLYOCfgOIpqRORnkg6orlq1Sp07twZCoUCCoUCgYGB2LWr/Fq/wsJCzJ49Gw4ODrCyssKYMWOQkZGhtY/k5GSEhITA0tISzZs3x/z581FaWqrVJyoqCt26dYOZmRm8vb2xZs2aSllWrFiBVq1awdzcHAEBATh+/LjW9ppkaaqCWgexyCQioprLuQKU5gElWYBVK6nTkB5JWmi6u7tj6dKliI2NxcmTJzFw4ECMGDECFy5cAADMmzcP//vf/7Bp0yYcOHAAt27dwujRozWvVyqVCAkJQXFxMY4cOYIff/wRa9aswfvvv6/pk5SUhJCQEAwYMABxcXGYO3cupk2bhj179mj6bNiwAaGhoVi8eDFOnToFPz8/BAcH4/bt25o+1WUhQAiBk7dOSh2DiIgMnU07YMw9YNA+3g2osRMGxs7OTnz33XciMzNTmJqaik2bNmm2Xbx4UQAQMTExQgghdu7cKYyMjER6erqmz6pVq4RCoRBFRUVCCCEWLFggOnTooPUeY8eOFcHBwZrnPXr0ELNnz9Y8VyqVws3NTYSHhwshRI2yVKWwsFBkZWVpHvHx8QKASElJqc2hMWgFJQWi67ddBZZAnM84L3UcIiKiOpOSktJov7/1zWAmAymVSqxfvx55eXkIDAxEbGwsSkpKEBQUpOnTrl07eHp6IiYmBgAQExODTp06wdnZWdMnODgY2dnZmlHRmJgYrX2U9SnbR3FxMWJjY7X6GBkZISgoSNOnJlmqEh4eDhsbG83D19e3tofH4JmbmKO1XWsAwNLDSyVOQ0RERIZA8kLz3LlzsLKygpmZGWbOnImtW7fC19cX6enpkMvlsLW11erv7OyM9PR0AEB6erpWkVm2vWzb4/pkZ2ejoKAAd+/ehVKprLJPxX1Ul6UqYWFhyMrK0jzi4+NrdlAaqLDeYQCAX8/9imsPrkmchoiIDNKV/wD7nwVSf5c6CdUDyQtNHx8fxMXF4dixY5g1axYmTZrUaAoyMzMzzUQnhUIBa2trqSPplb+bP4LbBEMplFh2eJnUcYiIyBCl/Aak7QFyEqVOQvVA8kJTLpfD29sb/v7+CA8Ph5+fH5YvXw4XFxcUFxcjMzNTq39GRgZcXFwAAC4uLpVmfpc9r66PQqGAhYUFHB0dYWxsXGWfivuoLgupvdvnXQDA6rjVuJVzS+I0RERkcPy/ArosAzw4obYpkLzQfJhKpUJRURH8/f1hamqKyMhIzbaEhAQkJycjMDAQABAYGIhz585pzQ6PiIiAQqHQXA8ZGBiotY+yPmX7kMvl8Pf31+qjUqkQGRmp6VOTLKTWp2Uf9PbsjWJlMT6P+VzqOEREZGhs2gG+8wErL6mTUD2QdMH2sLAwDB06FJ6ensjJycG6desQFRWFPXv2wMbGBlOnTkVoaCjs7e2hUCjw+uuvIzAwED179gQADBkyBL6+vnj55ZexbNkypKen47333sPs2bNhZmYGAJg5cya++eYbLFiwAFOmTMG+ffuwceNG7NixQ5MjNDQUkyZNQvfu3dGjRw98+eWXyMvLw+TJkwGgRlmo3Du938Fz657DkZQjEEJAJpNJHYmIiIikIOWU9ylTpoiWLVsKuVwunJycxKBBg8TevXs12wsKCsRrr70m7OzshKWlpRg1apRIS0vT2sf169fF0KFDhYWFhXB0dBRvvfWWKCkp0eqzf/9+0aVLFyGXy0Xr1q3F6tWrK2X5+uuvhaenp5DL5aJHjx7i6NGjWttrkqU6TWV5BJVKJf68+qdQqVRSRyEiIkOhLBXi9D+ESN+n/rkBaSrf3/ogE4I3Gq0vqamp8PDwQEpKCtzd3aWOQ0REVH/uHAYiegNyO2D0bcCo4dwFm9/ftddw/pSpQcorzkP8nXg83eJpqaMQEZGUTBVA61cAE+sGVWTSk+GfNOnNuYxzGPDjABgbGeP6m9dhYWohdSQiIpKKbSeg52qpU1A9M7hZ59R4tHNsByu5FW7n3cb3p7+XOg4RERHVMxaapDemxqZY8MwCAMCyw8tQrCyWOBEREUki8wJQ8Og76VHjxUKT9Gpyl8lwbuaMlOwUrDu3Tuo4REQkhdg3ga2uQNJPUiehesZCk/TKwtQCbwW+BQAIPxQOpUopcSIiIqpXKiWgKlT/7MC1p5saFpqkdzO7z4SduR0u37uMLRe3SB2HiIjqk5ExMPgQMDoDUDwldRqqZyw0Se+szazxRsAbkEGG0+mnpY5DRERSMG8udQKSAJc3onrxZsCbGNthLNo7tZc6ChER1RehAoRQj2pSk8QRTaoXdhZ2LDKJiJqaO0eArS5A7Dypk5BEWGhSvbv24Bri78RLHYOIiPQtbRdQdBcouiN1EpIIC02qV2vi1qDt120xbw//dUtE1Oh1WgIM2g+0e0vqJCQRFppUr/q17AcA2Ht1L07eOilxGiIi0isjU8C5P2DfVeokJBEWmlSvvOy8ML7TeADAxwc/ljgNERER6RMLTap3Yb3DIIMMWy9t5bWaRESNVew8IH4ZUHhb6iQkIRaaVO/aO7XHqPajAABLDy2VOA0REdW54kzg8jdA3EKgJEfqNCQhFpokiXd6vwMAWHduHa49uCZxGiIiqlMyY8B/OdBmOmDdRuo0JCEWmiQJfzd/BLcJRjN5M5zLOCd1HCIiqkum1kDb14CA/0qdhCTGOwORZFaFrIK9hT1szG2kjkJERER6wEKTJONl5yV1BCIiqmtZl4DcRMB5IGBiKXUakhhPnZPkhBD489qfuJd/T+ooRET0pK59DxwYBpx4TeokZABYaJLkpm2fhsE/DcZXx76SOgoRET0puT1g6Qm4PSd1EjIALDRJckOfGgoA+Or4V8gp4jIYREQNWocwYMR1wGOM1EnIALDQJMmNajcKPg4+yCzMxKqTq6SOQ0RET0omA4yMpU5BBoCFJknO2MgYYb3DAACfx3yOgpICiRMREVGtFKRJnYAMDAtNMgjjO41HS5uWyMjLwA+nf5A6DhER6ar4AbDNA/jDFyjJljoNGQgWmmQQTI1NseCZBQCAZUeWoURZInEiIiLSyf1YADL1aXNThdRpyECw0CSDMbnLZDg3c4alqSWSs5KljkNERLpwCQLG3AF6/Sp1EslFR0dj2LBhcHNzg0wmw7Zt26p9TVRUFLp16wYzMzN4e3tjzZo1WttXrVqFzp07Q6FQQKFQIDAwELt27aq0n5iYGAwcOBDNmjWDQqFA3759UVAg3SVpLDTJYFiYWuDQlEO48NoFtLHnvXGJiBocuS1g11nqFJLLy8uDn58fVqxYUaP+SUlJCAkJwYABAxAXF4e5c+di2rRp2LNnj6aPu7s7li5ditjYWJw8eRIDBw7EiBEjcOHCBU2fmJgYPPvssxgyZAiOHz+OEydOYM6cOTAykq7ckwkhhGTv3sSkpqbCw8MDKSkpcHd3lzoOERER1cCTfH/LZDJs3boVI0eOfGSfhQsXYseOHTh//rym7cUXX0RmZiZ27979yNfZ29vjk08+wdSpUwEAPXv2xODBg/Gvf/1Lp4z6xBFNMkgFJQX45ewv4L+DiIgagLNLgIPPA7cPSZ1Er3JycpCdna15FBUV1cl+Y2JiEBQUpNUWHByMmJiYKvsrlUqsX78eeXl5CAwMBADcvn0bx44dQ/PmzdGrVy84OzujX79+OHRI2j8TFppkcJQqJTqt6oSXtr6E3YmP/pccEREZiBvrgJTfgMJ0qZPola+vL2xsbDSP8PDwOtlveno6nJ2dtdqcnZ2RnZ2tdX3luXPnYGVlBTMzM8ycORNbt26Fr68vAODatWsAgCVLlmD69OnYvXs3unXrhkGDBuHKlSt1krM2WGiSwTE2MsbIdiMBAB8d/IijmkREhkwIoNc6oOMiwHWI1Gn0Kj4+HllZWZpHWFhYvb6/j48P4uLicOzYMcyaNQuTJk1CfHw8AEClUgEAXn31VUyePBldu3bFF198AR8fH/zwg3TLBrLQJIP0VuBbkBvLcTjlMA4mH5Q6DhERPYpMBjh0Bzr/s9Eva2Rtba2Z9a1QKGBmZlYn+3VxcUFGRoZWW0ZGBhQKBSwsLDRtcrkc3t7e8Pf3R3h4OPz8/LB8+XIAgKurKwBoRjjLtG/fHsnJ0q3kwkKTDJKrtSumdJkCAPj44McSpyEiItKfwMBAREZGarVFRERorr98FJVKpblOtFWrVnBzc0NCQoJWn8uXL6Nly5Z1G1gHLDTJYC14ZgGMZcbYc3UPTt46KXUcIiJ6WNF94Oz7wD3+HV1Rbm4u4uLiEBcXB0C9fFFcXJxmZDEsLAwTJ07U9J85cyauXbuGBQsW4NKlS1i5ciU2btyIefPmafqEhYUhOjoa169fx7lz5xAWFoaoqChMmDABgHp2+/z58/HVV19h8+bNSExMxKJFi3Dp0iXNrHQpSFpohoeH4+mnn4a1tTWaN2+OkSNHVqrE+/fvD5lMpvWYOXOmVp/k5GSEhITA0tISzZs3x/z581FaWqrVp7qFUAFgxYoVaNWqFczNzREQEIDjx49rbS8sLMTs2bPh4OAAKysrjBkzptJQN9UdLzsvjO80HgAQfqhuLrgmIqI6lLYbOP8v4OhkqZMYlJMnT6Jr167o2rUrACA0NBRdu3bF+++/DwBIS0vTOp3t5eWFHTt2ICIiAn5+fvjss8/w3XffITg4WNPn9u3bmDhxInx8fDBo0CCcOHECe/bsweDBgzV95s6di7CwMMybNw9+fn6IjIxEREQE2rSRcG1qIaHg4GCxevVqcf78eREXFyeee+454enpKXJzczV9+vXrJ6ZPny7S0tI0j6ysLM320tJS0bFjRxEUFCROnz4tdu7cKRwdHUVYWJimz7Vr14SlpaUIDQ0V8fHx4uuvvxbGxsZi9+7dmj7r168Xcrlc/PDDD+LChQti+vTpwtbWVmRkZGj6zJw5U3h4eIjIyEhx8uRJ0bNnT9GrV68af96UlBQBQKSkpNT2kDU5F25fEEYfGIkRv44QJcoSqeMQEVFFGQeEiH5eiHMfSp1Er/j9XXuSFpoPu337tgAgDhw4oGnr16+fePPNNx/5mp07dwojIyORnp6uaVu1apVQKBSiqKhICCHEggULRIcOHbReN3bsWBEcHKx53qNHDzF79mzNc6VSKdzc3ER4eLgQQojMzExhamoqNm3apOlz8eJFAUDExMTU6PPxF7V2bmTekDoCERE1Yfz+rj2DukYzKysLgHql+4p++eUXODo6omPHjggLC0N+fr5mW0xMDDp16qS1/lRwcDCys7M1t2WqbiHU4uJixMbGavUxMjJCUFCQpk9sbCxKSkq0+rRr1w6enp6PXFC1qKhIa2HXnJwcnY8JAZ42nlJHICIiolowkTpAGZVKhblz5+KZZ55Bx44dNe3jx49Hy5Yt4ebmhrNnz2LhwoVISEjAli1bADx6kdOybY/rU7YQ6oMHD6BUKqvsc+nSJc0+5HI5bG1tK/Upe5+HhYeH44MPPtDxSNCjJGcl42jqUbzQ4QWpoxAR0YM4oFkr9f3NiR7BYArN2bNn4/z585VulTRjxgzNz506dYKrqysGDRqEq1evSntxaw2EhYUhNDRU8/zmzZuV1reimrly7wp8V/rCSGaEPp594GrtKnUkIqKmSwjg4N+BvOvAwD8B535SJyIDZRCnzufMmYM//vgD+/fvr/Zm9QEBAQCAxMREAI9e5LRs2+P6lC2E6ujoCGNj4yr7VNxHcXExMjMzH9nnYWZmZloLu1pbWz/2s9Gjedt7I6BFAIqVxfgs5jOp4xARNW0lmYCxHJAZAfbdpE5DBkzSQlMIgTlz5mDr1q3Yt28fvLy8qn1N2ZpUZSvgBwYG4ty5c7h9+7amT0REBBQKhWb0sLqFUOVyOfz9/bX6qFQqREZGavr4+/vD1NRUq09CQgKSk5OrXVCVnpxMJsO7fd4FAHx78lvcy78ncSIioiZMbgeEXABG3ABMOYhCj6Hr7KFF+xaJfdf2iYKSgieeiTRr1ixhY2MjoqKitJYvys/PF0IIkZiYKP75z3+KkydPiqSkJPH777+L1q1bi759+2r2Uba80ZAhQ0RcXJzYvXu3cHJyqnJ5o/nz54uLFy+KFStWVLm8kZmZmVizZo2Ij48XM2bMELa2tlqz2WfOnCk8PT3Fvn37xMmTJ0VgYKAIDAys8eflrLUno1KpRJdvuwgsgXh/3/tSxyEioiaC39+1p3OhGbQ2SDT7qJkw+5eZ6P1Db/Fu5Lsi4mqEyC/O1/3NgSofq1evFkIIkZycLPr27Svs7e2FmZmZ8Pb2FvPnz9daR1MIIa5fvy6GDh0qLCwshKOjo3jrrbdESYn2mov79+8XXbp0EXK5XLRu3VrzHhV9/fXXwtPTU8jlctGjRw9x9OhRre0FBQXitddeE3Z2dsLS0lKMGjVKpKWl1fjz8hf1yW08v1FgCYTtUluRXZgtdRwioqZHWSqESiV1inrF7+/akwkhhK6joKWqUhxLPYboG9E4cOMAjqQcQZGyCE+7PY1DUw5Vv4MmKjU1FR4eHkhJSan2WlSqmlKlRIeVHZBwLwH/Dvo3FjyzQOpIRERNS9LPwJl3gbZzAN/5UqepF/z+rr1azTo3MTLBM57PwKmZE+wt7GFtZo1tl7bh0t1LdZ2PSIuxkTH+0fsfeH3X61AJldRxiIianlu7gPxk9YQgomroXGj+N/a/iLoehQM3DqCotAh9WvZB/5b98V6f99DZubM+MhJpmdBpAob7DIe9hX31nYmIqG4F/B/Qahxg7SN1EmoAdC40Z/4xE07NnPBW4Ft47enXYCW30kcuokcyNTZlkUlEJBUTS6DF36ROQQ2EzoXmlrFbEH0jGuvPr8fiqMXo6tIV/Vv1R/9W/dHbszcsTS31kZOoEiEEDiYfRFFpEQa3GSx1HCIiInqIzoXmyHYjMbLdSABAVmEWDiYfxKb4Tfjbur/BSGaEwvcK6zojUZXWnlmLV35/BT4OPrjw2gUYGxlLHYmIqPESAjg2BbDvDnhNAkx5RpOqV6sF2+/l38OWi1uwaP8ivBP5Dn4++zMUZgoMfWpoXecjeqRR7UfB1twWCfcSsPXSVqnjEBE1btkXgWtrgFOh1XYlKqPziGanVZ1w8c5F2FnYoW/LvpjebTr6terHiUBU7xRmCrzR4w38M/qf+PjgxxjTfgxkMpnUsYiIGie5A9Dl30DRXY5mUo3pPhnIfyb6teqHjs076iMPkU7eCHgDn8V8htPpp7E7cTdH1YmI9MXCGfDl2sWkG51Pnc/uMVtTZAr1nYXqPBRRTTlYOmBm95kAgI8PfSxxGiIiIqqoVtdorj2zFp1WdYLFRxaw+MgCnVd1xk9nfqrrbEQ1EhoYCrmxHIeSDyH6RrTUcYiIGp97J4GM/YCqROok1MBUW2huubgFt3JuaZ5/HvM5Zu2Yhee8n8PGv2/Exr9vxLPez2Lmjpn4IuYLvYYlqoqbtRumdJkCb3tvFJQUSB2HiKjxubgMiBwInP9I6iTUwFR7jaYQAr1/6I3/jfsfOjTvgK+Pf41VIasw0W+ips9wn+Ho4NQBSw4swbzAeXoNTFSVfw/+NyxNLWFiVKu7qhIR0eOYuwBmjoDbc1InoQam2m/lMb5j0LxZc7yw+QVceO0C0nLS0MujV6V+vTx6IS0nTS8hiaqjMFNIHYGIqPHq/hXQ7QtAVqsr7qgJq9FvTJ+WfXDglQMAAG97b2y8sLFSnw0XNuAph6fqNh2RjopKi/B/sf+HS3cvSR2FiKhxMTIGuIQc6ajG5xkdLR0BAB/0/wBjN49F9I1oPOPxDADgcMphRCZFYuPzlQtQovo0e+dsfH/6e7zc+WWsHbVW6jhERA2bEEDhbfXSRkS1oPMY+BjfMTg27RgcLR2xLWEbtiVsg6OlI45PO45R7UfpIyNRjZUtdbTu3DokPUiSOA0RUQOXFQ9sdQEi+gJCJXUaaoB0njlx/vZ5+Lv54+fRP1fatu3SNs190Imk0N2tO4a0GYK9V/fikyOfYGXISqkjERE1XPeOq/9ras3rM6lWdP6tCf45uMqRot/if8OELRPqJBTRk3in9zsAgB9O/8AJakRET6LNZGDULaDrp1InoQZK50JzWtdpCPopCOm56Zq2Dec3YOK2iVgzYk1dZiOqlb4t++IZj2dQpCzC5zGfSx2HiKhhs3AFbNpLnYIaKJ0LzQ8GfIDnvJ9D0Nog3C+4j3Xn1mHy75OxduRa/L3D3/WRkUgnMpkM7/RRj2quOrkK9/LvSZyIiIioaarV6tZfP/c1JmyZgJ7f9cTNnJv4dcyvGNFuRF1nI6q1od5D0dWlK5ytnJFVlAUHSwepIxERNSzHZwLKQqD9fMC2g9RpqIGqUaG5PWF7pbbR7Ubj4I2DGNdxHGQymabPcJ/hdZuQqBZkMhmiJ0fDSm4ldRQiooZHWQRc/wUozQXazpY6DTVgNSo0R64f+chtP5z+AT+c/gGA+std+b6yToIRPSkWmUREtSQzAfptB9L/BOz9pU5DDViNCk3VYq6dRQ3XrZxbWHliJd7r+x7MTcyljkNEZPiMjAHnAeoH0ROo1TWaRA2FEAIDfhyAy/cuw83aDa89/ZrUkYiIiJqMWq2+euD6AQz7dRi8v/KG91feGP7rcBy8cbCusxE9MZlMhjd6vAEAWHZ4GUqUJRInIiIycNlXgPhlQNYlqZNQI6Bzofnz2Z8R9FMQLE0t8UbAG3gj4A1YmFpg0NpBWHdunT4yEj2RKV2noHmz5riRdYO/o0RE1UnZDMQtBE6/LXUSagR0LjQ/OvgRlgUtw4bnN2gKzQ3Pb8DSoKX4V/S/9JGR6IlYmFogtGcoACD8UDiUKk5YIyJ6JEU7wDUY8BgjdRJqBHQuNK89uIZhPsMqtQ/3GV7lrSmJDMGsp2fB1twWCfcSsPXSVqnjEBEZLo9RwIDd6ttPUtMTORAozqzcXpKt3qYjnQtND4UHIq9FVmr/89qf8LDx0DkAUX1QmCnweo/XAQAfH/wYQgiJExERERmgjChAVVy5XVkI3NZ9Po7Os87fCnwLb+x+A3Hpcejl0QsAcDjlMNbErcHyZ5frHICovrwZ8Ca+Pfkt+nj2QWFpISxMLaSORERkWO6dBGw6ACb8+7HJeXC2/OeseKAgvfy5UAJpuwHLFjrvVudCc9bTs+Bi5YLPYj7DxviNAID2ju2x4fkNvA0lGTQHSwckz0vmWppERFVRFgGRA9RFxXNnAWtvqRNRfdrVBZDJ1I+qTpEbWwDdv9Z5tzoVmqWqUnx88GNM6ToFh6Yc0vnNiKTGIpOI6BFykwC5HSBKAavWUqeh+jYiCRAC2N4aCD4OmDuVbzOSA2bN1Qv560inazRNjEyw7PAylKpKdX4jIkMSkxKDD6I+kDoGEZHhsGkHjLgBBJ8EZLVaZpsasmYtAatWwHgV4NBd/bzsYeFaqyITqMVkoEGtB+HA9QO1ejMiQ3Ar5xb6rO6DJQeWIPZWrNRxiIgMh0wGWLpJnYKk9Ksx8OcAoOi+dntBhnqbjnS+RnOo91D8I/IfOHf7HPxd/dFM3kxr+3Cf4TqHIKpPbtZuGNdpHH4++zPCD4Vj8wubpY5ERCQtlbLWI1bUyAgBqIqA3d2Bfv8DbDtob9ORzoXmazvU94r+PObzSttkMhmU73MxbDJ8Yb3D8PPZn7Hl4hZcvHMR7Z3aSx2JiEg68UuBG+uA9guB1hOlTkNSksmAPr8BF5YCewOBXj8B7iPKt+lI51PnqsWqRz50LTLDw8Px9NNPw9raGs2bN8fIkSORkJCg1aewsBCzZ8+Gg4MDrKysMGbMGGRkZGj1SU5ORkhICCwtLdG8eXPMnz8fpaXa15FGRUWhW7duMDMzg7e3N9asWVMpz4oVK9CqVSuYm5sjICAAx48f1zkLNQy+Tr4Y1W4UBASWHl4qdRwiImnd2qle0kZVKHUSkpoQgMwY6L4c6PYpcGgscP5DALVbf1rnQjM1O/WR246mHtVpXwcOHMDs2bNx9OhRREREoKSkBEOGDEFeXp6mz7x58/C///0PmzZtwoEDB3Dr1i2MHj1as12pVCIkJATFxcU4cuQIfvzxR6xZswbvv/++pk9SUhJCQkIwYMAAxMXFYe7cuZg2bRr27Nmj6bNhwwaEhoZi8eLFOHXqFPz8/BAcHIzbt2/XOAs1LGG9wwAAv5z9Bdczr0sbhohISv3/AHqtA1pwmUKqwHsGMGAXkPAlEFPLkW6ho/bftBf38u9Vaj9045CwCbfRdXdabt++LQCIAwcOCCGEyMzMFKampmLTpk2aPhcvXhQARExMjBBCiJ07dwojIyORnp6u6bNq1SqhUChEUVGREEKIBQsWiA4dOmi919ixY0VwcLDmeY8ePcTs2bM1z5VKpXBzcxPh4eE1zlKdlJQUAUCkpKTUqD/p3+C1gwWWQMz6Y5bUUYiIyEA1qe/vba2EKLyr3ZZ9RYj/tRNinZHOu9N5RLOne08M+WkIcopyNG3RN6Lx3LrnsLjf4tpVu3/JysoCANjb2wMAYmNjUVJSgqCgIE2fdu3awdPTEzExMQCAmJgYdOrUCc7Ozpo+wcHByM7OxoULFzR9Ku6jrE/ZPoqLixEbG6vVx8jICEFBQZo+NcnysKKiImRnZ2seOTk5VfYj6bzb5120tGmJbq7dpI5CREQkvRFJgJmDdpu1NzD0NDD8ms6707nQ/G74d/C08cSwX4ehqLQI+5P2I2RdCP7Z/5+YFzhP5wBlVCoV5s6di2eeeQYdO3YEAKSnp0Mul8PW1larr7OzM9LT0zV9KhaZZdvLtj2uT3Z2NgoKCnD37l0olcoq+1TcR3VZHhYeHg4bGxvNw9fXt4ZHg+pL35Z9kfhGIqZ1myZ1FCKi+qcsBA6PB66tBbhGNgFAXgqQX+EyybvHgdi5QNJa9ZqaOtK50DSSGWH98+thamyKgWsHYvj64QgfFI43e76p85tXNHv2bJw/fx7r169/ov0YkrCwMGRlZWke8fHxUkeih8hkMpgY6bz4AhFR45ARBdz4FTjzjnoCCNGR8UDGfvXPBenA/sHAvePAmXeBc//UeXc1+oY9m3G2UtuSfksw7rdxeKnTS+jbsq+mT2fnzjqHmDNnDv744w9ER0fD3d1d0+7i4oLi4mJkZmZqjSRmZGTAxcVF0+fh2eFlM8Er9nl4dnhGRgYUCgUsLCxgbGwMY2PjKvtU3Ed1WR5mZmYGMzMzzfPs7OyaHA6SQImyBL+c+wVFpUV4tfurUschIqof1k8BHd4DTJrVaukaaoQyzwMOPdQ/J28EbDoCQw4DaXuB4zOBTu8//vUPqVGh2eXbLpDJZBAVFuose/6f2P/gv6f+CyGEzutoCiHw+uuvY+vWrYiKioKXl5fWdn9/f5iamiIyMhJjxowBACQkJCA5ORmBgYEAgMDAQHz00Ue4ffs2mjdvDgCIiIiAQqHQnKoODAzEzp07tfYdERGh2YdcLoe/vz8iIyMxcuRIAOpT+ZGRkZgzZ06Ns1DD9cflPzD598mwM7fD+E7jYW1mLXUkIiL9s24D+P1L6hRkSEQJYPTXIFn6n4D7XzfiUbQDCtNqsb8auP7geo0fupg1a5awsbERUVFRIi0tTfPIz8/X9Jk5c6bw9PQU+/btEydPnhSBgYEiMDBQs720tFR07NhRDBkyRMTFxYndu3cLJycnERYWpulz7do1YWlpKebPny8uXrwoVqxYIYyNjcXu3bs1fdavXy/MzMzEmjVrRHx8vJgxY4awtbXVms1eXZbqNKlZaw1MqbJUtP26rcASiGWHlkkdh4iIDIiu398HDhwQf/vb34Srq6sAILZu3Vrta/bv3y+6du0q5HK5aNOmjVi9erXW9pUrV4pOnToJa2trYW1tLXr27Cl27typ1adfv34C6gUvNY9XX321ph9TbXcPIU4vFCIjWoj15kLcj1O334kRYksL3fYlhNB5eaO69PDBKHtUPLgFBQXitddeE3Z2dsLS0lKMGjVKpKWlae3n+vXrYujQocLCwkI4OjqKt956S5SUlGj12b9/v+jSpYuQy+WidevWlf4AhRDi66+/Fp6enkIul4sePXqIo0ePam2vSZbHYaFp2H449YPAEgjnT5xFQUmB1HGIiPQrPUqIuyeEUCmlTmLwdP3+3rlzp3j33XfFli1balRolg2IhYaGivj4ePH1119XGhDbvn272LFjh7h8+bJISEgQ77zzjjA1NRXnz5/X9OnXr5+YPn261uBdVlaWbh82fb8QG23VSxnFTC5vPx0mxIFRuu1LCCETohY3rqRaSU1NhYeHB1JSUrSuRSXDUKIsgffX3kjOSsaK51bgtadfkzoSEZH+7AlQT/LouRpo/YrUaQzak3x/y2QybN26VXNpXlUWLlyIHTt24Pz585q2F198EZmZmdi9e/cjX2dvb49PPvkEU6dOBQD0798fXbp0wZdffqlTxkpUSqA0G5DblbflXgdMLAHz5jrtSudZ50SNlamxKeb3mg8AWHZ4GUqUJRInIiLSE1UpYOkJmFgDrsFSp2kwcnJytNbHLioqqpP9Vrfe98OUSiXWr1+PvLy8SvNEfvnlFzg6OqJjx44ICwtDfn6+7oGMjNW/I7cPqR+FdwCrVjoXmUANJwMRNRVTu07Fv6L/hRtZN/Dr+V8x0a+Wt9wiIjJkRiZAn02AqgQwMpU6TYPx8HrYixcvxpIlS554v9Wt921hYQEAOHfuHAIDA1FYWAgrKyts3bpVK9P48ePRsmVLuLm54ezZs1i4cCESEhKwZcuWmocpzQNOvq5eN1Oo1G0yY8BrItD9a/Wopg5YaBJVYGFqgdCeodh7bS+87b2ljkNEpF8sMnUSHx+PFi1aaJ5XXMKwPvj4+CAuLg5ZWVnYvHkzJk2ahAMHDmiKzRkzZmj6durUCa6urhg0aBCuXr2KNm3a1OxNToUCtw8A/f4HOD2jbrt9CIh9Azj1FtBjlU6ZWWgSPWT+M/OxsPdCqWMQEemHshhQ5gNyW6mTNDjW1tZQKBR1vt/q1vsuI5fL4e2tHgTx9/fHiRMnsHz5cvznP/+pcr8BAQEAgMTExJoXmim/Ab03A879y9taPAeYWACHXtB/oalUKfHF0S+w8cJGJGclo1hZrLX9/sL7uu6SyKAYyXjpMhE1Yul/AtEjgJYvAr1+kjoNofr1vh9FpVI99jrRuLg4AICrq2vNw5TmA+bOldvNmqu36Ujnb9QPDnyAz2M+x9gOY5FVlIXQwFCMbj8aRjIjLOm/ROcARIbqdt5tvBP5Dv689qfUUYiI6s69Y4AoBUyspE7SaOXm5iIuLk5T6CUlJSEuLg7JyckA1LeonjixfA7AzJkzce3aNSxYsACXLl3CypUrsXHjRsybN0/TJywsDNHR0bh+/TrOnTuHsLAwREVFYcKECQCAq1ev4l//+hdiY2Nx/fp1bN++HRMnTkTfvn3RubMOd2107AmcWwwoC8vbSguA8x+ot+lK1/WQWi9vLf5I+EMIIYTVx1Yi8V6iEEKI5UeXi3Gbx+m8vlJTwnU0G5a397wtsASizw99pI5CRFS3sq8IkXNV6hQNhq7f3/v3769ynfBJkyYJIYSYNGmS6NevX6XXPG697ylTpoiWLVsKuVwunJycxKBBg8TevXs125OTk0Xfvn2Fvb29MDMzE97e3mL+/Pm6r6P54JwQW9yE2OwgxJ8D1Y/NDuq2B+erf/1DdF5Hs9nHzXBx9kV42njC9TNX7Bi/A91cu+Hag2vo+p+uyPpHlu7VbhPBdTQblls5t+C13AvFymJEvxKNPi37SB2JiIgk0KS+v6//CriPAK7/AmRfUrcp2gOtJgDn3ge6fqLT7nQ+de6ucEdajvpel23s2mDv1b0AgBM3T8DMuH5nXxHpk5u1GyZ3mQwA+PjQxxKnISIiqgcnZqlnnXtPB7p9pn54TwPOvAsk/azz7nQuNEe1G4XIpEgAwOs9Xsei/Yvw1NdPYeK2iZjSdYrOAYgM2YJnFsBYZozdibtxKu2U1HGIiJ7MwTHAiTlAfqrUSchQ9foFODxOvaRRmZNvAMnrgUH7dd7dE9+CMiYlBjGpMXjK/ikM8xn2JLtq9JrU0HsjMnrDaGy9tBUDWw3EJ0MqnzJwtHSEp42nBMmIiHSQfwvY9tcakKPSAAsXafM0IE3u+/v6OuDkHGBgBHD1eyD1d3WRqWir866eeB3NQI9ABHo8fvo9UUOVnJWMHVd2AAD2Xd8H///6V+pjbmKOhDkJLDaJyLCZ2QN9twOZZ1lk0uO1Gg8UZwJ7nwHMnYCgA4B17W5iUqtCM+FuAr4+/jUu3r0IAGjv2B6v93gdPo4+tQpBZKju5t+ttFbswwpLC3E3/y4LTSIybMbmgPsw9YOootjQqtvNnQC7bsDlleVt/p/rtGudC83f4n/Di7+9iO5u3RHorh7JPJp6FB1XdcT6MesxxneMrrskIiIiIqk8OF11u5U3UJJdvl0m03nXOheaC/5cgLDeYfjngH9qtS/evxgL/lzAQpOIiMjQ3D0G3I8FWgwDmnlInYYMTZDuk3xqSudZ52k5aZjoN7FS+0udX9Ise0REREQG5NoPwMnZQHy41EmoidG50Ozfqj8O3jhYqf1Q8iEuaE1ERGSI7P0Bp2eAFiOkTkJNTI1OnW9P2K75ebjPcCz8cyFi02LR0119z8ujqUexKX4TPuj/gX5SEhERUe15z1A/iOpZjQrNketHVmpbeWIlVp5YqdU2e+dszOw+s06CEREREVHDVqNCU7VYpe8cRAbJ0dIR5ibmKCwtfGQfI5kR7C3s6zEVEZEO7p0A7LoARqZSJ6EmSOdZ58lZyXBu5gwzE+37mgshkJKdwrUEqVHxtPFEwpwE3M2/W2nb+dvnMW37NJSoSrDu3Dq80+cdCRISET1G/i1gTw9Abg+MuAGYWkmdiJoYnQvNVl+2Qnun9tj+4na0sW+jab+ddxtey72gfF9ZpwGJpOZp41nlP6C6uXYDAHxx9AtM6DShvmMREVUvJwEwcwCsnmKRSZLQedY5oL4TUI/veiDyWqRW+xPeNp2owZnoNxHHpx1HS9uWUkchIqrMeQAwKgPo85vUSaiJ0rnQlMlkWBmyEu/1eQ8h60Lw1bGvtLYRNTWmxuXXPe26sgt38u5ImIaI6CFGxoClm9QpqInSudAsG7WcFzgPW8duxfv738f07dOrvR80UWP3n5P/Qci6ELyw+QWUKEukjkNETZ3gRF6SXq1OnZcZ+tRQHJl6BPuv78fffv1bXWUiapD6tOyDZvJmiLoehdA9oVLHIaKm7sRrwJ4A4NYeqZNQE6ZzodmvVT/IjeWa575Ovjg27RhszW15jSY1ab5Ovvhl9C8AgG9OfIPvTn0ncSIiarKEAG7+Adw7LnUSauJkgtVhvUlNTYWHhwdSUlLg7u4udRzSkw+jP8Si/YtgamSKqFei0Mujl9SRiKgpyr8F3NoBeE0EjM2q70+PxO/v2tN5RHPnlZ3Yk1h5GH7v1b3YdWVXnYQiasje7fMu/u77d5SoSjB6w2ikZqdKHYmImiJLN8B7OotMkpTOheY//vwHlKLyWpkqocI/Iv9RJ6GIGjKZTIbVI1ajs3NnZORlYNOFTVJHIiIikoTOC7ZfuX8Fvk6+ldrbObZD4v3EOglF1NA1kzfD7y/+jv1J+zG562Sp4xBRU5KfCpxdBLQYAXiMlDoNNXE6j2jamNng2oNrldoT7yeimWmzOglF1Bi0sm2lVWTycmgiqhc3dwDX1gAXl0mdhEj3QnOEzwjM3T0XV+9f1bQl3k/EW3vfwnCf4XUajqixuJt/F0N+HoLdibuljkJEjZ1jAOAzD2g9ReokRLqfOl82eBme/eVZtFvRDu4K9cyr1OxU9PHsg0+HfFrnAYkag89jPsef1/7EiZsncHz6cbR1aCt1JCJqrOy6AP5dpE5BBKAWhaaNuQ2OTDmCiGsROJN+BhamFujs3Bl9W/bVRz6iRmFxv8U4cOMAjqQcwYj1I3B06lHYmNtIHYuIiEivdC40AfWs2iFthmBImyF1nYeoUTIzMcNvL/yG7v/tjkt3L2HClgn4/cXfYWxkLHU0ImpMbu0GmrUCFD6ATCZ1GqKaFZpfHfsKM/xnwNzEHF8d++qxfd8IeKNOghE1Ni5WLtj24jb0Wd0HO67swPv738dHgz6SOhYRNRZCBRx9BSjMAAbtB5z7S52IqGaTgb44+gXyivM0Pz/q8eXRL3V68+joaAwbNgxubm6QyWTYtm2b1vZXXnkFMplM6/Hss89q9bl//z4mTJgAhUIBW1tbTJ06Fbm5uVp9zp49iz59+sDc3BweHh5YtqzyTLxNmzahXbt2MDc3R6dOnbBz506t7UIIvP/++3B1dYWFhQWCgoJw5coVnT4vUXe37vi/Yf8HAPj40MfYeGGjxImIqNEofqC+PtPMAXAMlDoNEYAajmgmvZlU5c9PKi8vD35+fpgyZQpGjx5dZZ9nn30Wq1ev1jw3M9O+w8GECROQlpaGiIgIlJSUYPLkyZgxYwbWrVsHAMjOzsaQIUMQFBSEb7/9FufOncOUKVNga2uLGTNmAACOHDmCcePGITw8HH/729+wbt06jBw5EqdOnULHjh0BAMuWLcNXX32FH3/8EV5eXli0aBGCg4MRHx8Pc3PzOjsm1Pi91PklnEk/gy2XtlS5Ji0RUa2YOQADdgPKYsBYLnUaIjVhIACIrVu3arVNmjRJjBgx4pGviY+PFwDEiRMnNG27du0SMplM3Lx5UwghxMqVK4WdnZ0oKirS9Fm4cKHw8fHRPH/hhRdESEiI1r4DAgLEq6++KoQQQqVSCRcXF/HJJ59otmdmZgozMzPx66+/PjJfYWGhyMrK0jzK8qakpDz6QFCTUKosFffz70sdg4iIaiAlJYXf37VUoxHN0D2hNS5cPw/+vFYF76NERUWhefPmsLOzw8CBA/Hhhx/CwcEBABATEwNbW1t0795d0z8oKAhGRkY4duwYRo0ahZiYGPTt2xdyefm/7oKDg/Hvf/8bDx48gJ2dHWJiYhAaqv0Zg4ODNafyk5KSkJ6ejqCgIM12GxsbBAQEICYmBi+++GKV2cPDw/HBBx/U1aGgRsTYyBh2Fnaa57G3YtHZuTNMjU0lTEVEDVZpHgAjwMRC6iREWmpUaJ5OP12jnclQtzPcnn32WYwePRpeXl64evUq3nnnHQwdOhQxMTEwNjZGeno6mjdvrvUaExMT2NvbIz09HQCQnp4OLy8vrT7Ozs6abXZ2dkhPT9e0VexTcR8VX1dVn6qEhYVpFbA3b96Ery9PlZK21adXY8YfMzC923SsDFkpdRwiaoiS1gKn3gJ85gJdPpY6DZFGjQrN/ZP26ztHlSqOFHbq1AmdO3dGmzZtEBUVhUGDBkmSSRdmZmZa15RmZ2dLmIYMlaOlI5QqJVadXAU/Zz+82v1VqSMRUUNz5wigLADkXJ+XDIvOt6CUUuvWreHo6IjExEQAgIuLC27fvq3Vp7S0FPfv34eLi4umT0ZGhlafsufV9am4veLrqupDVFvDfIbhw4EfAgDm7JqDgzcOSpyIiBqcwLXA0DjAa6LUSYi0NKhCMzU1Fffu3YOrqysAIDAwEJmZmYiNjdX02bdvH1QqFQICAjR9oqOjUVJSoukTEREBHx8f2NnZafpERkZqvVdERAQCA9XLQ3h5ecHFxUWrT3Z2No4dO6bpQ/QkwnqH4e++f0epqhRjNo5Bclay1JGIqCGRyQA7P8DCVeokRFokLTRzc3MRFxeHuLg4AOpJN3FxcUhOTkZubi7mz5+Po0eP4vr164iMjMSIESPg7e2N4OBgAED79u3x7LPPYvr06Th+/DgOHz6MOXPm4MUXX4SbmxsAYPz48ZDL5Zg6dSouXLiADRs2YPny5VrXTr755pvYvXs3PvvsM1y6dAlLlizByZMnMWfOHADqOyHNnTsXH374IbZv345z585h4sSJcHNzw8iRI+v1mFHjJJPJsHrEavg5++FO/h2M2jAK+SX5UsciIiJ6MlJOed+/f78AUOkxadIkkZ+fL4YMGSKcnJyEqampaNmypZg+fbpIT0/X2se9e/fEuHHjhJWVlVAoFGLy5MkiJydHq8+ZM2dE7969hZmZmWjRooVYunRppSwbN24Ubdu2FXK5XHTo0EHs2LFDa7tKpRKLFi0Szs7OwszMTAwaNEgkJCTo9Hm5PAJVJ+lBknBc5iiwBOKbY99IHYeIDJ1KKUREPyFOLxSiKFPqNI0Wv79rTyaEEBLWuU1KamoqPDw8kJKSAnd3d6njkIE6cP0AYlJjsPCZhZDxXsVE9Dh3jwF7ewKmCmD0HS7Urif8/q69Gs06J6L6069VP/Rr1U/qGETUENi0B3qtA4pYZJJhalCTgYiamtziXEz+fTIS7iZIHYWIDJGpAmg1DvB5Q+okRFVioUlkwObtnoc1cWswYv0IZBVmSR2HiIhIJyw0iQzYhwM/hLvCHQn3EjBhywQoVUqpIxGRobi1B7i2Fii8K3USokdioUlkwJytnLFt7DaYm5hjx5UdWLR/kdSRiMhQJHwBHJ0EXPtB6iREj8RCk8jA+bv54/vh3wMAwg+FY/359RInIiKD4NQbsPUDWgyTOgnRI7HQJGoAxncajwW9FgAApvw+BafSTkmciIgk1/E94Lk49cxzIgPFQpOogfh40McY6j0UNuY2KFYWSx2HiIioWlxHk6iBMDYyxrox65BXnIcWihZSxyEiqaiUQGYcYNcVkHG8iAwbf0OJGhBbc1utIjM1O1XCNEQkifsngN3dgR0dAd7cjwwcC02iBmpz/Gb4fOODb09+K3UUIqpPOVcBk2aAbWeAt6klA8dT50QNVOL9ROSX5OP1Xa+jg1MH9GnZR+pIRFQfvCYAns8DxQ+kTkJULY5oEjVQC59ZiLEdxqJUVYoxG8fgRuYNqSMRUX0xNgMsXKROQVQtFppEDZRMJsMPI35AV5euuJN/ByM3jER+Sb7UsYhIn4RK6gRUA9HR0Rg2bBjc3Nwgk8mwbdu2al8TFRWFbt26wczMDN7e3lizZo3W9lWrVqFz585QKBRQKBQIDAzErl27qtyXEAJDhw6t8XvrEwtNogbM0tQS217cBidLJ8Slx2HK71MgODmAqPE6MAKIHATcj5U6CT1GXl4e/Pz8sGLFihr1T0pKQkhICAYMGIC4uDjMnTsX06ZNw549ezR93N3dsXTpUsTGxuLkyZMYOHAgRowYgQsXLlTa35dffgmZgVy/y2s0iRo4TxtP/PbCbxi4diA2XNiA4T7DMb7TeKljEVFdK80D0vcCqmLAuJnUaegxhg4diqFDh9a4/7fffgsvLy989tlnAID27dvj0KFD+OKLLxAcHAwAGDZM+w5QH330EVatWoWjR4+iQ4cOmva4uDh89tlnOHnyJFxdXevg0zwZFppEjUCfln3wzdBvkHg/ES90eEHqOESkDybNgJALQMZ+QOEjdZomKScnB9nZ2ZrnZmZmMDMze+L9xsTEICgoSKstODgYc+fOrbK/UqnEpk2bkJeXh8DAQE17fn4+xo8fjxUrVsDFxTCu4WWhSdRIvNr9VakjEJG+WXurHyQJX19freeLFy/GkiVLnni/6enpcHZ21mpzdnZGdnY2CgoKYGFhAQA4d+4cAgMDUVhYCCsrK2zdulUr07x589CrVy+MGDHiiTPVFRaaRI1QsbIYH0Z/iNDAUNia20odh4ioUYiPj0eLFuU3zaiL0Uxd+Pj4IC4uDllZWdi8eTMmTZqEAwcOwNfXF9u3b8e+fftw+vTpes1UHU4GImqEJm2bhH9F/wvjfxsPpUopdRwielL3Y4GTrwMZB6RO0qRZW1trZn0rFIo6KzRdXFyQkZGh1ZaRkQGFQqEZzQQAuVwOb29v+Pv7Izw8HH5+fli+fDkAYN++fbh69SpsbW1hYmICExP1WOKYMWPQv3//OslZGyw0iRqh+b3mw8LEArsSd+GdyHekjkNETyp5M3D5GyCRdwJrjAIDAxEZGanVFhERoXX9ZVVUKhWKiooAAP/4xz9w9uxZxMXFaR4A8MUXX2D16tV6yV0TPHVO1Ah1c+2GH0b8gHG/jcOyI8vg5+LHmehEDZnrs0DRXaDFsOr7kuRyc3ORmJioeZ6UlIS4uDjY29vD09MTYWFhuHnzJtauXQsAmDlzJr755hssWLAAU6ZMwb59+7Bx40bs2LFDs4+wsDAMHToUnp6eyMnJwbp16xAVFaVZAsnFxaXKCUCenp7w8vLS8yd+NBaaRI3Uix1fxJn0M1h6eCmmbp8KHwcf+Lv5Sx2LiGrDuZ/6QQ3CyZMnMWDAAM3z0NBQAMCkSZOwZs0apKWlITk5WbPdy8sLO3bswLx587B8+XK4u7vju+++0yxtBAC3b9/GxIkTkZaWBhsbG3Tu3Bl79uzB4MGD6++D1YJMcHXnepOamgoPDw+kpKTA3d1d6jjUBChVSgxfPxw7r+yEu8IdJ6efhLOVc/UvJCIiDX5/1x6v0SRqxIyNjLFu9Dr4OPggpygHV+5fkToSEekqdTuQnyp1CqJa4alzokbOxtwG28dthxACPo5c5JmoQSnJBg49D6hKgOFJgFUrqRMR6YSFJlET0Nahrdbz/JJ8WJpaSpSGiGqsIB2wfxoovs8ikxoknjonamIir0Wi9fLWOHCd6/ERGTxFW2DIYWBonNRJiGqFhSZRE7P27Fpk5GXg+U3P40bmDanjEFFNGNfvHWiI6goLTaIm5tuQb9HNtRvu5t/FyA0jkVecJ3UkIqpKSQ6gKpU6BdETYaFJ1MRYmFpg29htaN6sOeLS4zBl+xRwlTMiA3ThI2BLc+DyCqmTENUaC02iJsjDxgO/vfAbTI1MsfHCRoQfCpc6EhE97M5hoPgBILeXOglRrbHQJGqienv2xorn1CMl7+17D/uS9kmciIi0DIoCgg4CLUKkTkJUa1zeiKgJm+4/HXHpccgryUMvj15SxyGiioyMgea9pU5B9ERYaBI1cV8N/QpGMiPIZDKpoxARUSPDU+dETZyxkbGmyFQJFVafXg2lSilxKqImrDgLiOgNnP+Is86pwZO00IyOjsawYcPg5uYGmUyGbdu2aW0XQuD999+Hq6srLCwsEBQUhCtXtO/VfP/+fUyYMAEKhQK2traYOnUqcnNztfqcPXsWffr0gbm5OTw8PLBs2bJKWTZt2oR27drB3NwcnTp1ws6dO3XOQtTQjf9tPKZsn4KwyDCpoxA1XWl71BOBrv8EGPHEIzVskhaaeXl58PPzw4oVVS/dsGzZMnz11Vf49ttvcezYMTRr1gzBwcEoLCzU9JkwYQIuXLiAiIgI/PHHH4iOjsaMGTM027OzszFkyBC0bNkSsbGx+OSTT7BkyRL897//1fQ5cuQIxo0bh6lTp+L06dMYOXIkRo4cifPnz+uUhaihG9N+DADgkyOf4Jezv0ichqiJcu4P9Pgv4Mt/8FEjIAwEALF161bNc5VKJVxcXMQnn3yiacvMzBRmZmbi119/FUIIER8fLwCIEydOaPrs2rVLyGQycfPmTSGEECtXrhR2dnaiqKhI02fhwoXCx8dH8/yFF14QISEhWnkCAgLEq6++WuMsNZGSkiIAiJSUlBq/hqi+vRv5rsASCPMPzcWJmyeqfwERUSPH7+/aM9hrNJOSkpCeno6goCBNm42NDQICAhATEwMAiImJga2tLbp3767pExQUBCMjIxw7dkzTp2/fvpDL5Zo+wcHBSEhIwIMHDzR9Kr5PWZ+y96lJlqoUFRUhOztb88jJyant4SCqN/8c8E8MazsMhaWFGLl+JNJz06WOREREDZTBFprp6eovN2dnZ612Z2dnzbb09HQ0b95ca7uJiQns7e21+lS1j4rv8ag+FbdXl6Uq4eHhsLGx0Tx8fX2r+dRE0jOSGeHn0T+jvWN73My5iTEbx6CotEjqWERNQ/JmIGUrUJJbfV+iBsBgC83GICwsDFlZWZpHfHy81JGIakRhpsDvL/4OW3NbnEo7hVNpp6SORNQ0nH0fODgauLVD6iREdcJgp7O5uLgAADIyMuDq6qppz8jIQJcuXTR9bt++rfW60tJS3L9/X/N6FxcXZGRkaPUpe15dn4rbq8tSFTMzM5iZmWmeZ2dnP/5DExmQpxyewua/b4atuS383fyljkPU+KlKANdgAAJwfVbqNER1wmBHNL28vODi4oLIyEhNW3Z2No4dO4bAwEAAQGBgIDIzMxEbG6vps2/fPqhUKgQEBGj6REdHo6SkRNMnIiICPj4+sLOz0/Sp+D5lfcrepyZZiBqjQa0HaRWZQggJ0xA1ckamgP8XwN8uAnIbqdMQ1QlJC83c3FzExcUhLi4OgHrSTVxcHJKTkyGTyTB37lx8+OGH2L59O86dO4eJEyfCzc0NI0eOBAC0b98ezz77LKZPn47jx4/j8OHDmDNnDl588UW4ubkBAMaPHw+5XI6pU6fiwoUL2LBhA5YvX47Q0FBNjjfffBO7d+/GZ599hkuXLmHJkiU4efIk5syZAwA1ykLU2J28dRLd/tsNSQ+SpI5CREQNhZRT3vfv3y8AVHpMmjRJCKFeVmjRokXC2dlZmJmZiUGDBomEhAStfdy7d0+MGzdOWFlZCYVCISZPnixycnK0+pw5c0b07t1bmJmZiRYtWoilS5dWyrJx40bRtm1bIZfLRYcOHcSOHTu0ttckS3W4PAI1VCqVSvT5oY/AEojOqzqLnKKc6l9ERDVXnCNE1iWpU9Aj8Pu79mRC8FxYfUlNTYWHhwdSUlLg7u4udRwinaRmp6L7f7sjIy8DY9qPwaa/b+L90Ynqyo0NwOEXAbcQoP8fUqehh/D7u/YM9hpNIjIs7gp3bBm7BaZGpvjt4m/46OBHUkciajzyrquv0bThMnjUuLDQJKIa6+XRC6tCVgEAFu1fhN8v/S5xIqJGwnchMOYe0H6B1EmI6hQLTSLSydRuUzHnafVEuZe2voSLdy5KnIiokTC1BswdpU5BVKcMdh1NIjJcnwd/jvN3zsNabo0WihZSxyFq2IQAeL0zNVIsNIlIZ6bGpvj9xd9hJbeCkYwnRoieyO7ugKU74P8lYOUldRqiOsVvCCKqFYWZQlNkCiFw4PoBiRMRNUA5icCDU8CtnYDcXuo0RHWOhSYRPREhBKZsn4L+P/bH2jNrpY5D1LBYtQGGngYCvufdgKhRYqFJRE9EJpPB3Vq9rtyM/83A8ZvHJU5E1IDIZIBdF6D1RKmTEOkFC00iemIfDPgAw32Go0hZhJHrR+JWzi2pIxERkQFgoUlET8xIZoSfRv0EXydfpOWmYfSG0SgsLZQ6FpFhu7UHiAsD7p+WOgmR3rDQJKI6oTBT4PcXf4etuS2O3TyGWTtmgXe4JXqMpB+B+KVA8gapkxDpDQtNIqoz3vbe2PD8BvUI55mfcCbjjNSRiAyX59+Bli8C7qOlTkKkN1xHk4jq1JA2Q/DN0G/Q1qEturh0kToOkeHyGKV+EDViLDSJqM7NenqW1BGIiMgA8NQ5EelVwt0EPL/xeeQW50odhchwJP8GFN2TOgWR3nFEk4j0RqlSYuSGkbh09xJUQoXNL2zmLSuJshOAQ88DxubAmHuAiaXUiYj0hn/jE5HeGBsZ44fhP0BuLMfWS1vxYfSHUkcikl7hHcC2M+DUh0UmNXosNIlIrwI9AvFtyLcAgMVRi7Ht0jZpAxFJrXlv4LkzQL/tUich0jsWmkSkd5O7TsYbPd4AALy89WWcv31e4kREBsDYXOoERHrHQpOI6sWnQz7FQK+ByC3OxYj1I3C/4L7UkYjqX3EWwBsZUBPCQpOI6oWpsSk2Pr8RXrZecLVyRamqVOpIRPXvxExgmzuQslXqJET1grPOiajeOFg6YN+kfXCzdoPcWC51HKL6JVTA7YNAwS3A3FnqNET1giOaRFSvWtm20ioykx4kSZiGqB7JjIDhiUD/3YBDgNRpiOoFC00ikoRSpcTbe99G+xXtcSz1mNRxiOqHsTngFgwYGUudhKhesNAkIknIZDJcfXAVRcoijNowCrdybkkdiYiI6hgLTSKShJHMCGtHrkUHpw5Iy03D6A2jUVhaKHUsIv3ITgAig4Arq6ROQlSvOBmIiCRjbWaN31/8HU//39M4dvMY/r7x71jSfwlkMlmlvo6WjvC08ZQgJdETUCmBOweBxP8CGZEAjICnZkmdiqjesNAkIkm1sW+Db577BhO2TMAfV/7AH1f+qLKfuYk5EuYksNikhiNlCxD7JpCfWt724JS63WO0dLmI6hFPnROR5No5tqu2T2FpIe7m362HNER1IGULcPB57SITAIrvq9tTtkiTi6iesdAkIiKqSyqleiQTVd0B6K+22LnqfkSNHAtNImowdl7ZieM3jyOzMFPqKESPdudg5ZFMLQLIT1H3o0YpOjoaw4YNg5ubG2QyGbZt21bta6KiotCtWzeYmZnB29sba9as0dq+atUqdO7cGQqFAgqFAoGBgdi1a5dWn1dffRVt2rSBhYUFnJycMGLECFy6dKkOP5nuWGgSUYOxaP8iBHwXALt/26HX9720th24fgAX71xEsbJYonREUN/H/LFFZgUFafrNQpLJy8uDn58fVqxYUaP+SUlJCAkJwYABAxAXF4e5c+di2rRp2LNnj6aPu7s7li5ditjYWJw8eRIDBw7EiBEjcOHCBU0ff39/rF69GhcvXsSePXsghMCQIUOgVEo3es7JQETUYHRz6Ya03DSk5abBwdJB0y6EwMgNI5FZmAkjmRG8bL3g4+iDtvZt4ePogy4uXdDTvaeEyalJSPoJuPAx4NSnZv0tXPWbhyQzdOhQDB06tMb9v/32W3h5eeGzzz4DALRv3x6HDh3CF198geDgYADAsGHDtF7z0UcfYdWqVTh69Cg6dOgAAJgxY4Zme6tWrfDhhx/Cz88P169fR5s2bZ70Y9UKC00iajD+b/j/oZtrN2QXZSOnKEfTnl+Sj9Z2rXH53mXkFufi6oOruPrgKnZiJwDgWe9nsWtC+Smmqb9PRQtFC/g4+KCtQ1u0dWgLG3Obev881MBlXQKsWqnv9gMApflA9iXARAFYugP5N1H1dZoy9faaFqRkMHJycpCdna15bmZmBjMzsyfeb0xMDIKCgrTagoODMXfu3Cr7K5VKbNq0CXl5eQgMDKyyT15eHlavXg0vLy94eHg8ccbaYqFJRA2OwkwBhZlC87yZvBliZ8RCCIG03DQk3E3A5XuXcfneZSTcS8AzHs9o+t4vuI8f4n6otE/nZs7wcfTBqHajMLfnXE17ibIEpsamev081ADtfw5I2wX03Qa4j1C3eYwBTJoBLYap18w8+DwAGbSLzb/WiPX/krehbIB8fX21ni9evBhLlix54v2mp6fD2dlZq83Z2RnZ2dkoKCiAhYUFAODcuXMIDAxEYWEhrKyssHXr1kqZVq5ciQULFiAvLw8+Pj6IiIiAXC5/4oy1xUKTiCTnaOkIcxPzx94ZyNzEHI6Wjo/dj0wmg5u1G9ys3TDAa0CVfYxkRvh08KdIuJegKUTTc9ORkZeBjLwMdGreSdM3uygbDssc4GXrhbYObbVGQH0cfeBq5Vrl4vLUyOQkAukR2gutK9oBGX8C2ZfL28wdAa+X1D97jAb6bK68jqalu7rI5DqaDVJ8fDxatGiheV4Xo5m68PHxQVxcHLKysrB582ZMmjQJBw4c0Co2J0yYgMGDByMtLQ2ffvopXnjhBRw+fBjm5ub1mrUMC00ikpynjScS5iQ8dp3MurozkK25Ld7q9ZZWW3ZRtmYEtLVda0375XuXUaoqxZX7V3Dl/hXsuLJD63Wzn56Nb577BgBQUFKALRe3qK8NdWirNeJKDVhJNrDDF1CVAM37Azbt1e2+C4FOiwC53aNf6zEaaDFCPbu8IE19TaZTH45kNmDW1tZQKOr+/20XFxdkZGRotWVkZEChUGhGMwFALpfD29sbgHriz4kTJ7B8+XL85z//0fSxsbGBjY0NnnrqKfTs2RN2dnbYunUrxo0bV+e5a8KgZ50vWaK+FV3FR7t25Qs7FxYWYvbs2XBwcICVlRXGjBlT6Q8qOTkZISEhsLS0RPPmzTF//nyUlpZq9aluSQEAWLFiBVq1agVzc3MEBATg+PHjevnMRE2Vp40nurl2e+RDn3cEUpgp0N2tO8Z3Gq81acjf1R+p81Kxb+I+fBvyLeb1nIeQp0Lgbe8NY5lxpaL0pa0v4en/exo2S23g+pkr+q3ph+nbp+PTI58iLj1Ob/mpjhRkAPHLgLh3yttMFYDbc4DLEEBZUN5u4fz4IrOMkTHg3B9oNU79XxaZVIXAwEBERkZqtUVERDzy+ssyKpUKRUVFj9wuhIAQ4rF99M3gRzQ7dOiAP//8U/PcxKQ88rx587Bjxw5s2rQJNjY2mDNnDkaPHo3Dhw8DUF8sGxISAhcXFxw5cgRpaWmYOHEiTE1N8fHHHwMoX1Jg5syZ+OWXXxAZGYlp06bB1dVVM9Nrw4YNCA0NxbfffouAgAB8+eWXCA4ORkJCApo3b16PR4OI6pNMJkMLRQu0ULSodCq+WFmMUlX5P1pLVCXo49kHl+9dRkZeBtJz05Gem47oG9EAgGVBy9DFpQsAdVEauidUcyq+bBSUp+IlIFSA7K8xl4JbQNxC9eSeDu8Aplbq9j5byvsQ1UBubi4SExM1z5OSkhAXFwd7e3t4enoiLCwMN2/exNq1awEAM2fOxDfffIMFCxZgypQp2LdvHzZu3IgdO8rPooSFhWHo0KHw9PRETk4O1q1bh6ioKM0SSNeuXcOGDRswZMgQODk5ITU1FUuXLoWFhQWee+65+j0AFQkDtnjxYuHn51fltszMTGFqaio2bdqkabt48aIAIGJiYoQQQuzcuVMYGRmJ9PR0TZ9Vq1YJhUIhioqKhBBCLFiwQHTo0EFr32PHjhXBwcGa5z169BCzZ8/WPFcqlcLNzU2Eh4fr9HlSUlIEAJGSkqLT64ioYcksyBTHU4+Ln8/8LBbtWyTGbhor9ift12z/Lf43gSWo9LD62Ep0+083sfXiVk3fgpICkV2YXWfZbmTeELG3Yh/5uJF5o87ey6ClbBdid08h4t4rb1OphDj8khCXvxWiJFe6bGRwdP3+3r9/v4B6FpjWY9KkSUIIISZNmiT69etX6TVdunQRcrlctG7dWqxevVpr+5QpU0TLli2FXC4XTk5OYtCgQWLv3r2a7Tdv3hRDhw4VzZs3F6ampsLd3V2MHz9eXLp06Uk++hMz+BHNK1euwM3NDebm5ggMDER4eDg8PT0RGxuLkpISreUA2rVrB09PT8TExKBnz56IiYlBp06dtGZyBQcHY9asWbhw4QK6du1a7ZICxcXFiI2NRVhYmGa7kZERgoKCEBMT89jsRUVFWsPVOTk5j+lNRI2FjbkNnm7xNJ5u8XSV27u6dMXK51ZqJiNdvncZSZlJyC3Oxam0U1BWuDXhnsQ9GLlhJFytXLUmJJWNgnrZetV4VnxyVjJ8vvGpdtJVwpwEvV6qIIn8m4DcVj0rHABKc4F7R4GSB4Dfv9RtMhnQ6yfJIlLj0b9/fwhR1dJWalVdote/f3+cPn36ka/5/vvvH/uebm5u2LlzZ40z1heDLjQDAgKwZs0a+Pj4IC0tDR988AH69OmD8+fPIz09HXK5HLa2tlqvcXZ2Rnp6OoBHLxdQtu1xfcqWFHjw4AGUSmWVfaq7rVN4eDg++OADnT83ETVuXnZemPX0LK22YmUxrt6/isv3LmtdJ3oj6wYAaBaqP3DjgNbr1o9Zj7EdxwIA4u/E41DyIU0x6mLlonUq/m7+3ccWmQBQWFqIu/l3G1eheXQKcG01ELgW8HpZ3dbib4D/14Dn89JmI2rkDLrQrLiqfufOnREQEICWLVti48aNWrOwDFVYWBhCQ0M1z2/evFlpvSsiIgCQG8vR3qk92ju112p/I+ANTPSbiCv3rmgtyVQ2S76tQ1tN3z2JexC6t/zvHGu5dfnop31b+Lv519vnkUxBBnDrD6D1FPUIJQA0a6n+b+a58n6m1oDPnPrPR9TEGHSh+TBbW1u0bdsWiYmJGDx4MIqLi5GZmak1qpmRkQEXFxcA6uUCHp4dXjYrvWKfxy0pYGxsDGNj4yr7lO3jUR6+Y0DFuwkQEdWUrbltlafihRAQFRYDd1e4Y6j3UM2p+JziHMSmxSI2LRYA8NOomp0WftwpP4OmLAb+aKteksimI+AYoG5/ahbQZqp6DUsiqlcNahpdbm4url69CldXV/j7+8PU1FRrOYCEhAQkJydrlgMIDAzEuXPncPv2bU2fiIgIKBQKzchidUsKyOVy+Pv7a/VRqVSIjIysdtkBIiJ9kslkMKowG/rvHf6OnRN2IvGNROS/k4/41+KxdexW/Dvo35jadWqNT4c/88MzOJdRPvoXeysWv8X/hlNpp/Cg4EGdf45aKc4CEv8LxJVfPw9jOeAWAjgEaC9FZN6cRSaRRAx6RPPtt9/GsGHD0LJlS9y6dQuLFy+GsbExxo0bBxsbG0ydOhWhoaGwt7eHQqHA66+/jsDAQPTsqb6+aciQIfD19cXLL7+MZcuWIT09He+99x5mz56tGWmsyZICoaGhmDRpErp3744ePXrgyy+/RF5eHiZPnizJcSEiqo6ZiVmlU/Gn0k7V6LVFyiK4Wrtqnq89sxZfHf9K89zGzAatbFvBy84LXrZeCOsdBqdmTgAAlVBpFb91Sojy0+GFt4HjrwIyY6BdKGCufn8E/ggY8ZahRIbCoAvN1NRUjBs3Dvfu3YOTkxN69+6No0ePwslJ/RfKF198ASMjI4wZMwZFRUUIDg7GypUrNa83NjbGH3/8gVmzZiEwMBDNmjXDpEmT8M9//lPTx8vLCzt27MC8efOwfPlyuLu747vvvtOsoQkAY8eOxZ07d/D+++8jPT0dXbp0we7duytNECIiagy2jd0GBwsHzXMPGw8EtAjA9czryMjLQFZRFs5knMGZjDMAgHf6lC9w/taet7Du/Dp1IWqrLkTLCtKy/xrrumj57WjgwseAwhfw/1zdpngKaPUyYNsRMKrwVcYik8igyESDvRin4UlNTYWHhwdSUlLg7s7TOERUv06lnYL/f6ufEBQ7IxbdXLtVuS2/JB/XM68j6UESkjKTkJKVgqVBSzWz20euH4nfE35/5L4z3s5A82bqG12sO7cOCXcTtArRFtYtYFyaox6pNLVWv+jmTuBACGDuAoy6ycXTqd7x+7v2DHpEk4iI6o6jpSPMTcyrXUfT0dLxkdstTS3h6+QLX6eqV9BYM3KNpggt++/1zOtIykzCnbw7cLJ00vTdFL8J2y5t03r9MkcZ3rQV+I+qLSaPjYWV3ApwCUKmz0KUtBgGR8jAeycRNRwsNImImghPG08kzEnA3fy7j+zjaOn4RGto2prboqtrV3R17VppmxBCa13PMW0G4znTLGzOk+FaZjJuZN7ArdISyGWAXcFVNDP9a3F1YzkmJyZg2x//hrmJeZWn5Ue2G6n7KXki0jsWmkRETYinjadki7Fr3cddCLyUuhQoTMH0oL2A62AoVUqk3zuPk3fPoBmstfoXlhZCBhkKSwtx6e4lXLpbfsMMCxML5L2Tp3k+f+98JD5IrFSMtrJthWbyZvXyWYlIjYUmERHpV2kBcHM78OA00GWpuk0mA9yGAhlRgDIfAGBsZIwWTn5o4eSH7g/tYteEXShWFiMlK6XSaXkB7ZHSP5P+RFx6XJVRPG08cf3N65r+EVcjICDgZesFTxtPmJmYVfk6XSVnJet15JiooWChSURE+lWSBRweB0CoF08vu1NPty8BY/PyJYuqITeWo419G7Sxb/PYfp8M/gSX7l6qdI1oZmEmLE0ttYrSf0T+Q7PskwwyuFm7aUZA2zm205pR//Cp/0dp0veUJ3oIC00iIqo7908D8f8GzOyBp/9abs7CBfCaCFi4AUby8r4m+rmVcFDrIAS1DqrUnlmYifsF97Xa2ju2R1FpEZIyk5Bfko+bOTdxM+em5p7xFQvNXj/0wu2825pT8hXXEm1t1xrOVuol75rsPeWJqsBCk4iIak9ZCKiKAVOF+nlpHpC8Qf282xeA8V+nogPXSBaxjK25LWzNbbXafh79MwD1aOWd/DtaM+YtTS21+l6+dxn3C+7j2oNrlfbd1qEtEuYk6C07UUPFQpOIiGrn4qfAuQ+ADmFAh79G/px6AR0XAy3+pj16aeBkMhmaN2uO5s2aI8A9oMo+ca/GlZ+Kf+i0vLe9d63f+/K9y3Bu5gwbc5ta74PIULHQJCKi6imLgfQIwHlg+SlvuT1QmgvcPgh0+KufzAjovESqlHrlYeMBDxsP9G3Zt9K2ivc+UQmVTvt95odncDf/LuzM7dDKtpXm4WXrhY7NO2KA14Anzk4kFRaaRERNkUoJ3DkIFKQBFq6AUx/gcetQ7g0AHsQBfX4DPEar2zxGA4r2gGPVI4BNScVJQrrc673itZwPCh/gQfoDnE4/rWkb3HqwVqE5+KfBsDW3RSubVpprRFvZtkJLm5ZcuokMEgtNIqKmJmULEPsmkJ9a3mbpDvgvB1oMB9IjgdtRgN/H5TPCXQYDhRlASU75a+S2gFNgfSZvdMxNzHFn/h3kFufiRuYNzan465nXcT3zutatQHOLc/HntT8fua8x7cdg8wubNc9/OP0D3KzdNIWohal+Jl8RPQ4LTSKipiRlC3DweQBCuz3/pro98Efg2DT1BJ9WEwDbjurtHd9Xr4HJ+4zrhZXcCh2ad0CH5h0e2cfEyAS/v/i75hrR61nXNT9nFWXB3sJe0zevOA9Tt0/Ver2LlYvmlPzg1oMxuetkzbai0qI6W0OUqCIWmkRkWHQ9pUtVU5UCRhX+is9LBgpuASfmoFKRCfzVJgPOvAu0ekm9vqVxhREwUys9B2486uKe8o96zXCf4VVuyyzMRLGyWPM8tzgXw9oO04yQ5hbnIj03Hem56TiaehTNTJtpCs38knxYfWwFV2vX8mtEbcpPy7dzbAd3hbtOWYnKsNAkIsPxuFO6ZdcFNmRClJ+KLi0A8pLUP9v4lvdJ36dud+oLKJ5St+UlAxc/AUyald9ZBwDiwoD0PwHffwCeY9RtWfHATj/1ae0xd7T73lhXXUAgPwXwehlw7v8EH7Rpq497yj/s4WWbnK2csX3cdgDqiUoPCh+oR0H/OiXfsXlHTd+yuyvdyrmFWzm3cCTliNa+pnadiu+GfwdAXZTO/GOm1oSlVrat4K5wh6mxaZ19Hmo8WGg2dBz9qT881vpV3SndPpv1X2zm3wJKsoFmHuqirqztdrR6XcgWz5X3TfgayEkEvKeXn16+dxI4/TZg6Qn0Wlved/9zQMafQK9fAM+/q9vuxwJ/9gGsnwKGXS7ve/FTIG0X0HN1eaFZ/AC4/A1g7qJdaOZeA+6fVI9UljEyA0QpoCzQ/mzmzupZ4sXaC5ZXqSCt+j70WFLeU/5hMpkM9hb2sLewh7+bf6Xt7R3b4/bbtytdH1r2vJ1jO03fG5k38NPZnyrtw0hmBA+FB157+jUseGYBAKBYWYyYlBhNIWqsh78veatPw8dCsyFr7KM/hoTHWr9USvXxfdwp3di5QIsR6uI+bS9QnAm4Dgbkdupu908DyZsAq9aA97Tylx+dqi7Iun8F2HZSt6X+DsS8op4tPWB3ed+oZ4HMc8DACMDlrzvLPDgNHBkH2HfXLjRvrAfuHlGP/JUVmqV5wO0DgKL8i/mvDwioStSjmGVMrdSFn+lDayc6BqivgzR3LW+zcAM6vFv+Wcu0f1t9xx3b8tEpNGsJjEwFTLQXG4f/54D7cCCyBkvlWLhW34caDZlMBqdmTnBq5oSnWzz92L625rZYOmhppYK0SFmEG1k3tE7fX3twDf1/7A9AfX2ph8JDaxR0UOtB6OXRq9a5eavPhoGFZkNlCKM/TUVDPNZCpR4FU5UCFs7l7fm31DOHzZ3UhTKgLvLSdqsLoRZ/K7+u794J9WiZTQeg+V/rBgoBnH0fECVAh/fKr9u7uQNI3qge5a1Y5EUNA0pzgGd+LS9erq0FLnwEuD0H+H+hbrtzULuIr/yB1Kd07xxUF3bHpgP5yUDwccDhry/GrHggPlxdIFbMcO8YkHUBKKxwGhkyoCRTXaxWJLdTP1TK8jYLF6B5/8rFo9dL6izWT5W32fgCz2wAzBy0+wb8AEAFyCu023UBnr9X+aN2Wly5zdwJ8PuwcrtDFUWBkQlg2aJyO6D+87F0V//uVlnUy9TbnfpU/Xpq8lytXbGw90KtNpVQISM3A9czr8PVuvwfKTlFOfC298aNzBsoUZWo77iUmYT92K/pU1ZoXr53GSHrQipdH1r2cLFyqbRsFG/12TCw0GyIdB39aWjKFj4uu5ZNpVQXNpCV384OUC+zIkoBEyvA6K9rg5RF6gLLyFT7y74gTb3NvHn5SE9pvrp4MZIDVl7lfXOuqoujZi0BE0U1xxrA8RnqosGqtfp54R110WVsDrSpMOvz+jrgwRnAfWT5kjAFacDpherPFfB/5X0vLFWfPvWeCbQaV943oq96tGtYhVvdnXwTSPwW6LgI6Pieuq34AfDbXxMNXiwt/z249Blw6XOg/QKg67//+hglwIG/qX/+exZg9NetBG/+Dzj/L+Cp2eWFpkwGxH+sLmR93iwvNLPOA0lr1dkqFnl3otWnoktygbJ5JSXZQM5loMBP+8+nJsr6OQYAhV7qY1zGxledSdFe+zV+4YAyX10wl3EeAPztUvltE8sEHaj8nvb+QND+yu1PzarcZu4EtHyhcrulW9Wfp74ZGatH4Q8+D0AG7d/rv/5/8/+yYf69QZIxkhnB1dpVq8gEgKdbPI0rr1+BSqhwK+eW9in5B0no6d5T0zfpQRIS7yci8X5ile/xz/7/xKJ+iwAAaTlp+PHMj1qL5JPhYqHZENV09CcjEjj/ofr5gD3lBdaV/wBXv1d/IbZ/u/xlO7sAQgkERZUXaYn/BS5+BniMAbp8XN73D1/1HUEGHwKa/fUvxcTvgLPvqgupHv8p77v9KfUo2pAYwPavL/urq4ETMwG3EKDvlvK+v7dWT4QYcrR8EejkDcCRCeo7kgyKLO+7N1A9UjUwEnAZqG5L2w1EjwQcegLBMeV9D4wA7p8A+m4H3Iep2+4eAfYNVp9Ofe5sed9j09RrCD6zXn1d22OPNYCie+pjWla4FdwETs5Rj+BVLDRTt6lP7Vp6lBeaJbnA9Z8AE2vtQjMnQX1doOtQ7ffKTaxieRmVeikaZVF5k1GFi/JFCYC/Cge5nfo0rEmFGcQyU3UxJTMtL/IBdWHmMRqwq1AQAkDbN6Au+isUec0HAF2WlZ+aLhPwnXqfFi7lbR6j1Ps0b17eVtNTtWX9em+svM2+q/rxsLI/74pMrQFTn5q9Z2PjMVo9Cl/lpSBfGt7oPDV4RjIjuCvc4a5wR2/P3lX26eneEwdeOVA+YSnruubnlOwUtLJtpel7NuMswiLD6ik9PSkWmg2RLqM/dw6qfxal5e35qeqi6+G7eWSeBSDUp1DLFN1Tjz4Vpmv3zU9RF5oV+yrzgcLbQHGWdt/SbPUIoahwOrKsOKr4ei1VjLRUGlWsqv0Ra/yZWKiXaqlYpBnJAVPbyqNaZo7qgsbYvObHuuJnk9sDHs9XPn3q9jd1kVmxcDN3Arp+Ahg/dD2d9yz1qWXbzhX26wAEHVQXkRVnL3daoh6hlFe41s/EWnsks0zH98pHPcsYGQPPnqz8mVqOVT8eVna6uyLHHurHw8omvlRk2aLyqV2e0q1fHqPVZzw4uY0MhI25Dfq27Fvl7T1LlCVat/V0sHTAy51fxvnb57XuokSGSSY49lxvUlNT4eHhgZSUFLi7P8GaZBlRNbugf8CfQMkDADL1JICyUa6sS+qRsWattCcRpEWoixenPuWnqPNSgLwb6pE9RYVr0e6fUp8+te1YPrJVeFddkJraqGftlsm5qu7bzLN8vyW56tmvxpaAeYW15IruqfvKbcvzqkrUM2hlJtoTHMqKVJmx/haRrumxHrSfy8E8Kc21sECV/9AwxGthiUgyp9JOwf+/lWfRPyx2RqzWHZZqo86+v5sgjmg2RDUd/XHuX/UIhU079eNhroMrtzXz0C4ay9hX8T+tuaN20VjGuk3lNlOrqheAfngUEFAXnBVPBVds1zeOtNUfntIlImp0WGg2RLygv/7wWNcvntIlImpUeNPahqps9Ofha90s3XmKsa7xWNcvI2P1aHyrcY8elSeiJq/sVp+PU5tbfVLd4ohmQ8bRn/rDY01EZFCkuNUn6Y6FZkNXNvpD+sdjTURkUAzpVp9UNZ46JyIiIiK9YKFJRERERHrBQpOIiIiI9IKFJhERERHpBQtNIiIiItILFppEREREpBcsNImIiIhIL1hoEhEREZFesNAkIiIiIr3gnYHqkUqlAgCkpaVJnISIiIhqqux7u+x7nGqOhWY9ysjIAAD06NFD4iRERESkq4yMDHh68paXupAJIYTUIZqK0tJSnD59Gs7Ozhg4cCCioqIq9enfv3+N2is+z8nJga+vL+Lj42Ftba2f8DXMqY/XVte/tturaq+urb6P9ZMcZ11fX5O+j+vD41yz1/M4R1Xbry5ez+McVW2/unh9fR7nqtrr6zirVCpkZGSga9euMDHhGJ0ueLTqkYmJCZ5++mkAgFwuh7u7e6U+NW2v+Dw7OxsA0KJFCygUCn1Er3FOfby2uv613V5Ve3Vt9X2sn+Q46/r6mvR9XB8eZx7n6vA48zjXdJshfhdyJLN2OBlIIrNnz36i9kf1qy9P8v66vra6/rXdXlV7Tdvqy5O+ty6vr0nfx/Xhca67vjzOT/56Huf6eX19Hueq2qX+LqTq8dR5I5CdnQ0bGxtkZWXV24hmU8VjXT94nOsHj3P94HGuHzzOhokjmo2AmZkZFi9eDDMzM6mjNHo81vWDx7l+8DjXDx7n+sHjbJg4oklEREREesERTSIiIiLSCxaaRERERKQXLDSJiIiISC9YaBIRERGRXrDQJCIiIiK9YKHZBI0aNQp2dnZ4/vnnpY7SqPzxxx/w8fHBU089he+++07qOI0Wf3/1LyUlBf3794evry86d+6MTZs2SR2p0crMzET37t3RpUsXdOzYEf/3f/8ndaRGLT8/Hy1btsTbb78tdZQmg8sbNUFRUVHIycnBjz/+iM2bN0sdp1EoLS2Fr68v9u/fDxsbG/j7++PIkSNwcHCQOlqjw99f/UtLS0NGRga6dOmC9PR0+Pv74/Lly2jWrJnU0RodpVKJoqIiWFpaIi8vDx07dsTJkyf5d4eevPvuu0hMTISHhwc+/fRTqeM0CRzRbIL69+8Pa2trqWM0KsePH0eHDh3QokULWFlZYejQodi7d6/UsRol/v7qn6urK7p06QIAcHFxgaOjI+7fvy9tqEbK2NgYlpaWAICioiIIIcDxH/24cuUKLl26hKFDh0odpUlhoWlgoqOjMWzYMLi5uUEmk2Hbtm2V+qxYsQKtWrWCubk5AgICcPz48foP2sg86XG/desWWrRooXneokUL3Lx5sz6iNyj8/a4fdXmcY2NjoVQq4eHhoefUDVNdHOvMzEz4+fnB3d0d8+fPh6OjYz2lbzjq4ji//fbbCA8Pr6fEVIaFpoHJy8uDn58fVqxYUeX2DRs2IDQ0FIsXL8apU6fg5+eH4OBg3L59W9On7Fqfhx+3bt2qr4/R4NTFcafq8TjXj7o6zvfv38fEiRPx3//+tz5iN0h1caxtbW1x5swZJCUlYd26dcjIyKiv+A3Gkx7n33//HW3btkXbtm3rMzYBgCCDBUBs3bpVq61Hjx5i9uzZmudKpVK4ubmJ8PBwnfa9f/9+MWbMmLqI2ejU5rgfPnxYjBw5UrP9zTffFL/88ku95G2onuT3m7+/NVfb41xYWCj69Okj1q5dW19RG7y6+Dt71qxZYtOmTfqM2eDV5jj/4x//EO7u7qJly5bCwcFBKBQK8cEHH9Rn7CaLI5oNSHFxMWJjYxEUFKRpMzIyQlBQEGJiYiRM1rjV5Lj36NED58+fx82bN5Gbm4tdu3YhODhYqsgNEn+/60dNjrMQAq+88goGDhyIl19+WaqoDV5NjnVGRgZycnIAAFlZWYiOjoaPj48keRuqmhzn8PBwpKSk4Pr16/j0008xffp0vP/++1JFblJMpA5ANXf37l0olUo4OztrtTs7O+PSpUs13k9QUBDOnDmDvLw8uLu7Y9OmTQgMDKzruI1GTY67iYkJPvvsMwwYMAAqlQoLFizgrFEd1fT3m7+/T6Ymx/nw4cPYsGEDOnfurLkW7qeffkKnTp3qO26DVpNjfePGDcyYMUMzCej111/ncdZRXX03kn6w0GyC/vzzT6kjNErDhw/H8OHDpY7R6PH3V/969+4NlUoldYwmoUePHoiLi5M6RpPyyiuvSB2hSeGp8wbE0dERxsbGlS4Uz8jIgIuLi0SpGj8e9/rB41w/eJzrD491/eBxNmwsNBsQuVwOf39/REZGatpUKhUiIyN56lCPeNzrB49z/eBxrj881vWDx9mw8dS5gcnNzUViYqLmeVJSEuLi4mBvbw9PT0+EhoZi0qRJ6N69O3r06IEvv/wSeXl5mDx5soSpGz4e9/rB41w/eJzrD491/eBxbsAknvVOD9m/f78AUOkxadIkTZ+vv/5aeHp6CrlcLnr06CGOHj0qXeBGgse9fvA41w8e5/rDY10/eJwbLt7rnIiIiIj0gtdoEhEREZFesNAkIiIiIr1goUlEREREesFCk4iIiIj0goUmEREREekFC00iIiIi0gsWmkRERESkFyw0iYiIiEgvWGgSERERkV6w0CQiIiIivWChSURERER6wUKTiIiIiPSChSYR0WOoVCqEh4fDy8sLFhYW8PPzw+bNmwEAUVFRkMlk2LFjBzp37gxzc3P07NkT58+f17z+xo0bGDZsGOzs7NCsWTN06NABO3fulOrjEBHVKxOpAxARGbLw8HD8/PPP+Pbbb/HUU08hOjoaL730EpycnDR95s+fj+XLl8PFxQXvvPMOhg0bhsuXL8PU1BSzZ89GcXExoqOj0axZM8THx8PKykrCT0REVH9kQgghdQgiIkNUVFQEe3t7/PnnnwgMDNS0T5s2Dfn5+ZgxYwYGDBiA9evXY+zYsQCA+/fvw93dHWvWrMELL7yAzp07Y8yYMVi8eLFUH4OISDIc0SQieoTExETk5+dj8ODBWu3FxcXo2rWr5nnFItTe3h4+Pj64ePEiAOCNN97ArFmzsHfvXgQFBWHMmDHo3Llz/XwAIiKJ8RpNIqJHyM3NBQDs2LEDcXFxmkd8fLzmOs3qTJs2DdeuXcPLL7+Mc+fOoXv37vj666/1GZuIyGCw0CQiegRfX1+YmZkhOTkZ3t7eWg8PDw9Nv6NHj2p+fvDgAS5fvoz27dtr2jw8PDBz5kxs2bIFb731Fv7v//6vXj8HEZFUeOqciOgRrK2t8fbbb2PevHlQqVTo3bs3srKycPjwYSgUCrRs2RIA8M9//hMODg5wdnbGu+++C0dHR4wcORIAMHfuXAwdOhRt27bFgwcPsH//fq0ilIioMWOhSUT0GP/617/g5OSE8PBwXLt2Dba2tujWrRveeecdqFQqAMDSpUvx5ptv4sqVK+jSpQv+97//QS6XAwCUSiVmz56N1NRUKBQKPPvss/jiiy+k/EhERPWGs86JiGopKioKAwYMwIMHD2Brayt1HCIig8NrNImIiIhIL1hoEhEREZFe8NQ5EREREekFRzSJiIiISC9YaBIRERGRXrDQJCIiIiK9YKFJRERERHrBQpOIiIiI9IKFJhERERHpBQtNIiIiItILFppEREREpBf/D5ufZiGHk5hZAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApoAAAHECAYAAACZYIrlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEGElEQVR4nO3deVxU5f4H8M+wDIsw7LIIKEqiuKBiIuYuSsZ172Zqaa5pWimlXirT7q3w2mqldu+v0qzMLTVvroQiLrihuKEoigIKuLLvM8/vj4mBERQGGc4An/frNa+Y5zxz5jNHcr4+5zzPkQkhBIiIiIiI6piR1AGIiIiIqHFioUlEREREesFCk4iIiIj0goUmEREREekFC00iIiIi0gsWmkRERESkFyw0iYiIiEgvWGgSERERkV6w0CQiIiIivWChSURERER6wUKTiIiIDFZ0dDSGDRsGNzc3yGQybNu2TafXFxYW4pVXXkGnTp1gYmKCkSNHVtkvKioK3bp1g5mZGby9vbFmzZonzk4sNImIiMiA5eXlwc/PDytWrKjV65VKJSwsLPDGG28gKCioyj5JSUkICQnBgAEDEBcXh7lz52LatGnYs2fPk0QnADIhhJA6BBEREVF1ZDIZtm7dqjUqWVRUhHfffRe//vorMjMz0bFjR/z73/9G//79K73+lVdeQWZmZqVR0YULF2LHjh04f/68pu3FF19EZmYmdu/eradP0zRwRJOIiIgarDlz5iAmJgbr16/H2bNn8fe//x3PPvssrly5UuN9xMTEVBrtDA4ORkxMTF3HbXJYaBIREVGDlJycjNWrV2PTpk3o06cP2rRpg7fffhu9e/fG6tWra7yf9PR0ODs7a7U5OzsjOzsbBQUFdR27STGROgARERFRbZw7dw5KpRJt27bVai8qKoKDg4NEqagiFppERETUIOXm5sLY2BixsbEwNjbW2mZlZVXj/bi4uCAjI0OrLSMjAwqFAhYWFnWStalioUlEREQNUteuXaFUKnH79m306dOn1vsJDAzEzp07tdoiIiIQGBj4pBGbPBaaREREZLByc3ORmJioeZ6UlIS4uDjY29ujbdu2mDBhAiZOnIjPPvsMXbt2xZ07dxAZGYnOnTsjJCQEABAfH4/i4mLcv38fOTk5iIuLAwB06dIFADBz5kx88803WLBgAaZMmYJ9+/Zh48aN2LFjR31/3EaHyxsRERGRwYqKisKAAQMqtU+aNAlr1qxBSUkJPvzwQ6xduxY3b96Eo6MjevbsiQ8++ACdOnUCALRq1Qo3btyotI+KJVBUVBTmzZuH+Ph4uLu7Y9GiRXjllVf09rmaChaaRERERKQXXN6IiIiIiPSChSYRERER6QUnA9Wj0tJSnD59Gs7OzjAyYo1PRETUEKhUKmRkZKBr164wMWHppAserXp0+vRp9OjRQ+oYREREVAvHjx/H008/LXWMBoWFZj0qu73V8ePH4erqKnEaIiIiqom0tDT06NGj0m0qqXosNOtR2elyV1dXuLu7S5yGiIiIdMHL3nTHI0ZEREREesFCk4iIiIj0goUmEREREekFC00iIiIi0gsWmkRERESkFyw0iYiIiEgvWGgSERERkV6w0CQiIiIiveCC7Q1UclYy7ubffeR2R0tHeNp41mMiIiIiiaiUwJ2DQEEaYOEKOPUBjIylTkVgodkgJWclw+cbHxSWFj6yj7mJORLmJLDYJCKixi1lCxD7JpCfWt5m6Q74Lwc8RkuXiwDw1HmDdDf/7mOLTAAoLC187IgnERFRg5eyBTj4vHaRCQD5N9XtKVukyUUaLDSJiIio4VEp1SOZEFVs/Kstdq66H0mGhSYRERE1PHcOVh7J1CKA/BR1P5IMC00iIiJqeArS6rYf6QULTSIiImp4LFzrth/pBQtNIiIianic+qhnl0P2iA4ywNJD3Y8kw0KTiIiIGh4jY/USRlX6q/j0/5LraUqMhWYD5GjpCHMT88f2MTcxh6OlYz0lIiIikoDHaKDXL5XbLd2BPpu5jqYB4ILtDZCnjScS5iRUWifzdNppTPvfNJjITHBg0gEu1k5ERI2f27NA+wVA+p9Au7cASzfeGciAsNBsoDxtPCsVkt1cu+HHMz/iYPJB/J7wO3q495AoHRERUT2R2wFd/y11CnoEFpqNzIcDP0T8nXi80uUVqaMQERFRE8dCs5Hp27Iv+rbsK3UMIiIi/cu/CRTdAWz9ANmjZp+TlDgZqBFTqpQoKi2SOgYREZF+XP0e2NUVODZV6iT0CCw0G6ntCdvRYWUHfHH0C6mjEBER6UdpLmBsATg9I3USegQWmo1UVmEWEu4l4POYz5Ffki91HCIiorrXdRkw5h7QcpzUSegRWGg2Ui92fBGtbFvhTv4dfH/qe6njEBER6YeJBWBiKXUKegQWmo2UqbEpFj6zEADwyZFPUKwsljgRERFRHeL3WoPAQrMRe6XLK3C1ckVKdgp+Pvuz1HGIiIjqRmkBsMUZ2BcMFGdKnYYeg4VmI2ZuYo63At8CACw9tBRKlVLiRERERHXgziGgJBPIvgiY2kidhh6DhWYj92r3V2Fnbocr968g4lqE1HGIiIienEsQEHIRCPie62caOC7Y3shZya3wzXPfwNXKFf1b9Zc6DhER0ZOTyQCbduoHGTQWmk3A+E7jpY5ARERETRBPnTcx2UXZEEJIHYOIiKh2rqwCYucBD85InYRqQNJCc9WqVejcuTMUCgUUCgUCAwOxa9cuzfb+/ftDJpNpPWbOnKm1j+TkZISEhMDS0hLNmzfH/PnzUVpaqtUnKioK3bp1g5mZGby9vbFmzZpKWVasWIFWrVrB3NwcAQEBOH78uNb2wsJCzJ49Gw4ODrCyssKYMWOQkZFRdwejHiyJWgL3z91x4MYBqaMQERHVztXvgYQvgfunpE5CNSBpoenu7o6lS5ciNjYWJ0+exMCBAzFixAhcuHBB02f69OlIS0vTPJYtW6bZplQqERISguLiYhw5cgQ//vgj1qxZg/fff1/TJykpCSEhIRgwYADi4uIwd+5cTJs2DXv27NH02bBhA0JDQ7F48WKcOnUKfn5+CA4Oxu3btzV95s2bh//973/YtGkTDhw4gFu3bmH06NF6PkJ1607eHeQU5+Djgx9LHYWIiKh2OrwLtH4FcHtO6iRUE8LA2NnZie+++04IIUS/fv3Em2+++ci+O3fuFEZGRiI9PV3TtmrVKqFQKERRUZEQQogFCxaIDh06aL1u7NixIjg4WPO8R48eYvbs2ZrnSqVSuLm5ifDwcCGEEJmZmcLU1FRs2rRJ0+fixYsCgIiJianxZ0tJSREAREpKSo1fU5eSHiQJ4w+MBZZAHE89LkkGIiKihkbq7++GzGCu0VQqlVi/fj3y8vIQGBioaf/ll1/g6OiIjh07IiwsDPn55fftjomJQadOneDs7KxpCw4ORnZ2tmZUNCYmBkFBQVrvFRwcjJiYGABAcXExYmNjtfoYGRkhKChI0yc2NhYlJSVafdq1awdPT09Nn6oUFRUhOztb88jJyanNoakzrWxb4aXOLwEAPj7EUU0iIiLSL8kLzXPnzsHKygpmZmaYOXMmtm7dCl9fXwDA+PHj8fPPP2P//v0ICwvDTz/9hJdeeknz2vT0dK0iE4DmeXp6+mP7ZGdno6CgAHfv3oVSqayyT8V9yOVy2NraPrJPVcLDw2FjY6N5lH0uKS18ZiFkkGHbpW24cPtC9S8gIiIyBKX5QOL/AQVpUichHUheaPr4+CAuLg7Hjh3DrFmzMGnSJMTHxwMAZsyYgeDgYHTq1AkTJkzA2rVrsXXrVly9elXi1DUTFhaGrKwszaPsc0mpvVN7jG6vvrY0/FC4xGmIiIhqKD0SOD4D2NsL4OopDYbkhaZcLoe3tzf8/f0RHh4OPz8/LF++vMq+AQEBAIDExEQAgIuLS6WZ32XPXVxcHttHoVDAwsICjo6OMDY2rrJPxX0UFxcjMzPzkX2qYmZmpplRr1AoYG1t/bhDUW/e6fMOAGBz/Gbcy78ncRoiIqIakBkDDj2AFsN4N6AGRPJC82EqlQpFRUVVbouLiwMAuLq6AgACAwNx7tw5rdnhERERUCgUmtPUgYGBiIyM1NpPRESE5jpQuVwOf39/rT4qlQqRkZGaPv7+/jA1NdXqk5CQgOTkZK3rSRuKbq7d8M3Qb3BpziU4WDpIHYeIiKh6LZ4Dgo8B/l9KnYR0IOmdgcLCwjB06FB4enoiJycH69atQ1RUFPbs2YOrV69i3bp1eO655+Dg4ICzZ89i3rx56Nu3Lzp37gwAGDJkCHx9ffHyyy9j2bJlSE9Px3vvvYfZs2fDzMwMADBz5kx88803WLBgAaZMmYJ9+/Zh48aN2LFjhyZHaGgoJk2ahO7du6NHjx748ssvkZeXh8mTJwMAbGxsMHXqVISGhsLe3h4KhQKvv/46AgMD0bNnz/o/cHVgdo/ZUkcgIiLSnczgxsjocaSc8j5lyhTRsmVLIZfLhZOTkxg0aJDYu3evEEKI5ORk0bdvX2Fvby/MzMyEt7e3mD9/vsjKytLax/Xr18XQoUOFhYWFcHR0FG+99ZYoKSnR6rN//37RpUsXIZfLRevWrcXq1asrZfn666+Fp6enkMvlokePHuLo0aNa2wsKCsRrr70m7OzshKWlpRg1apRIS0vT6fMa6vIId/LuSB2BiIjo0fJShVCWSvb2hvr93RDIhOAVtfUlNTUVHh4eSElJgbu7u9RxkF2UjVe2vYKIaxFIejMJjpaOUkciIiKqbFc3ID8Z6LMVaN6n3t/e0L6/GxKOPzdh1nJr3Mi6gdziXCw/WvUELCIiIkkVZwF514Gi+4CindRpSEcsNJswmUyGd3qrZ6B/ffxrZBdlS5yIiIjoIXIbYHQG8OwJwNxJ6jSkIxaaTdyo9qPQzrEdsoqysPLESqnjEBERVWZkCtj7S52CaoGFZhNnJDNCWO8wAMDnMZ8jvyS/mlcQERER1QwLTcK4juPQyrYV7uTfwQ+nf5A6DhERkdrNP4C9zwCJ30mdhGqJhSbB1NgUC3otAACsiVsDLkRAREQGIXUbcPcIkHlW6iRUS5Iu2E6GY3JX9eL0k7pMgoy39iIiIkPQcTFg1w1wDJA6CdUSC00CAJibmGPW07OkjkFERFSumQfQ9jWpU9AT4KlzqkQlVEjLSZM6BhERETVwLDRJy9mMs+i8qjOG/jKU12oSEZF0zn0ApG4HlEVSJ6EnwEKTtLgr3HEj6wbOZJzBzis7pY5DRERNUV4ycG4JcHAUUJIjdRp6Aiw0SYu9hT1mdVdfq/nRwY84qklERBIQQNs5gOcLgLmj1GF0Fh0djWHDhsHNzQ0ymQzbtm2r9jVRUVHo1q0bzMzM4O3tjTVr1mhtX7VqFTp37gyFQgGFQoHAwEDs2rVLs/369euQyWRVPjZt2lTHn7DmWGhSJfN6zoOZsRliUmMQfSNa6jhERNTUNGsJdP8aeOZXqZPUSl5eHvz8/LBixYoa9U9KSkJISAgGDBiAuLg4zJ07F9OmTcOePXs0fdzd3bF06VLExsbi5MmTGDhwIEaMGIELFy4AADw8PJCWlqb1+OCDD2BlZYWhQ4fq5XPWhExwyKrepKamwsPDAykpKXB3d5c6zmPN3jEbK0+uxODWg7H35b1SxyEiIpLMk3x/y2QybN26FSNHjnxkn4ULF2LHjh04f/68pu3FF19EZmYmdu/e/cjX2dvb45NPPsHUqVOr3N61a1d069YN33//vU6Z6xJHNKlK85+ZD2OZMSKuReDEzRNSxyEioqYiJ1H9MEA5OTnIzs7WPIqK6maiUkxMDIKCgrTagoODERMTU2V/pVKJ9evXIy8vD4GBgVX2iY2NRVxc3COL0PrCQpOq1Mq2FSZ0ngAA2HBhg8RpiIioybgQDvzvKeDcv6ROUomvry9sbGw0j/Dw8DrZb3p6OpydnbXanJ2dkZ2djYKCAk3buXPnYGVlBTMzM8ycORNbt26Fr69vlfv8/vvv0b59e/Tq1atOMtYWF2ynR1rUdxHGdxyPIW2GSB2FiIiaCmUBIDMBnKQtkKoSHx+PFi1aaJ6bmZnV6/v7+PggLi4OWVlZ2Lx5MyZNmoQDBw5UKjYLCgqwbt06LFq0qF7zVYWFJj2St703vO29pY5BRERNyTPrgKdXAibNpE5SibW1NRQKRZ3v18XFBRkZGVptGRkZUCgUsLCw0LTJ5XJ4e6u/l/39/XHixAksX74c//nPf7Reu3nzZuTn52PixIl1nlVXPHVONZJdlI07eXekjkFERE2B3BYwMpU6Rb0JDAxEZGSkVltERMQjr78so1KpqrxO9Pvvv8fw4cPh5ORUpzlrg4UmVeuXs7+g5ZctsWi/9EPwRETUiKlKpE5QJ3JzcxEXF4e4uDgA6uWL4uLikJycDAAICwvTGm2cOXMmrl27hgULFuDSpUtYuXIlNm7ciHnz5mn6hIWFITo6GtevX8e5c+cQFhaGqKgoTJgwQeu9ExMTER0djWnTpun/g9YAC02qlqeNJzILM7E6bjVuZt+UOg4RETVGeTeAzQ7AobGAUEmd5omcPHkSXbt2RdeuXQEAoaGh6Nq1K95//30AQFpamqboBAAvLy/s2LEDERER8PPzw2effYbvvvsOwcHBmj63b9/GxIkT4ePjg0GDBuHEiRPYs2cPBg8erPXeP/zwA9zd3TFkiGHMr+A6mvWoIa2j+bC+q/viYPJBhPYMxWfBn0kdh4iIGpvE/wOOzwCcegODD0qdRktD/v6WGkc0qUbe6fMOAODb2G9xN/+uxGmIiKjRaTMVCD4B+NXNkkFkGFhoUo0EtwlGN9duyC/Jx1fHvpI6DhERNTYyI8ChO9C8t9RJqA6x0KQakclkeKe3elTz6+NfI7soW+JEREREZOhYaFKNjWo/Cu0c2yG7KBv7k/ZLHYeIiBqL8x8CZxYBuUlSJ6E6xgXbqcaMZEb4fvj3aN6sORdyJyKiuqFSAglfAUV3AOcBgJWX1ImoDrHQJJ308jC8W4IREVFDpgK6fgqk7wWa95E6DNUxnjqnWrt87zKKlcVSxyAioobMyBRoPRHo9XOTuhtQU8FCk2rljV1voN037fDL2V+kjkJEREQGioUm1YqnjScEBJYeXgqlSil1HCIiaojybwHXfwWKM6VOQnrCQpNq5VX/V2FnbofL9y7jt4u/SR2HiIgaopQtwJHxQPQoqZOQnrDQpFqxNrPGmwFvAgA+PvgxeCdTIiLSmUkzwMYXaBEidRLSExaaVGuvB7yOZqbNcCbjDHYl7pI6DhERNTRtJgMhFwCfeVInIT1hoUm1Zm9hj1ndZwEAPjr4EUc1iYiodoyMpU5AesJCk55IaGAozIzNcOnuJdzMuSl1HCIiaijybwIcoGj0uGA7PRFXa1f8Mf4P9HTvCSu5ldRxiIioIVApgV1dAGNLYOCfgOIpqRORnkg6orlq1Sp07twZCoUCCoUCgYGB2LWr/Fq/wsJCzJ49Gw4ODrCyssKYMWOQkZGhtY/k5GSEhITA0tISzZs3x/z581FaWqrVJyoqCt26dYOZmRm8vb2xZs2aSllWrFiBVq1awdzcHAEBATh+/LjW9ppkaaqCWgexyCQioprLuQKU5gElWYBVK6nTkB5JWmi6u7tj6dKliI2NxcmTJzFw4ECMGDECFy5cAADMmzcP//vf/7Bp0yYcOHAAt27dwujRozWvVyqVCAkJQXFxMY4cOYIff/wRa9aswfvvv6/pk5SUhJCQEAwYMABxcXGYO3cupk2bhj179mj6bNiwAaGhoVi8eDFOnToFPz8/BAcH4/bt25o+1WUhQAiBk7dOSh2DiIgMnU07YMw9YNA+3g2osRMGxs7OTnz33XciMzNTmJqaik2bNmm2Xbx4UQAQMTExQgghdu7cKYyMjER6erqmz6pVq4RCoRBFRUVCCCEWLFggOnTooPUeY8eOFcHBwZrnPXr0ELNnz9Y8VyqVws3NTYSHhwshRI2yVKWwsFBkZWVpHvHx8QKASElJqc2hMWgFJQWi67ddBZZAnM84L3UcIiKiOpOSktJov7/1zWAmAymVSqxfvx55eXkIDAxEbGwsSkpKEBQUpOnTrl07eHp6IiYmBgAQExODTp06wdnZWdMnODgY2dnZmlHRmJgYrX2U9SnbR3FxMWJjY7X6GBkZISgoSNOnJlmqEh4eDhsbG83D19e3tofH4JmbmKO1XWsAwNLDSyVOQ0RERIZA8kLz3LlzsLKygpmZGWbOnImtW7fC19cX6enpkMvlsLW11erv7OyM9PR0AEB6erpWkVm2vWzb4/pkZ2ejoKAAd+/ehVKprLJPxX1Ul6UqYWFhyMrK0jzi4+NrdlAaqLDeYQCAX8/9imsPrkmchoiIDNKV/wD7nwVSf5c6CdUDyQtNHx8fxMXF4dixY5g1axYmTZrUaAoyMzMzzUQnhUIBa2trqSPplb+bP4LbBEMplFh2eJnUcYiIyBCl/Aak7QFyEqVOQvVA8kJTLpfD29sb/v7+CA8Ph5+fH5YvXw4XFxcUFxcjMzNTq39GRgZcXFwAAC4uLpVmfpc9r66PQqGAhYUFHB0dYWxsXGWfivuoLgupvdvnXQDA6rjVuJVzS+I0RERkcPy/ArosAzw4obYpkLzQfJhKpUJRURH8/f1hamqKyMhIzbaEhAQkJycjMDAQABAYGIhz585pzQ6PiIiAQqHQXA8ZGBiotY+yPmX7kMvl8Pf31+qjUqkQGRmp6VOTLKTWp2Uf9PbsjWJlMT6P+VzqOEREZGhs2gG+8wErL6mTUD2QdMH2sLAwDB06FJ6ensjJycG6desQFRWFPXv2wMbGBlOnTkVoaCjs7e2hUCjw+uuvIzAwED179gQADBkyBL6+vnj55ZexbNkypKen47333sPs2bNhZmYGAJg5cya++eYbLFiwAFOmTMG+ffuwceNG7NixQ5MjNDQUkyZNQvfu3dGjRw98+eWXyMvLw+TJkwGgRlmo3Du938Fz657DkZQjEEJAJpNJHYmIiIikIOWU9ylTpoiWLVsKuVwunJycxKBBg8TevXs12wsKCsRrr70m7OzshKWlpRg1apRIS0vT2sf169fF0KFDhYWFhXB0dBRvvfWWKCkp0eqzf/9+0aVLFyGXy0Xr1q3F6tWrK2X5+uuvhaenp5DL5aJHjx7i6NGjWttrkqU6TWV5BJVKJf68+qdQqVRSRyEiIkOhLBXi9D+ESN+n/rkBaSrf3/ogE4I3Gq0vqamp8PDwQEpKCtzd3aWOQ0REVH/uHAYiegNyO2D0bcCo4dwFm9/ftddw/pSpQcorzkP8nXg83eJpqaMQEZGUTBVA61cAE+sGVWTSk+GfNOnNuYxzGPDjABgbGeP6m9dhYWohdSQiIpKKbSeg52qpU1A9M7hZ59R4tHNsByu5FW7n3cb3p7+XOg4RERHVMxaapDemxqZY8MwCAMCyw8tQrCyWOBEREUki8wJQ8Og76VHjxUKT9Gpyl8lwbuaMlOwUrDu3Tuo4REQkhdg3ga2uQNJPUiehesZCk/TKwtQCbwW+BQAIPxQOpUopcSIiIqpXKiWgKlT/7MC1p5saFpqkdzO7z4SduR0u37uMLRe3SB2HiIjqk5ExMPgQMDoDUDwldRqqZyw0Se+szazxRsAbkEGG0+mnpY5DRERSMG8udQKSAJc3onrxZsCbGNthLNo7tZc6ChER1RehAoRQj2pSk8QRTaoXdhZ2LDKJiJqaO0eArS5A7Dypk5BEWGhSvbv24Bri78RLHYOIiPQtbRdQdBcouiN1EpIIC02qV2vi1qDt120xbw//dUtE1Oh1WgIM2g+0e0vqJCQRFppUr/q17AcA2Ht1L07eOilxGiIi0isjU8C5P2DfVeokJBEWmlSvvOy8ML7TeADAxwc/ljgNERER6RMLTap3Yb3DIIMMWy9t5bWaRESNVew8IH4ZUHhb6iQkIRaaVO/aO7XHqPajAABLDy2VOA0REdW54kzg8jdA3EKgJEfqNCQhFpokiXd6vwMAWHduHa49uCZxGiIiqlMyY8B/OdBmOmDdRuo0JCEWmiQJfzd/BLcJRjN5M5zLOCd1HCIiqkum1kDb14CA/0qdhCTGOwORZFaFrIK9hT1szG2kjkJERER6wEKTJONl5yV1BCIiqmtZl4DcRMB5IGBiKXUakhhPnZPkhBD489qfuJd/T+ooRET0pK59DxwYBpx4TeokZABYaJLkpm2fhsE/DcZXx76SOgoRET0puT1g6Qm4PSd1EjIALDRJckOfGgoA+Or4V8gp4jIYREQNWocwYMR1wGOM1EnIALDQJMmNajcKPg4+yCzMxKqTq6SOQ0RET0omA4yMpU5BBoCFJknO2MgYYb3DAACfx3yOgpICiRMREVGtFKRJnYAMDAtNMgjjO41HS5uWyMjLwA+nf5A6DhER6ar4AbDNA/jDFyjJljoNGQgWmmQQTI1NseCZBQCAZUeWoURZInEiIiLSyf1YADL1aXNThdRpyECw0CSDMbnLZDg3c4alqSWSs5KljkNERLpwCQLG3AF6/Sp1EslFR0dj2LBhcHNzg0wmw7Zt26p9TVRUFLp16wYzMzN4e3tjzZo1WttXrVqFzp07Q6FQQKFQIDAwELt27aq0n5iYGAwcOBDNmjWDQqFA3759UVAg3SVpLDTJYFiYWuDQlEO48NoFtLHnvXGJiBocuS1g11nqFJLLy8uDn58fVqxYUaP+SUlJCAkJwYABAxAXF4e5c+di2rRp2LNnj6aPu7s7li5ditjYWJw8eRIDBw7EiBEjcOHCBU2fmJgYPPvssxgyZAiOHz+OEydOYM6cOTAykq7ckwkhhGTv3sSkpqbCw8MDKSkpcHd3lzoOERER1cCTfH/LZDJs3boVI0eOfGSfhQsXYseOHTh//rym7cUXX0RmZiZ27979yNfZ29vjk08+wdSpUwEAPXv2xODBg/Gvf/1Lp4z6xBFNMkgFJQX45ewv4L+DiIgagLNLgIPPA7cPSZ1Er3JycpCdna15FBUV1cl+Y2JiEBQUpNUWHByMmJiYKvsrlUqsX78eeXl5CAwMBADcvn0bx44dQ/PmzdGrVy84OzujX79+OHRI2j8TFppkcJQqJTqt6oSXtr6E3YmP/pccEREZiBvrgJTfgMJ0qZPola+vL2xsbDSP8PDwOtlveno6nJ2dtdqcnZ2RnZ2tdX3luXPnYGVlBTMzM8ycORNbt26Fr68vAODatWsAgCVLlmD69OnYvXs3unXrhkGDBuHKlSt1krM2WGiSwTE2MsbIdiMBAB8d/IijmkREhkwIoNc6oOMiwHWI1Gn0Kj4+HllZWZpHWFhYvb6/j48P4uLicOzYMcyaNQuTJk1CfHw8AEClUgEAXn31VUyePBldu3bFF198AR8fH/zwg3TLBrLQJIP0VuBbkBvLcTjlMA4mH5Q6DhERPYpMBjh0Bzr/s9Eva2Rtba2Z9a1QKGBmZlYn+3VxcUFGRoZWW0ZGBhQKBSwsLDRtcrkc3t7e8Pf3R3h4OPz8/LB8+XIAgKurKwBoRjjLtG/fHsnJ0q3kwkKTDJKrtSumdJkCAPj44McSpyEiItKfwMBAREZGarVFRERorr98FJVKpblOtFWrVnBzc0NCQoJWn8uXL6Nly5Z1G1gHLDTJYC14ZgGMZcbYc3UPTt46KXUcIiJ6WNF94Oz7wD3+HV1Rbm4u4uLiEBcXB0C9fFFcXJxmZDEsLAwTJ07U9J85cyauXbuGBQsW4NKlS1i5ciU2btyIefPmafqEhYUhOjoa169fx7lz5xAWFoaoqChMmDABgHp2+/z58/HVV19h8+bNSExMxKJFi3Dp0iXNrHQpSFpohoeH4+mnn4a1tTWaN2+OkSNHVqrE+/fvD5lMpvWYOXOmVp/k5GSEhITA0tISzZs3x/z581FaWqrVp7qFUAFgxYoVaNWqFczNzREQEIDjx49rbS8sLMTs2bPh4OAAKysrjBkzptJQN9UdLzsvjO80HgAQfqhuLrgmIqI6lLYbOP8v4OhkqZMYlJMnT6Jr167o2rUrACA0NBRdu3bF+++/DwBIS0vTOp3t5eWFHTt2ICIiAn5+fvjss8/w3XffITg4WNPn9u3bmDhxInx8fDBo0CCcOHECe/bsweDBgzV95s6di7CwMMybNw9+fn6IjIxEREQE2rSRcG1qIaHg4GCxevVqcf78eREXFyeee+454enpKXJzczV9+vXrJ6ZPny7S0tI0j6ysLM320tJS0bFjRxEUFCROnz4tdu7cKRwdHUVYWJimz7Vr14SlpaUIDQ0V8fHx4uuvvxbGxsZi9+7dmj7r168Xcrlc/PDDD+LChQti+vTpwtbWVmRkZGj6zJw5U3h4eIjIyEhx8uRJ0bNnT9GrV68af96UlBQBQKSkpNT2kDU5F25fEEYfGIkRv44QJcoSqeMQEVFFGQeEiH5eiHMfSp1Er/j9XXuSFpoPu337tgAgDhw4oGnr16+fePPNNx/5mp07dwojIyORnp6uaVu1apVQKBSiqKhICCHEggULRIcOHbReN3bsWBEcHKx53qNHDzF79mzNc6VSKdzc3ER4eLgQQojMzExhamoqNm3apOlz8eJFAUDExMTU6PPxF7V2bmTekDoCERE1Yfz+rj2DukYzKysLgHql+4p++eUXODo6omPHjggLC0N+fr5mW0xMDDp16qS1/lRwcDCys7M1t2WqbiHU4uJixMbGavUxMjJCUFCQpk9sbCxKSkq0+rRr1w6enp6PXFC1qKhIa2HXnJwcnY8JAZ42nlJHICIiolowkTpAGZVKhblz5+KZZ55Bx44dNe3jx49Hy5Yt4ebmhrNnz2LhwoVISEjAli1bADx6kdOybY/rU7YQ6oMHD6BUKqvsc+nSJc0+5HI5bG1tK/Upe5+HhYeH44MPPtDxSNCjJGcl42jqUbzQ4QWpoxAR0YM4oFkr9f3NiR7BYArN2bNn4/z585VulTRjxgzNz506dYKrqysGDRqEq1evSntxaw2EhYUhNDRU8/zmzZuV1reimrly7wp8V/rCSGaEPp594GrtKnUkIqKmSwjg4N+BvOvAwD8B535SJyIDZRCnzufMmYM//vgD+/fvr/Zm9QEBAQCAxMREAI9e5LRs2+P6lC2E6ujoCGNj4yr7VNxHcXExMjMzH9nnYWZmZloLu1pbWz/2s9Gjedt7I6BFAIqVxfgs5jOp4xARNW0lmYCxHJAZAfbdpE5DBkzSQlMIgTlz5mDr1q3Yt28fvLy8qn1N2ZpUZSvgBwYG4ty5c7h9+7amT0REBBQKhWb0sLqFUOVyOfz9/bX6qFQqREZGavr4+/vD1NRUq09CQgKSk5OrXVCVnpxMJsO7fd4FAHx78lvcy78ncSIioiZMbgeEXABG3ABMOYhCj6Hr7KFF+xaJfdf2iYKSgieeiTRr1ixhY2MjoqKitJYvys/PF0IIkZiYKP75z3+KkydPiqSkJPH777+L1q1bi759+2r2Uba80ZAhQ0RcXJzYvXu3cHJyqnJ5o/nz54uLFy+KFStWVLm8kZmZmVizZo2Ij48XM2bMELa2tlqz2WfOnCk8PT3Fvn37xMmTJ0VgYKAIDAys8eflrLUno1KpRJdvuwgsgXh/3/tSxyEioiaC39+1p3OhGbQ2SDT7qJkw+5eZ6P1Db/Fu5Lsi4mqEyC/O1/3NgSofq1evFkIIkZycLPr27Svs7e2FmZmZ8Pb2FvPnz9daR1MIIa5fvy6GDh0qLCwshKOjo3jrrbdESYn2mov79+8XXbp0EXK5XLRu3VrzHhV9/fXXwtPTU8jlctGjRw9x9OhRre0FBQXitddeE3Z2dsLS0lKMGjVKpKWl1fjz8hf1yW08v1FgCYTtUluRXZgtdRwioqZHWSqESiV1inrF7+/akwkhhK6joKWqUhxLPYboG9E4cOMAjqQcQZGyCE+7PY1DUw5Vv4MmKjU1FR4eHkhJSan2WlSqmlKlRIeVHZBwLwH/Dvo3FjyzQOpIRERNS9LPwJl3gbZzAN/5UqepF/z+rr1azTo3MTLBM57PwKmZE+wt7GFtZo1tl7bh0t1LdZ2PSIuxkTH+0fsfeH3X61AJldRxiIianlu7gPxk9YQgomroXGj+N/a/iLoehQM3DqCotAh9WvZB/5b98V6f99DZubM+MhJpmdBpAob7DIe9hX31nYmIqG4F/B/Qahxg7SN1EmoAdC40Z/4xE07NnPBW4Ft47enXYCW30kcuokcyNTZlkUlEJBUTS6DF36ROQQ2EzoXmlrFbEH0jGuvPr8fiqMXo6tIV/Vv1R/9W/dHbszcsTS31kZOoEiEEDiYfRFFpEQa3GSx1HCIiInqIzoXmyHYjMbLdSABAVmEWDiYfxKb4Tfjbur/BSGaEwvcK6zojUZXWnlmLV35/BT4OPrjw2gUYGxlLHYmIqPESAjg2BbDvDnhNAkx5RpOqV6sF2+/l38OWi1uwaP8ivBP5Dn4++zMUZgoMfWpoXecjeqRR7UfB1twWCfcSsPXSVqnjEBE1btkXgWtrgFOh1XYlKqPziGanVZ1w8c5F2FnYoW/LvpjebTr6terHiUBU7xRmCrzR4w38M/qf+PjgxxjTfgxkMpnUsYiIGie5A9Dl30DRXY5mUo3pPhnIfyb6teqHjs076iMPkU7eCHgDn8V8htPpp7E7cTdH1YmI9MXCGfDl2sWkG51Pnc/uMVtTZAr1nYXqPBRRTTlYOmBm95kAgI8PfSxxGiIiIqqoVtdorj2zFp1WdYLFRxaw+MgCnVd1xk9nfqrrbEQ1EhoYCrmxHIeSDyH6RrTUcYiIGp97J4GM/YCqROok1MBUW2huubgFt3JuaZ5/HvM5Zu2Yhee8n8PGv2/Exr9vxLPez2Lmjpn4IuYLvYYlqoqbtRumdJkCb3tvFJQUSB2HiKjxubgMiBwInP9I6iTUwFR7jaYQAr1/6I3/jfsfOjTvgK+Pf41VIasw0W+ips9wn+Ho4NQBSw4swbzAeXoNTFSVfw/+NyxNLWFiVKu7qhIR0eOYuwBmjoDbc1InoQam2m/lMb5j0LxZc7yw+QVceO0C0nLS0MujV6V+vTx6IS0nTS8hiaqjMFNIHYGIqPHq/hXQ7QtAVqsr7qgJq9FvTJ+WfXDglQMAAG97b2y8sLFSnw0XNuAph6fqNh2RjopKi/B/sf+HS3cvSR2FiKhxMTIGuIQc6ajG5xkdLR0BAB/0/wBjN49F9I1oPOPxDADgcMphRCZFYuPzlQtQovo0e+dsfH/6e7zc+WWsHbVW6jhERA2bEEDhbfXSRkS1oPMY+BjfMTg27RgcLR2xLWEbtiVsg6OlI45PO45R7UfpIyNRjZUtdbTu3DokPUiSOA0RUQOXFQ9sdQEi+gJCJXUaaoB0njlx/vZ5+Lv54+fRP1fatu3SNs190Imk0N2tO4a0GYK9V/fikyOfYGXISqkjERE1XPeOq/9ras3rM6lWdP6tCf45uMqRot/if8OELRPqJBTRk3in9zsAgB9O/8AJakRET6LNZGDULaDrp1InoQZK50JzWtdpCPopCOm56Zq2Dec3YOK2iVgzYk1dZiOqlb4t++IZj2dQpCzC5zGfSx2HiKhhs3AFbNpLnYIaKJ0LzQ8GfIDnvJ9D0Nog3C+4j3Xn1mHy75OxduRa/L3D3/WRkUgnMpkM7/RRj2quOrkK9/LvSZyIiIioaarV6tZfP/c1JmyZgJ7f9cTNnJv4dcyvGNFuRF1nI6q1od5D0dWlK5ytnJFVlAUHSwepIxERNSzHZwLKQqD9fMC2g9RpqIGqUaG5PWF7pbbR7Ubj4I2DGNdxHGQymabPcJ/hdZuQqBZkMhmiJ0fDSm4ldRQiooZHWQRc/wUozQXazpY6DTVgNSo0R64f+chtP5z+AT+c/gGA+std+b6yToIRPSkWmUREtSQzAfptB9L/BOz9pU5DDViNCk3VYq6dRQ3XrZxbWHliJd7r+x7MTcyljkNEZPiMjAHnAeoH0ROo1TWaRA2FEAIDfhyAy/cuw83aDa89/ZrUkYiIiJqMWq2+euD6AQz7dRi8v/KG91feGP7rcBy8cbCusxE9MZlMhjd6vAEAWHZ4GUqUJRInIiIycNlXgPhlQNYlqZNQI6Bzofnz2Z8R9FMQLE0t8UbAG3gj4A1YmFpg0NpBWHdunT4yEj2RKV2noHmz5riRdYO/o0RE1UnZDMQtBE6/LXUSagR0LjQ/OvgRlgUtw4bnN2gKzQ3Pb8DSoKX4V/S/9JGR6IlYmFogtGcoACD8UDiUKk5YIyJ6JEU7wDUY8BgjdRJqBHQuNK89uIZhPsMqtQ/3GV7lrSmJDMGsp2fB1twWCfcSsPXSVqnjEBEZLo9RwIDd6ttPUtMTORAozqzcXpKt3qYjnQtND4UHIq9FVmr/89qf8LDx0DkAUX1QmCnweo/XAQAfH/wYQgiJExERERmgjChAVVy5XVkI3NZ9Po7Os87fCnwLb+x+A3Hpcejl0QsAcDjlMNbErcHyZ5frHICovrwZ8Ca+Pfkt+nj2QWFpISxMLaSORERkWO6dBGw6ACb8+7HJeXC2/OeseKAgvfy5UAJpuwHLFjrvVudCc9bTs+Bi5YLPYj7DxviNAID2ju2x4fkNvA0lGTQHSwckz0vmWppERFVRFgGRA9RFxXNnAWtvqRNRfdrVBZDJ1I+qTpEbWwDdv9Z5tzoVmqWqUnx88GNM6ToFh6Yc0vnNiKTGIpOI6BFykwC5HSBKAavWUqeh+jYiCRAC2N4aCD4OmDuVbzOSA2bN1Qv560inazRNjEyw7PAylKpKdX4jIkMSkxKDD6I+kDoGEZHhsGkHjLgBBJ8EZLVaZpsasmYtAatWwHgV4NBd/bzsYeFaqyITqMVkoEGtB+HA9QO1ejMiQ3Ar5xb6rO6DJQeWIPZWrNRxiIgMh0wGWLpJnYKk9Ksx8OcAoOi+dntBhnqbjnS+RnOo91D8I/IfOHf7HPxd/dFM3kxr+3Cf4TqHIKpPbtZuGNdpHH4++zPCD4Vj8wubpY5ERCQtlbLWI1bUyAgBqIqA3d2Bfv8DbDtob9ORzoXmazvU94r+PObzSttkMhmU73MxbDJ8Yb3D8PPZn7Hl4hZcvHMR7Z3aSx2JiEg68UuBG+uA9guB1hOlTkNSksmAPr8BF5YCewOBXj8B7iPKt+lI51PnqsWqRz50LTLDw8Px9NNPw9raGs2bN8fIkSORkJCg1aewsBCzZ8+Gg4MDrKysMGbMGGRkZGj1SU5ORkhICCwtLdG8eXPMnz8fpaXa15FGRUWhW7duMDMzg7e3N9asWVMpz4oVK9CqVSuYm5sjICAAx48f1zkLNQy+Tr4Y1W4UBASWHl4qdRwiImnd2qle0kZVKHUSkpoQgMwY6L4c6PYpcGgscP5DALVbf1rnQjM1O/WR246mHtVpXwcOHMDs2bNx9OhRREREoKSkBEOGDEFeXp6mz7x58/C///0PmzZtwoEDB3Dr1i2MHj1as12pVCIkJATFxcU4cuQIfvzxR6xZswbvv/++pk9SUhJCQkIwYMAAxMXFYe7cuZg2bRr27Nmj6bNhwwaEhoZi8eLFOHXqFPz8/BAcHIzbt2/XOAs1LGG9wwAAv5z9Bdczr0sbhohISv3/AHqtA1pwmUKqwHsGMGAXkPAlEFPLkW6ho/bftBf38u9Vaj9045CwCbfRdXdabt++LQCIAwcOCCGEyMzMFKampmLTpk2aPhcvXhQARExMjBBCiJ07dwojIyORnp6u6bNq1SqhUChEUVGREEKIBQsWiA4dOmi919ixY0VwcLDmeY8ePcTs2bM1z5VKpXBzcxPh4eE1zlKdlJQUAUCkpKTUqD/p3+C1gwWWQMz6Y5bUUYiIyEA1qe/vba2EKLyr3ZZ9RYj/tRNinZHOu9N5RLOne08M+WkIcopyNG3RN6Lx3LrnsLjf4tpVu3/JysoCANjb2wMAYmNjUVJSgqCgIE2fdu3awdPTEzExMQCAmJgYdOrUCc7Ozpo+wcHByM7OxoULFzR9Ku6jrE/ZPoqLixEbG6vVx8jICEFBQZo+NcnysKKiImRnZ2seOTk5VfYj6bzb5120tGmJbq7dpI5CREQkvRFJgJmDdpu1NzD0NDD8ms6707nQ/G74d/C08cSwX4ehqLQI+5P2I2RdCP7Z/5+YFzhP5wBlVCoV5s6di2eeeQYdO3YEAKSnp0Mul8PW1larr7OzM9LT0zV9KhaZZdvLtj2uT3Z2NgoKCnD37l0olcoq+1TcR3VZHhYeHg4bGxvNw9fXt4ZHg+pL35Z9kfhGIqZ1myZ1FCKi+qcsBA6PB66tBbhGNgFAXgqQX+EyybvHgdi5QNJa9ZqaOtK50DSSGWH98+thamyKgWsHYvj64QgfFI43e76p85tXNHv2bJw/fx7r169/ov0YkrCwMGRlZWke8fHxUkeih8hkMpgY6bz4AhFR45ARBdz4FTjzjnoCCNGR8UDGfvXPBenA/sHAvePAmXeBc//UeXc1+oY9m3G2UtuSfksw7rdxeKnTS+jbsq+mT2fnzjqHmDNnDv744w9ER0fD3d1d0+7i4oLi4mJkZmZqjSRmZGTAxcVF0+fh2eFlM8Er9nl4dnhGRgYUCgUsLCxgbGwMY2PjKvtU3Ed1WR5mZmYGMzMzzfPs7OyaHA6SQImyBL+c+wVFpUV4tfurUschIqof1k8BHd4DTJrVaukaaoQyzwMOPdQ/J28EbDoCQw4DaXuB4zOBTu8//vUPqVGh2eXbLpDJZBAVFuose/6f2P/gv6f+CyGEzutoCiHw+uuvY+vWrYiKioKXl5fWdn9/f5iamiIyMhJjxowBACQkJCA5ORmBgYEAgMDAQHz00Ue4ffs2mjdvDgCIiIiAQqHQnKoODAzEzp07tfYdERGh2YdcLoe/vz8iIyMxcuRIAOpT+ZGRkZgzZ06Ns1DD9cflPzD598mwM7fD+E7jYW1mLXUkIiL9s24D+P1L6hRkSEQJYPTXIFn6n4D7XzfiUbQDCtNqsb8auP7geo0fupg1a5awsbERUVFRIi0tTfPIz8/X9Jk5c6bw9PQU+/btEydPnhSBgYEiMDBQs720tFR07NhRDBkyRMTFxYndu3cLJycnERYWpulz7do1YWlpKebPny8uXrwoVqxYIYyNjcXu3bs1fdavXy/MzMzEmjVrRHx8vJgxY4awtbXVms1eXZbqNKlZaw1MqbJUtP26rcASiGWHlkkdh4iIDIiu398HDhwQf/vb34Srq6sAILZu3Vrta/bv3y+6du0q5HK5aNOmjVi9erXW9pUrV4pOnToJa2trYW1tLXr27Cl27typ1adfv34C6gUvNY9XX321ph9TbXcPIU4vFCIjWoj15kLcj1O334kRYksL3fYlhNB5eaO69PDBKHtUPLgFBQXitddeE3Z2dsLS0lKMGjVKpKWlae3n+vXrYujQocLCwkI4OjqKt956S5SUlGj12b9/v+jSpYuQy+WidevWlf4AhRDi66+/Fp6enkIul4sePXqIo0ePam2vSZbHYaFp2H449YPAEgjnT5xFQUmB1HGIiPQrPUqIuyeEUCmlTmLwdP3+3rlzp3j33XfFli1balRolg2IhYaGivj4ePH1119XGhDbvn272LFjh7h8+bJISEgQ77zzjjA1NRXnz5/X9OnXr5+YPn261uBdVlaWbh82fb8QG23VSxnFTC5vPx0mxIFRuu1LCCETohY3rqRaSU1NhYeHB1JSUrSuRSXDUKIsgffX3kjOSsaK51bgtadfkzoSEZH+7AlQT/LouRpo/YrUaQzak3x/y2QybN26VXNpXlUWLlyIHTt24Pz585q2F198EZmZmdi9e/cjX2dvb49PPvkEU6dOBQD0798fXbp0wZdffqlTxkpUSqA0G5DblbflXgdMLAHz5jrtSudZ50SNlamxKeb3mg8AWHZ4GUqUJRInIiLSE1UpYOkJmFgDrsFSp2kwcnJytNbHLioqqpP9Vrfe98OUSiXWr1+PvLy8SvNEfvnlFzg6OqJjx44ICwtDfn6+7oGMjNW/I7cPqR+FdwCrVjoXmUANJwMRNRVTu07Fv6L/hRtZN/Dr+V8x0a+Wt9wiIjJkRiZAn02AqgQwMpU6TYPx8HrYixcvxpIlS554v9Wt921hYQEAOHfuHAIDA1FYWAgrKyts3bpVK9P48ePRsmVLuLm54ezZs1i4cCESEhKwZcuWmocpzQNOvq5eN1Oo1G0yY8BrItD9a/Wopg5YaBJVYGFqgdCeodh7bS+87b2ljkNEpF8sMnUSHx+PFi1aaJ5XXMKwPvj4+CAuLg5ZWVnYvHkzJk2ahAMHDmiKzRkzZmj6durUCa6urhg0aBCuXr2KNm3a1OxNToUCtw8A/f4HOD2jbrt9CIh9Azj1FtBjlU6ZWWgSPWT+M/OxsPdCqWMQEemHshhQ5gNyW6mTNDjW1tZQKBR1vt/q1vsuI5fL4e2tHgTx9/fHiRMnsHz5cvznP/+pcr8BAQEAgMTExJoXmim/Ab03A879y9taPAeYWACHXtB/oalUKfHF0S+w8cJGJGclo1hZrLX9/sL7uu6SyKAYyXjpMhE1Yul/AtEjgJYvAr1+kjoNofr1vh9FpVI99jrRuLg4AICrq2vNw5TmA+bOldvNmqu36Ujnb9QPDnyAz2M+x9gOY5FVlIXQwFCMbj8aRjIjLOm/ROcARIbqdt5tvBP5Dv689qfUUYiI6s69Y4AoBUyspE7SaOXm5iIuLk5T6CUlJSEuLg7JyckA1LeonjixfA7AzJkzce3aNSxYsACXLl3CypUrsXHjRsybN0/TJywsDNHR0bh+/TrOnTuHsLAwREVFYcKECQCAq1ev4l//+hdiY2Nx/fp1bN++HRMnTkTfvn3RubMOd2107AmcWwwoC8vbSguA8x+ot+lK1/WQWi9vLf5I+EMIIYTVx1Yi8V6iEEKI5UeXi3Gbx+m8vlJTwnU0G5a397wtsASizw99pI5CRFS3sq8IkXNV6hQNhq7f3/v3769ynfBJkyYJIYSYNGmS6NevX6XXPG697ylTpoiWLVsKuVwunJycxKBBg8TevXs125OTk0Xfvn2Fvb29MDMzE97e3mL+/Pm6r6P54JwQW9yE2OwgxJ8D1Y/NDuq2B+erf/1DdF5Hs9nHzXBx9kV42njC9TNX7Bi/A91cu+Hag2vo+p+uyPpHlu7VbhPBdTQblls5t+C13AvFymJEvxKNPi37SB2JiIgk0KS+v6//CriPAK7/AmRfUrcp2gOtJgDn3ge6fqLT7nQ+de6ucEdajvpel23s2mDv1b0AgBM3T8DMuH5nXxHpk5u1GyZ3mQwA+PjQxxKnISIiqgcnZqlnnXtPB7p9pn54TwPOvAsk/azz7nQuNEe1G4XIpEgAwOs9Xsei/Yvw1NdPYeK2iZjSdYrOAYgM2YJnFsBYZozdibtxKu2U1HGIiJ7MwTHAiTlAfqrUSchQ9foFODxOvaRRmZNvAMnrgUH7dd7dE9+CMiYlBjGpMXjK/ikM8xn2JLtq9JrU0HsjMnrDaGy9tBUDWw3EJ0MqnzJwtHSEp42nBMmIiHSQfwvY9tcakKPSAAsXafM0IE3u+/v6OuDkHGBgBHD1eyD1d3WRqWir866eeB3NQI9ABHo8fvo9UUOVnJWMHVd2AAD2Xd8H///6V+pjbmKOhDkJLDaJyLCZ2QN9twOZZ1lk0uO1Gg8UZwJ7nwHMnYCgA4B17W5iUqtCM+FuAr4+/jUu3r0IAGjv2B6v93gdPo4+tQpBZKju5t+ttFbswwpLC3E3/y4LTSIybMbmgPsw9YOootjQqtvNnQC7bsDlleVt/p/rtGudC83f4n/Di7+9iO5u3RHorh7JPJp6FB1XdcT6MesxxneMrrskIiIiIqk8OF11u5U3UJJdvl0m03nXOheaC/5cgLDeYfjngH9qtS/evxgL/lzAQpOIiMjQ3D0G3I8FWgwDmnlInYYMTZDuk3xqSudZ52k5aZjoN7FS+0udX9Ise0REREQG5NoPwMnZQHy41EmoidG50Ozfqj8O3jhYqf1Q8iEuaE1ERGSI7P0Bp2eAFiOkTkJNTI1OnW9P2K75ebjPcCz8cyFi02LR0119z8ujqUexKX4TPuj/gX5SEhERUe15z1A/iOpZjQrNketHVmpbeWIlVp5YqdU2e+dszOw+s06CEREREVHDVqNCU7VYpe8cRAbJ0dIR5ibmKCwtfGQfI5kR7C3s6zEVEZEO7p0A7LoARqZSJ6EmSOdZ58lZyXBu5gwzE+37mgshkJKdwrUEqVHxtPFEwpwE3M2/W2nb+dvnMW37NJSoSrDu3Dq80+cdCRISET1G/i1gTw9Abg+MuAGYWkmdiJoYnQvNVl+2Qnun9tj+4na0sW+jab+ddxtey72gfF9ZpwGJpOZp41nlP6C6uXYDAHxx9AtM6DShvmMREVUvJwEwcwCsnmKRSZLQedY5oL4TUI/veiDyWqRW+xPeNp2owZnoNxHHpx1HS9uWUkchIqrMeQAwKgPo85vUSaiJ0rnQlMlkWBmyEu/1eQ8h60Lw1bGvtLYRNTWmxuXXPe26sgt38u5ImIaI6CFGxoClm9QpqInSudAsG7WcFzgPW8duxfv738f07dOrvR80UWP3n5P/Qci6ELyw+QWUKEukjkNETZ3gRF6SXq1OnZcZ+tRQHJl6BPuv78fffv1bXWUiapD6tOyDZvJmiLoehdA9oVLHIaKm7sRrwJ4A4NYeqZNQE6ZzodmvVT/IjeWa575Ovjg27RhszW15jSY1ab5Ovvhl9C8AgG9OfIPvTn0ncSIiarKEAG7+Adw7LnUSauJkgtVhvUlNTYWHhwdSUlLg7u4udRzSkw+jP8Si/YtgamSKqFei0Mujl9SRiKgpyr8F3NoBeE0EjM2q70+PxO/v2tN5RHPnlZ3Yk1h5GH7v1b3YdWVXnYQiasje7fMu/u77d5SoSjB6w2ikZqdKHYmImiJLN8B7OotMkpTOheY//vwHlKLyWpkqocI/Iv9RJ6GIGjKZTIbVI1ajs3NnZORlYNOFTVJHIiIikoTOC7ZfuX8Fvk6+ldrbObZD4v3EOglF1NA1kzfD7y/+jv1J+zG562Sp4xBRU5KfCpxdBLQYAXiMlDoNNXE6j2jamNng2oNrldoT7yeimWmzOglF1Bi0sm2lVWTycmgiqhc3dwDX1gAXl0mdhEj3QnOEzwjM3T0XV+9f1bQl3k/EW3vfwnCf4XUajqixuJt/F0N+HoLdibuljkJEjZ1jAOAzD2g9ReokRLqfOl82eBme/eVZtFvRDu4K9cyr1OxU9PHsg0+HfFrnAYkag89jPsef1/7EiZsncHz6cbR1aCt1JCJqrOy6AP5dpE5BBKAWhaaNuQ2OTDmCiGsROJN+BhamFujs3Bl9W/bVRz6iRmFxv8U4cOMAjqQcwYj1I3B06lHYmNtIHYuIiEivdC40AfWs2iFthmBImyF1nYeoUTIzMcNvL/yG7v/tjkt3L2HClgn4/cXfYWxkLHU0ImpMbu0GmrUCFD6ATCZ1GqKaFZpfHfsKM/xnwNzEHF8d++qxfd8IeKNOghE1Ni5WLtj24jb0Wd0HO67swPv738dHgz6SOhYRNRZCBRx9BSjMAAbtB5z7S52IqGaTgb44+gXyivM0Pz/q8eXRL3V68+joaAwbNgxubm6QyWTYtm2b1vZXXnkFMplM6/Hss89q9bl//z4mTJgAhUIBW1tbTJ06Fbm5uVp9zp49iz59+sDc3BweHh5YtqzyTLxNmzahXbt2MDc3R6dOnbBz506t7UIIvP/++3B1dYWFhQWCgoJw5coVnT4vUXe37vi/Yf8HAPj40MfYeGGjxImIqNEofqC+PtPMAXAMlDoNEYAajmgmvZlU5c9PKi8vD35+fpgyZQpGjx5dZZ9nn30Wq1ev1jw3M9O+w8GECROQlpaGiIgIlJSUYPLkyZgxYwbWrVsHAMjOzsaQIUMQFBSEb7/9FufOncOUKVNga2uLGTNmAACOHDmCcePGITw8HH/729+wbt06jBw5EqdOnULHjh0BAMuWLcNXX32FH3/8EV5eXli0aBGCg4MRHx8Pc3PzOjsm1Pi91PklnEk/gy2XtlS5Ji0RUa2YOQADdgPKYsBYLnUaIjVhIACIrVu3arVNmjRJjBgx4pGviY+PFwDEiRMnNG27du0SMplM3Lx5UwghxMqVK4WdnZ0oKirS9Fm4cKHw8fHRPH/hhRdESEiI1r4DAgLEq6++KoQQQqVSCRcXF/HJJ59otmdmZgozMzPx66+/PjJfYWGhyMrK0jzK8qakpDz6QFCTUKosFffz70sdg4iIaiAlJYXf37VUoxHN0D2hNS5cPw/+vFYF76NERUWhefPmsLOzw8CBA/Hhhx/CwcEBABATEwNbW1t0795d0z8oKAhGRkY4duwYRo0ahZiYGPTt2xdyefm/7oKDg/Hvf/8bDx48gJ2dHWJiYhAaqv0Zg4ODNafyk5KSkJ6ejqCgIM12GxsbBAQEICYmBi+++GKV2cPDw/HBBx/U1aGgRsTYyBh2Fnaa57G3YtHZuTNMjU0lTEVEDVZpHgAjwMRC6iREWmpUaJ5OP12jnclQtzPcnn32WYwePRpeXl64evUq3nnnHQwdOhQxMTEwNjZGeno6mjdvrvUaExMT2NvbIz09HQCQnp4OLy8vrT7Ozs6abXZ2dkhPT9e0VexTcR8VX1dVn6qEhYVpFbA3b96Ery9PlZK21adXY8YfMzC923SsDFkpdRwiaoiS1gKn3gJ85gJdPpY6DZFGjQrN/ZP26ztHlSqOFHbq1AmdO3dGmzZtEBUVhUGDBkmSSRdmZmZa15RmZ2dLmIYMlaOlI5QqJVadXAU/Zz+82v1VqSMRUUNz5wigLADkXJ+XDIvOt6CUUuvWreHo6IjExEQAgIuLC27fvq3Vp7S0FPfv34eLi4umT0ZGhlafsufV9am4veLrqupDVFvDfIbhw4EfAgDm7JqDgzcOSpyIiBqcwLXA0DjAa6LUSYi0NKhCMzU1Fffu3YOrqysAIDAwEJmZmYiNjdX02bdvH1QqFQICAjR9oqOjUVJSoukTEREBHx8f2NnZafpERkZqvVdERAQCA9XLQ3h5ecHFxUWrT3Z2No4dO6bpQ/QkwnqH4e++f0epqhRjNo5Bclay1JGIqCGRyQA7P8DCVeokRFokLTRzc3MRFxeHuLg4AOpJN3FxcUhOTkZubi7mz5+Po0eP4vr164iMjMSIESPg7e2N4OBgAED79u3x7LPPYvr06Th+/DgOHz6MOXPm4MUXX4SbmxsAYPz48ZDL5Zg6dSouXLiADRs2YPny5VrXTr755pvYvXs3PvvsM1y6dAlLlizByZMnMWfOHADqOyHNnTsXH374IbZv345z585h4sSJcHNzw8iRI+v1mFHjJJPJsHrEavg5++FO/h2M2jAK+SX5UsciIiJ6MlJOed+/f78AUOkxadIkkZ+fL4YMGSKcnJyEqampaNmypZg+fbpIT0/X2se9e/fEuHHjhJWVlVAoFGLy5MkiJydHq8+ZM2dE7969hZmZmWjRooVYunRppSwbN24Ubdu2FXK5XHTo0EHs2LFDa7tKpRKLFi0Szs7OwszMTAwaNEgkJCTo9Hm5PAJVJ+lBknBc5iiwBOKbY99IHYeIDJ1KKUREPyFOLxSiKFPqNI0Wv79rTyaEEBLWuU1KamoqPDw8kJKSAnd3d6njkIE6cP0AYlJjsPCZhZDxXsVE9Dh3jwF7ewKmCmD0HS7Urif8/q69Gs06J6L6069VP/Rr1U/qGETUENi0B3qtA4pYZJJhalCTgYiamtziXEz+fTIS7iZIHYWIDJGpAmg1DvB5Q+okRFVioUlkwObtnoc1cWswYv0IZBVmSR2HiIhIJyw0iQzYhwM/hLvCHQn3EjBhywQoVUqpIxGRobi1B7i2Fii8K3USokdioUlkwJytnLFt7DaYm5hjx5UdWLR/kdSRiMhQJHwBHJ0EXPtB6iREj8RCk8jA+bv54/vh3wMAwg+FY/359RInIiKD4NQbsPUDWgyTOgnRI7HQJGoAxncajwW9FgAApvw+BafSTkmciIgk1/E94Lk49cxzIgPFQpOogfh40McY6j0UNuY2KFYWSx2HiIioWlxHk6iBMDYyxrox65BXnIcWihZSxyEiqaiUQGYcYNcVkHG8iAwbf0OJGhBbc1utIjM1O1XCNEQkifsngN3dgR0dAd7cjwwcC02iBmpz/Gb4fOODb09+K3UUIqpPOVcBk2aAbWeAt6klA8dT50QNVOL9ROSX5OP1Xa+jg1MH9GnZR+pIRFQfvCYAns8DxQ+kTkJULY5oEjVQC59ZiLEdxqJUVYoxG8fgRuYNqSMRUX0xNgMsXKROQVQtFppEDZRMJsMPI35AV5euuJN/ByM3jER+Sb7UsYhIn4RK6gRUA9HR0Rg2bBjc3Nwgk8mwbdu2al8TFRWFbt26wczMDN7e3lizZo3W9lWrVqFz585QKBRQKBQIDAzErl27qtyXEAJDhw6t8XvrEwtNogbM0tQS217cBidLJ8Slx2HK71MgODmAqPE6MAKIHATcj5U6CT1GXl4e/Pz8sGLFihr1T0pKQkhICAYMGIC4uDjMnTsX06ZNw549ezR93N3dsXTpUsTGxuLkyZMYOHAgRowYgQsXLlTa35dffgmZgVy/y2s0iRo4TxtP/PbCbxi4diA2XNiA4T7DMb7TeKljEVFdK80D0vcCqmLAuJnUaegxhg4diqFDh9a4/7fffgsvLy989tlnAID27dvj0KFD+OKLLxAcHAwAGDZM+w5QH330EVatWoWjR4+iQ4cOmva4uDh89tlnOHnyJFxdXevg0zwZFppEjUCfln3wzdBvkHg/ES90eEHqOESkDybNgJALQMZ+QOEjdZomKScnB9nZ2ZrnZmZmMDMze+L9xsTEICgoSKstODgYc+fOrbK/UqnEpk2bkJeXh8DAQE17fn4+xo8fjxUrVsDFxTCu4WWhSdRIvNr9VakjEJG+WXurHyQJX19freeLFy/GkiVLnni/6enpcHZ21mpzdnZGdnY2CgoKYGFhAQA4d+4cAgMDUVhYCCsrK2zdulUr07x589CrVy+MGDHiiTPVFRaaRI1QsbIYH0Z/iNDAUNia20odh4ioUYiPj0eLFuU3zaiL0Uxd+Pj4IC4uDllZWdi8eTMmTZqEAwcOwNfXF9u3b8e+fftw+vTpes1UHU4GImqEJm2bhH9F/wvjfxsPpUopdRwielL3Y4GTrwMZB6RO0qRZW1trZn0rFIo6KzRdXFyQkZGh1ZaRkQGFQqEZzQQAuVwOb29v+Pv7Izw8HH5+fli+fDkAYN++fbh69SpsbW1hYmICExP1WOKYMWPQv3//OslZGyw0iRqh+b3mw8LEArsSd+GdyHekjkNETyp5M3D5GyCRdwJrjAIDAxEZGanVFhERoXX9ZVVUKhWKiooAAP/4xz9w9uxZxMXFaR4A8MUXX2D16tV6yV0TPHVO1Ah1c+2GH0b8gHG/jcOyI8vg5+LHmehEDZnrs0DRXaDFsOr7kuRyc3ORmJioeZ6UlIS4uDjY29vD09MTYWFhuHnzJtauXQsAmDlzJr755hssWLAAU6ZMwb59+7Bx40bs2LFDs4+wsDAMHToUnp6eyMnJwbp16xAVFaVZAsnFxaXKCUCenp7w8vLS8yd+NBaaRI3Uix1fxJn0M1h6eCmmbp8KHwcf+Lv5Sx2LiGrDuZ/6QQ3CyZMnMWDAAM3z0NBQAMCkSZOwZs0apKWlITk5WbPdy8sLO3bswLx587B8+XK4u7vju+++0yxtBAC3b9/GxIkTkZaWBhsbG3Tu3Bl79uzB4MGD6++D1YJMcHXnepOamgoPDw+kpKTA3d1d6jjUBChVSgxfPxw7r+yEu8IdJ6efhLOVc/UvJCIiDX5/1x6v0SRqxIyNjLFu9Dr4OPggpygHV+5fkToSEekqdTuQnyp1CqJa4alzokbOxtwG28dthxACPo5c5JmoQSnJBg49D6hKgOFJgFUrqRMR6YSFJlET0Nahrdbz/JJ8WJpaSpSGiGqsIB2wfxoovs8ikxoknjonamIir0Wi9fLWOHCd6/ERGTxFW2DIYWBonNRJiGqFhSZRE7P27Fpk5GXg+U3P40bmDanjEFFNGNfvHWiI6goLTaIm5tuQb9HNtRvu5t/FyA0jkVecJ3UkIqpKSQ6gKpU6BdETYaFJ1MRYmFpg29htaN6sOeLS4zBl+xRwlTMiA3ThI2BLc+DyCqmTENUaC02iJsjDxgO/vfAbTI1MsfHCRoQfCpc6EhE97M5hoPgBILeXOglRrbHQJGqienv2xorn1CMl7+17D/uS9kmciIi0DIoCgg4CLUKkTkJUa1zeiKgJm+4/HXHpccgryUMvj15SxyGiioyMgea9pU5B9ERYaBI1cV8N/QpGMiPIZDKpoxARUSPDU+dETZyxkbGmyFQJFVafXg2lSilxKqImrDgLiOgNnP+Is86pwZO00IyOjsawYcPg5uYGmUyGbdu2aW0XQuD999+Hq6srLCwsEBQUhCtXtO/VfP/+fUyYMAEKhQK2traYOnUqcnNztfqcPXsWffr0gbm5OTw8PLBs2bJKWTZt2oR27drB3NwcnTp1ws6dO3XOQtTQjf9tPKZsn4KwyDCpoxA1XWl71BOBrv8EGPHEIzVskhaaeXl58PPzw4oVVS/dsGzZMnz11Vf49ttvcezYMTRr1gzBwcEoLCzU9JkwYQIuXLiAiIgI/PHHH4iOjsaMGTM027OzszFkyBC0bNkSsbGx+OSTT7BkyRL897//1fQ5cuQIxo0bh6lTp+L06dMYOXIkRo4cifPnz+uUhaihG9N+DADgkyOf4Jezv0ichqiJcu4P9Pgv4Mt/8FEjIAwEALF161bNc5VKJVxcXMQnn3yiacvMzBRmZmbi119/FUIIER8fLwCIEydOaPrs2rVLyGQycfPmTSGEECtXrhR2dnaiqKhI02fhwoXCx8dH8/yFF14QISEhWnkCAgLEq6++WuMsNZGSkiIAiJSUlBq/hqi+vRv5rsASCPMPzcWJmyeqfwERUSPH7+/aM9hrNJOSkpCeno6goCBNm42NDQICAhATEwMAiImJga2tLbp3767pExQUBCMjIxw7dkzTp2/fvpDL5Zo+wcHBSEhIwIMHDzR9Kr5PWZ+y96lJlqoUFRUhOztb88jJyant4SCqN/8c8E8MazsMhaWFGLl+JNJz06WOREREDZTBFprp6eovN2dnZ612Z2dnzbb09HQ0b95ca7uJiQns7e21+lS1j4rv8ag+FbdXl6Uq4eHhsLGx0Tx8fX2r+dRE0jOSGeHn0T+jvWN73My5iTEbx6CotEjqWERNQ/JmIGUrUJJbfV+iBsBgC83GICwsDFlZWZpHfHy81JGIakRhpsDvL/4OW3NbnEo7hVNpp6SORNQ0nH0fODgauLVD6iREdcJgp7O5uLgAADIyMuDq6qppz8jIQJcuXTR9bt++rfW60tJS3L9/X/N6FxcXZGRkaPUpe15dn4rbq8tSFTMzM5iZmWmeZ2dnP/5DExmQpxyewua/b4atuS383fyljkPU+KlKANdgAAJwfVbqNER1wmBHNL28vODi4oLIyEhNW3Z2No4dO4bAwEAAQGBgIDIzMxEbG6vps2/fPqhUKgQEBGj6REdHo6SkRNMnIiICPj4+sLOz0/Sp+D5lfcrepyZZiBqjQa0HaRWZQggJ0xA1ckamgP8XwN8uAnIbqdMQ1QlJC83c3FzExcUhLi4OgHrSTVxcHJKTkyGTyTB37lx8+OGH2L59O86dO4eJEyfCzc0NI0eOBAC0b98ezz77LKZPn47jx4/j8OHDmDNnDl588UW4ubkBAMaPHw+5XI6pU6fiwoUL2LBhA5YvX47Q0FBNjjfffBO7d+/GZ599hkuXLmHJkiU4efIk5syZAwA1ykLU2J28dRLd/tsNSQ+SpI5CREQNhZRT3vfv3y8AVHpMmjRJCKFeVmjRokXC2dlZmJmZiUGDBomEhAStfdy7d0+MGzdOWFlZCYVCISZPnixycnK0+pw5c0b07t1bmJmZiRYtWoilS5dWyrJx40bRtm1bIZfLRYcOHcSOHTu0ttckS3W4PAI1VCqVSvT5oY/AEojOqzqLnKKc6l9ERDVXnCNE1iWpU9Aj8Pu79mRC8FxYfUlNTYWHhwdSUlLg7u4udRwinaRmp6L7f7sjIy8DY9qPwaa/b+L90Ynqyo0NwOEXAbcQoP8fUqehh/D7u/YM9hpNIjIs7gp3bBm7BaZGpvjt4m/46OBHUkciajzyrquv0bThMnjUuLDQJKIa6+XRC6tCVgEAFu1fhN8v/S5xIqJGwnchMOYe0H6B1EmI6hQLTSLSydRuUzHnafVEuZe2voSLdy5KnIiokTC1BswdpU5BVKcMdh1NIjJcnwd/jvN3zsNabo0WihZSxyFq2IQAeL0zNVIsNIlIZ6bGpvj9xd9hJbeCkYwnRoieyO7ugKU74P8lYOUldRqiOsVvCCKqFYWZQlNkCiFw4PoBiRMRNUA5icCDU8CtnYDcXuo0RHWOhSYRPREhBKZsn4L+P/bH2jNrpY5D1LBYtQGGngYCvufdgKhRYqFJRE9EJpPB3Vq9rtyM/83A8ZvHJU5E1IDIZIBdF6D1RKmTEOkFC00iemIfDPgAw32Go0hZhJHrR+JWzi2pIxERkQFgoUlET8xIZoSfRv0EXydfpOWmYfSG0SgsLZQ6FpFhu7UHiAsD7p+WOgmR3rDQJKI6oTBT4PcXf4etuS2O3TyGWTtmgXe4JXqMpB+B+KVA8gapkxDpDQtNIqoz3vbe2PD8BvUI55mfcCbjjNSRiAyX59+Bli8C7qOlTkKkN1xHk4jq1JA2Q/DN0G/Q1qEturh0kToOkeHyGKV+EDViLDSJqM7NenqW1BGIiMgA8NQ5EelVwt0EPL/xeeQW50odhchwJP8GFN2TOgWR3nFEk4j0RqlSYuSGkbh09xJUQoXNL2zmLSuJshOAQ88DxubAmHuAiaXUiYj0hn/jE5HeGBsZ44fhP0BuLMfWS1vxYfSHUkcikl7hHcC2M+DUh0UmNXosNIlIrwI9AvFtyLcAgMVRi7Ht0jZpAxFJrXlv4LkzQL/tUich0jsWmkSkd5O7TsYbPd4AALy89WWcv31e4kREBsDYXOoERHrHQpOI6sWnQz7FQK+ByC3OxYj1I3C/4L7UkYjqX3EWwBsZUBPCQpOI6oWpsSk2Pr8RXrZecLVyRamqVOpIRPXvxExgmzuQslXqJET1grPOiajeOFg6YN+kfXCzdoPcWC51HKL6JVTA7YNAwS3A3FnqNET1giOaRFSvWtm20ioykx4kSZiGqB7JjIDhiUD/3YBDgNRpiOoFC00ikoRSpcTbe99G+xXtcSz1mNRxiOqHsTngFgwYGUudhKhesNAkIknIZDJcfXAVRcoijNowCrdybkkdiYiI6hgLTSKShJHMCGtHrkUHpw5Iy03D6A2jUVhaKHUsIv3ITgAig4Arq6ROQlSvOBmIiCRjbWaN31/8HU//39M4dvMY/r7x71jSfwlkMlmlvo6WjvC08ZQgJdETUCmBOweBxP8CGZEAjICnZkmdiqjesNAkIkm1sW+Db577BhO2TMAfV/7AH1f+qLKfuYk5EuYksNikhiNlCxD7JpCfWt724JS63WO0dLmI6hFPnROR5No5tqu2T2FpIe7m362HNER1IGULcPB57SITAIrvq9tTtkiTi6iesdAkIiKqSyqleiQTVd0B6K+22LnqfkSNHAtNImowdl7ZieM3jyOzMFPqKESPdudg5ZFMLQLIT1H3o0YpOjoaw4YNg5ubG2QyGbZt21bta6KiotCtWzeYmZnB29sba9as0dq+atUqdO7cGQqFAgqFAoGBgdi1a5dWn1dffRVt2rSBhYUFnJycMGLECFy6dKkOP5nuWGgSUYOxaP8iBHwXALt/26HX9720th24fgAX71xEsbJYonREUN/H/LFFZgUFafrNQpLJy8uDn58fVqxYUaP+SUlJCAkJwYABAxAXF4e5c+di2rRp2LNnj6aPu7s7li5ditjYWJw8eRIDBw7EiBEjcOHCBU0ff39/rF69GhcvXsSePXsghMCQIUOgVEo3es7JQETUYHRz6Ya03DSk5abBwdJB0y6EwMgNI5FZmAkjmRG8bL3g4+iDtvZt4ePogy4uXdDTvaeEyalJSPoJuPAx4NSnZv0tXPWbhyQzdOhQDB06tMb9v/32W3h5eeGzzz4DALRv3x6HDh3CF198geDgYADAsGHDtF7z0UcfYdWqVTh69Cg6dOgAAJgxY4Zme6tWrfDhhx/Cz88P169fR5s2bZ70Y9UKC00iajD+b/j/oZtrN2QXZSOnKEfTnl+Sj9Z2rXH53mXkFufi6oOruPrgKnZiJwDgWe9nsWtC+Smmqb9PRQtFC/g4+KCtQ1u0dWgLG3Obev881MBlXQKsWqnv9gMApflA9iXARAFYugP5N1H1dZoy9faaFqRkMHJycpCdna15bmZmBjMzsyfeb0xMDIKCgrTagoODMXfu3Cr7K5VKbNq0CXl5eQgMDKyyT15eHlavXg0vLy94eHg8ccbaYqFJRA2OwkwBhZlC87yZvBliZ8RCCIG03DQk3E3A5XuXcfneZSTcS8AzHs9o+t4vuI8f4n6otE/nZs7wcfTBqHajMLfnXE17ibIEpsamev081ADtfw5I2wX03Qa4j1C3eYwBTJoBLYap18w8+DwAGbSLzb/WiPX/krehbIB8fX21ni9evBhLlix54v2mp6fD2dlZq83Z2RnZ2dkoKCiAhYUFAODcuXMIDAxEYWEhrKyssHXr1kqZVq5ciQULFiAvLw8+Pj6IiIiAXC5/4oy1xUKTiCTnaOkIcxPzx94ZyNzEHI6Wjo/dj0wmg5u1G9ys3TDAa0CVfYxkRvh08KdIuJegKUTTc9ORkZeBjLwMdGreSdM3uygbDssc4GXrhbYObbVGQH0cfeBq5Vrl4vLUyOQkAukR2gutK9oBGX8C2ZfL28wdAa+X1D97jAb6bK68jqalu7rI5DqaDVJ8fDxatGiheV4Xo5m68PHxQVxcHLKysrB582ZMmjQJBw4c0Co2J0yYgMGDByMtLQ2ffvopXnjhBRw+fBjm5ub1mrUMC00ikpynjScS5iQ8dp3MurozkK25Ld7q9ZZWW3ZRtmYEtLVda0375XuXUaoqxZX7V3Dl/hXsuLJD63Wzn56Nb577BgBQUFKALRe3qK8NdWirNeJKDVhJNrDDF1CVAM37Azbt1e2+C4FOiwC53aNf6zEaaDFCPbu8IE19TaZTH45kNmDW1tZQKOr+/20XFxdkZGRotWVkZEChUGhGMwFALpfD29sbgHriz4kTJ7B8+XL85z//0fSxsbGBjY0NnnrqKfTs2RN2dnbYunUrxo0bV+e5a8KgZ50vWaK+FV3FR7t25Qs7FxYWYvbs2XBwcICVlRXGjBlT6Q8qOTkZISEhsLS0RPPmzTF//nyUlpZq9aluSQEAWLFiBVq1agVzc3MEBATg+PHjevnMRE2Vp40nurl2e+RDn3cEUpgp0N2tO8Z3Gq81acjf1R+p81Kxb+I+fBvyLeb1nIeQp0Lgbe8NY5lxpaL0pa0v4en/exo2S23g+pkr+q3ph+nbp+PTI58iLj1Ob/mpjhRkAPHLgLh3yttMFYDbc4DLEEBZUN5u4fz4IrOMkTHg3B9oNU79XxaZVIXAwEBERkZqtUVERDzy+ssyKpUKRUVFj9wuhIAQ4rF99M3gRzQ7dOiAP//8U/PcxKQ88rx587Bjxw5s2rQJNjY2mDNnDkaPHo3Dhw8DUF8sGxISAhcXFxw5cgRpaWmYOHEiTE1N8fHHHwMoX1Jg5syZ+OWXXxAZGYlp06bB1dVVM9Nrw4YNCA0NxbfffouAgAB8+eWXCA4ORkJCApo3b16PR4OI6pNMJkMLRQu0ULSodCq+WFmMUlX5P1pLVCXo49kHl+9dRkZeBtJz05Gem47oG9EAgGVBy9DFpQsAdVEauidUcyq+bBSUp+IlIFSA7K8xl4JbQNxC9eSeDu8Aplbq9j5byvsQ1UBubi4SExM1z5OSkhAXFwd7e3t4enoiLCwMN2/exNq1awEAM2fOxDfffIMFCxZgypQp2LdvHzZu3IgdO8rPooSFhWHo0KHw9PRETk4O1q1bh6ioKM0SSNeuXcOGDRswZMgQODk5ITU1FUuXLoWFhQWee+65+j0AFQkDtnjxYuHn51fltszMTGFqaio2bdqkabt48aIAIGJiYoQQQuzcuVMYGRmJ9PR0TZ9Vq1YJhUIhioqKhBBCLFiwQHTo0EFr32PHjhXBwcGa5z169BCzZ8/WPFcqlcLNzU2Eh4fr9HlSUlIEAJGSkqLT64ioYcksyBTHU4+Ln8/8LBbtWyTGbhor9ift12z/Lf43gSWo9LD62Ep0+083sfXiVk3fgpICkV2YXWfZbmTeELG3Yh/5uJF5o87ey6ClbBdid08h4t4rb1OphDj8khCXvxWiJFe6bGRwdP3+3r9/v4B6FpjWY9KkSUIIISZNmiT69etX6TVdunQRcrlctG7dWqxevVpr+5QpU0TLli2FXC4XTk5OYtCgQWLv3r2a7Tdv3hRDhw4VzZs3F6ampsLd3V2MHz9eXLp06Uk++hMz+BHNK1euwM3NDebm5ggMDER4eDg8PT0RGxuLkpISreUA2rVrB09PT8TExKBnz56IiYlBp06dtGZyBQcHY9asWbhw4QK6du1a7ZICxcXFiI2NRVhYmGa7kZERgoKCEBMT89jsRUVFWsPVOTk5j+lNRI2FjbkNnm7xNJ5u8XSV27u6dMXK51ZqJiNdvncZSZlJyC3Oxam0U1BWuDXhnsQ9GLlhJFytXLUmJJWNgnrZetV4VnxyVjJ8vvGpdtJVwpwEvV6qIIn8m4DcVj0rHABKc4F7R4GSB4Dfv9RtMhnQ6yfJIlLj0b9/fwhR1dJWalVdote/f3+cPn36ka/5/vvvH/uebm5u2LlzZ40z1heDLjQDAgKwZs0a+Pj4IC0tDR988AH69OmD8+fPIz09HXK5HLa2tlqvcXZ2Rnp6OoBHLxdQtu1xfcqWFHjw4AGUSmWVfaq7rVN4eDg++OADnT83ETVuXnZemPX0LK22YmUxrt6/isv3LmtdJ3oj6wYAaBaqP3DjgNbr1o9Zj7EdxwIA4u/E41DyIU0x6mLlonUq/m7+3ccWmQBQWFqIu/l3G1eheXQKcG01ELgW8HpZ3dbib4D/14Dn89JmI2rkDLrQrLiqfufOnREQEICWLVti48aNWrOwDFVYWBhCQ0M1z2/evFlpvSsiIgCQG8vR3qk92ju112p/I+ANTPSbiCv3rmgtyVQ2S76tQ1tN3z2JexC6t/zvHGu5dfnop31b+Lv519vnkUxBBnDrD6D1FPUIJQA0a6n+b+a58n6m1oDPnPrPR9TEGHSh+TBbW1u0bdsWiYmJGDx4MIqLi5GZmak1qpmRkQEXFxcA6uUCHp4dXjYrvWKfxy0pYGxsDGNj4yr7lO3jUR6+Y0DFuwkQEdWUrbltlafihRAQFRYDd1e4Y6j3UM2p+JziHMSmxSI2LRYA8NOomp0WftwpP4OmLAb+aKteksimI+AYoG5/ahbQZqp6DUsiqlcNahpdbm4url69CldXV/j7+8PU1FRrOYCEhAQkJydrlgMIDAzEuXPncPv2bU2fiIgIKBQKzchidUsKyOVy+Pv7a/VRqVSIjIysdtkBIiJ9kslkMKowG/rvHf6OnRN2IvGNROS/k4/41+KxdexW/Dvo35jadWqNT4c/88MzOJdRPvoXeysWv8X/hlNpp/Cg4EGdf45aKc4CEv8LxJVfPw9jOeAWAjgEaC9FZN6cRSaRRAx6RPPtt9/GsGHD0LJlS9y6dQuLFy+GsbExxo0bBxsbG0ydOhWhoaGwt7eHQqHA66+/jsDAQPTsqb6+aciQIfD19cXLL7+MZcuWIT09He+99x5mz56tGWmsyZICoaGhmDRpErp3744ePXrgyy+/RF5eHiZPnizJcSEiqo6ZiVmlU/Gn0k7V6LVFyiK4Wrtqnq89sxZfHf9K89zGzAatbFvBy84LXrZeCOsdBqdmTgAAlVBpFb91Sojy0+GFt4HjrwIyY6BdKGCufn8E/ggY8ZahRIbCoAvN1NRUjBs3Dvfu3YOTkxN69+6No0ePwslJ/RfKF198ASMjI4wZMwZFRUUIDg7GypUrNa83NjbGH3/8gVmzZiEwMBDNmjXDpEmT8M9//lPTx8vLCzt27MC8efOwfPlyuLu747vvvtOsoQkAY8eOxZ07d/D+++8jPT0dXbp0we7duytNECIiagy2jd0GBwsHzXMPGw8EtAjA9czryMjLQFZRFs5knMGZjDMAgHf6lC9w/taet7Du/Dp1IWqrLkTLCtKy/xrrumj57WjgwseAwhfw/1zdpngKaPUyYNsRMKrwVcYik8igyESDvRin4UlNTYWHhwdSUlLg7s7TOERUv06lnYL/f6ufEBQ7IxbdXLtVuS2/JB/XM68j6UESkjKTkJKVgqVBSzWz20euH4nfE35/5L4z3s5A82bqG12sO7cOCXcTtArRFtYtYFyaox6pNLVWv+jmTuBACGDuAoy6ycXTqd7x+7v2DHpEk4iI6o6jpSPMTcyrXUfT0dLxkdstTS3h6+QLX6eqV9BYM3KNpggt++/1zOtIykzCnbw7cLJ00vTdFL8J2y5t03r9MkcZ3rQV+I+qLSaPjYWV3ApwCUKmz0KUtBgGR8jAeycRNRwsNImImghPG08kzEnA3fy7j+zjaOn4RGto2prboqtrV3R17VppmxBCa13PMW0G4znTLGzOk+FaZjJuZN7ArdISyGWAXcFVNDP9a3F1YzkmJyZg2x//hrmJeZWn5Ue2G6n7KXki0jsWmkRETYinjadki7Fr3cddCLyUuhQoTMH0oL2A62AoVUqk3zuPk3fPoBmstfoXlhZCBhkKSwtx6e4lXLpbfsMMCxML5L2Tp3k+f+98JD5IrFSMtrJthWbyZvXyWYlIjYUmERHpV2kBcHM78OA00GWpuk0mA9yGAhlRgDIfAGBsZIwWTn5o4eSH7g/tYteEXShWFiMlK6XSaXkB7ZHSP5P+RFx6XJVRPG08cf3N65r+EVcjICDgZesFTxtPmJmYVfk6XSVnJet15JiooWChSURE+lWSBRweB0CoF08vu1NPty8BY/PyJYuqITeWo419G7Sxb/PYfp8M/gSX7l6qdI1oZmEmLE0ttYrSf0T+Q7PskwwyuFm7aUZA2zm205pR//Cp/0dp0veUJ3oIC00iIqo7908D8f8GzOyBp/9abs7CBfCaCFi4AUby8r4m+rmVcFDrIAS1DqrUnlmYifsF97Xa2ju2R1FpEZIyk5Bfko+bOTdxM+em5p7xFQvNXj/0wu2825pT8hXXEm1t1xrOVuol75rsPeWJqsBCk4iIak9ZCKiKAVOF+nlpHpC8Qf282xeA8V+nogPXSBaxjK25LWzNbbXafh79MwD1aOWd/DtaM+YtTS21+l6+dxn3C+7j2oNrlfbd1qEtEuYk6C07UUPFQpOIiGrn4qfAuQ+ADmFAh79G/px6AR0XAy3+pj16aeBkMhmaN2uO5s2aI8A9oMo+ca/GlZ+Kf+i0vLe9d63f+/K9y3Bu5gwbc5ta74PIULHQJCKi6imLgfQIwHlg+SlvuT1QmgvcPgh0+KufzAjovESqlHrlYeMBDxsP9G3Zt9K2ivc+UQmVTvt95odncDf/LuzM7dDKtpXm4WXrhY7NO2KA14Anzk4kFRaaRERNkUoJ3DkIFKQBFq6AUx/gcetQ7g0AHsQBfX4DPEar2zxGA4r2gGPVI4BNScVJQrrc673itZwPCh/gQfoDnE4/rWkb3HqwVqE5+KfBsDW3RSubVpprRFvZtkJLm5ZcuokMEgtNIqKmJmULEPsmkJ9a3mbpDvgvB1oMB9IjgdtRgN/H5TPCXQYDhRlASU75a+S2gFNgfSZvdMxNzHFn/h3kFufiRuYNzan465nXcT3zutatQHOLc/HntT8fua8x7cdg8wubNc9/OP0D3KzdNIWohal+Jl8RPQ4LTSKipiRlC3DweQBCuz3/pro98Efg2DT1BJ9WEwDbjurtHd9Xr4HJ+4zrhZXcCh2ad0CH5h0e2cfEyAS/v/i75hrR61nXNT9nFWXB3sJe0zevOA9Tt0/Ver2LlYvmlPzg1oMxuetkzbai0qI6W0OUqCIWmkRkWHQ9pUtVU5UCRhX+is9LBgpuASfmoFKRCfzVJgPOvAu0ekm9vqVxhREwUys9B2486uKe8o96zXCf4VVuyyzMRLGyWPM8tzgXw9oO04yQ5hbnIj03Hem56TiaehTNTJtpCs38knxYfWwFV2vX8mtEbcpPy7dzbAd3hbtOWYnKsNAkIsPxuFO6ZdcFNmRClJ+KLi0A8pLUP9v4lvdJ36dud+oLKJ5St+UlAxc/AUyald9ZBwDiwoD0PwHffwCeY9RtWfHATj/1ae0xd7T73lhXXUAgPwXwehlw7v8EH7Rpq497yj/s4WWbnK2csX3cdgDqiUoPCh+oR0H/OiXfsXlHTd+yuyvdyrmFWzm3cCTliNa+pnadiu+GfwdAXZTO/GOm1oSlVrat4K5wh6mxaZ19Hmo8WGg2dBz9qT881vpV3SndPpv1X2zm3wJKsoFmHuqirqztdrR6XcgWz5X3TfgayEkEvKeXn16+dxI4/TZg6Qn0Wlved/9zQMafQK9fAM+/q9vuxwJ/9gGsnwKGXS7ve/FTIG0X0HN1eaFZ/AC4/A1g7qJdaOZeA+6fVI9UljEyA0QpoCzQ/mzmzupZ4sXaC5ZXqSCt+j70WFLeU/5hMpkM9hb2sLewh7+bf6Xt7R3b4/bbtytdH1r2vJ1jO03fG5k38NPZnyrtw0hmBA+FB157+jUseGYBAKBYWYyYlBhNIWqsh78veatPw8dCsyFr7KM/hoTHWr9USvXxfdwp3di5QIsR6uI+bS9QnAm4Dgbkdupu908DyZsAq9aA97Tylx+dqi7Iun8F2HZSt6X+DsS8op4tPWB3ed+oZ4HMc8DACMDlrzvLPDgNHBkH2HfXLjRvrAfuHlGP/JUVmqV5wO0DgKL8i/mvDwioStSjmGVMrdSFn+lDayc6BqivgzR3LW+zcAM6vFv+Wcu0f1t9xx3b8tEpNGsJjEwFTLQXG4f/54D7cCCyBkvlWLhW34caDZlMBqdmTnBq5oSnWzz92L625rZYOmhppYK0SFmEG1k3tE7fX3twDf1/7A9AfX2ph8JDaxR0UOtB6OXRq9a5eavPhoGFZkNlCKM/TUVDPNZCpR4FU5UCFs7l7fm31DOHzZ3UhTKgLvLSdqsLoRZ/K7+u794J9WiZTQeg+V/rBgoBnH0fECVAh/fKr9u7uQNI3qge5a1Y5EUNA0pzgGd+LS9erq0FLnwEuD0H+H+hbrtzULuIr/yB1Kd07xxUF3bHpgP5yUDwccDhry/GrHggPlxdIFbMcO8YkHUBKKxwGhkyoCRTXaxWJLdTP1TK8jYLF6B5/8rFo9dL6izWT5W32fgCz2wAzBy0+wb8AEAFyCu023UBnr9X+aN2Wly5zdwJ8PuwcrtDFUWBkQlg2aJyO6D+87F0V//uVlnUy9TbnfpU/Xpq8lytXbGw90KtNpVQISM3A9czr8PVuvwfKTlFOfC298aNzBsoUZWo77iUmYT92K/pU1ZoXr53GSHrQipdH1r2cLFyqbRsFG/12TCw0GyIdB39aWjKFj4uu5ZNpVQXNpCV384OUC+zIkoBEyvA6K9rg5RF6gLLyFT7y74gTb3NvHn5SE9pvrp4MZIDVl7lfXOuqoujZi0BE0U1xxrA8RnqosGqtfp54R110WVsDrSpMOvz+jrgwRnAfWT5kjAFacDpherPFfB/5X0vLFWfPvWeCbQaV943oq96tGtYhVvdnXwTSPwW6LgI6Pieuq34AfDbXxMNXiwt/z249Blw6XOg/QKg67//+hglwIG/qX/+exZg9NetBG/+Dzj/L+Cp2eWFpkwGxH+sLmR93iwvNLPOA0lr1dkqFnl3otWnoktygbJ5JSXZQM5loMBP+8+nJsr6OQYAhV7qY1zGxledSdFe+zV+4YAyX10wl3EeAPztUvltE8sEHaj8nvb+QND+yu1PzarcZu4EtHyhcrulW9Wfp74ZGatH4Q8+D0AG7d/rv/5/8/+yYf69QZIxkhnB1dpVq8gEgKdbPI0rr1+BSqhwK+eW9in5B0no6d5T0zfpQRIS7yci8X5ile/xz/7/xKJ+iwAAaTlp+PHMj1qL5JPhYqHZENV09CcjEjj/ofr5gD3lBdaV/wBXv1d/IbZ/u/xlO7sAQgkERZUXaYn/BS5+BniMAbp8XN73D1/1HUEGHwKa/fUvxcTvgLPvqgupHv8p77v9KfUo2pAYwPavL/urq4ETMwG3EKDvlvK+v7dWT4QYcrR8EejkDcCRCeo7kgyKLO+7N1A9UjUwEnAZqG5L2w1EjwQcegLBMeV9D4wA7p8A+m4H3Iep2+4eAfYNVp9Ofe5sed9j09RrCD6zXn1d22OPNYCie+pjWla4FdwETs5Rj+BVLDRTt6lP7Vp6lBeaJbnA9Z8AE2vtQjMnQX1doOtQ7ffKTaxieRmVeikaZVF5k1GFi/JFCYC/Cge5nfo0rEmFGcQyU3UxJTMtL/IBdWHmMRqwq1AQAkDbN6Au+isUec0HAF2WlZ+aLhPwnXqfFi7lbR6j1Ps0b17eVtNTtWX9em+svM2+q/rxsLI/74pMrQFTn5q9Z2PjMVo9Cl/lpSBfGt7oPDV4RjIjuCvc4a5wR2/P3lX26eneEwdeOVA+YSnruubnlOwUtLJtpel7NuMswiLD6ik9PSkWmg2RLqM/dw6qfxal5e35qeqi6+G7eWSeBSDUp1DLFN1Tjz4Vpmv3zU9RF5oV+yrzgcLbQHGWdt/SbPUIoahwOrKsOKr4ei1VjLRUGlWsqv0Ra/yZWKiXaqlYpBnJAVPbyqNaZo7qgsbYvObHuuJnk9sDHs9XPn3q9jd1kVmxcDN3Arp+Ahg/dD2d9yz1qWXbzhX26wAEHVQXkRVnL3daoh6hlFe41s/EWnsks0zH98pHPcsYGQPPnqz8mVqOVT8eVna6uyLHHurHw8omvlRk2aLyqV2e0q1fHqPVZzw4uY0MhI25Dfq27Fvl7T1LlCVat/V0sHTAy51fxvnb57XuokSGSSY49lxvUlNT4eHhgZSUFLi7P8GaZBlRNbugf8CfQMkDADL1JICyUa6sS+qRsWattCcRpEWoixenPuWnqPNSgLwb6pE9RYVr0e6fUp8+te1YPrJVeFddkJraqGftlsm5qu7bzLN8vyW56tmvxpaAeYW15IruqfvKbcvzqkrUM2hlJtoTHMqKVJmx/haRrumxHrSfy8E8Kc21sECV/9AwxGthiUgyp9JOwf+/lWfRPyx2RqzWHZZqo86+v5sgjmg2RDUd/XHuX/UIhU079eNhroMrtzXz0C4ay9hX8T+tuaN20VjGuk3lNlOrqheAfngUEFAXnBVPBVds1zeOtNUfntIlImp0WGg2RLygv/7wWNcvntIlImpUeNPahqps9Ofha90s3XmKsa7xWNcvI2P1aHyrcY8elSeiJq/sVp+PU5tbfVLd4ohmQ8bRn/rDY01EZFCkuNUn6Y6FZkNXNvpD+sdjTURkUAzpVp9UNZ46JyIiIiK9YKFJRERERHrBQpOIiIiI9IKFJhERERHpBQtNIiIiItILFppEREREpBcsNImIiIhIL1hoEhEREZFesNAkIiIiIr3gnYHqkUqlAgCkpaVJnISIiIhqqux7u+x7nGqOhWY9ysjIAAD06NFD4iRERESkq4yMDHh68paXupAJIYTUIZqK0tJSnD59Gs7Ozhg4cCCioqIq9enfv3+N2is+z8nJga+vL+Lj42Ftba2f8DXMqY/XVte/tturaq+urb6P9ZMcZ11fX5O+j+vD41yz1/M4R1Xbry5ez+McVW2/unh9fR7nqtrr6zirVCpkZGSga9euMDHhGJ0ueLTqkYmJCZ5++mkAgFwuh7u7e6U+NW2v+Dw7OxsA0KJFCygUCn1Er3FOfby2uv613V5Ve3Vt9X2sn+Q46/r6mvR9XB8eZx7n6vA48zjXdJshfhdyJLN2OBlIIrNnz36i9kf1qy9P8v66vra6/rXdXlV7Tdvqy5O+ty6vr0nfx/Xhca67vjzOT/56Huf6eX19Hueq2qX+LqTq8dR5I5CdnQ0bGxtkZWXV24hmU8VjXT94nOsHj3P94HGuHzzOhokjmo2AmZkZFi9eDDMzM6mjNHo81vWDx7l+8DjXDx7n+sHjbJg4oklEREREesERTSIiIiLSCxaaRERERKQXLDSJiIiISC9YaBIRERGRXrDQJCIiIiK9YKHZBI0aNQp2dnZ4/vnnpY7SqPzxxx/w8fHBU089he+++07qOI0Wf3/1LyUlBf3794evry86d+6MTZs2SR2p0crMzET37t3RpUsXdOzYEf/3f/8ndaRGLT8/Hy1btsTbb78tdZQmg8sbNUFRUVHIycnBjz/+iM2bN0sdp1EoLS2Fr68v9u/fDxsbG/j7++PIkSNwcHCQOlqjw99f/UtLS0NGRga6dOmC9PR0+Pv74/Lly2jWrJnU0RodpVKJoqIiWFpaIi8vDx07dsTJkyf5d4eevPvuu0hMTISHhwc+/fRTqeM0CRzRbIL69+8Pa2trqWM0KsePH0eHDh3QokULWFlZYejQodi7d6/UsRol/v7qn6urK7p06QIAcHFxgaOjI+7fvy9tqEbK2NgYlpaWAICioiIIIcDxH/24cuUKLl26hKFDh0odpUlhoWlgoqOjMWzYMLi5uUEmk2Hbtm2V+qxYsQKtWrWCubk5AgICcPz48foP2sg86XG/desWWrRooXneokUL3Lx5sz6iNyj8/a4fdXmcY2NjoVQq4eHhoefUDVNdHOvMzEz4+fnB3d0d8+fPh6OjYz2lbzjq4ji//fbbCA8Pr6fEVIaFpoHJy8uDn58fVqxYUeX2DRs2IDQ0FIsXL8apU6fg5+eH4OBg3L59W9On7Fqfhx+3bt2qr4/R4NTFcafq8TjXj7o6zvfv38fEiRPx3//+tz5iN0h1caxtbW1x5swZJCUlYd26dcjIyKiv+A3Gkx7n33//HW3btkXbtm3rMzYBgCCDBUBs3bpVq61Hjx5i9uzZmudKpVK4ubmJ8PBwnfa9f/9+MWbMmLqI2ejU5rgfPnxYjBw5UrP9zTffFL/88ku95G2onuT3m7+/NVfb41xYWCj69Okj1q5dW19RG7y6+Dt71qxZYtOmTfqM2eDV5jj/4x//EO7u7qJly5bCwcFBKBQK8cEHH9Rn7CaLI5oNSHFxMWJjYxEUFKRpMzIyQlBQEGJiYiRM1rjV5Lj36NED58+fx82bN5Gbm4tdu3YhODhYqsgNEn+/60dNjrMQAq+88goGDhyIl19+WaqoDV5NjnVGRgZycnIAAFlZWYiOjoaPj48keRuqmhzn8PBwpKSk4Pr16/j0008xffp0vP/++1JFblJMpA5ANXf37l0olUo4OztrtTs7O+PSpUs13k9QUBDOnDmDvLw8uLu7Y9OmTQgMDKzruI1GTY67iYkJPvvsMwwYMAAqlQoLFizgrFEd1fT3m7+/T6Ymx/nw4cPYsGEDOnfurLkW7qeffkKnTp3qO26DVpNjfePGDcyYMUMzCej111/ncdZRXX03kn6w0GyC/vzzT6kjNErDhw/H8OHDpY7R6PH3V/969+4NlUoldYwmoUePHoiLi5M6RpPyyiuvSB2hSeGp8wbE0dERxsbGlS4Uz8jIgIuLi0SpGj8e9/rB41w/eJzrD491/eBxNmwsNBsQuVwOf39/REZGatpUKhUiIyN56lCPeNzrB49z/eBxrj881vWDx9mw8dS5gcnNzUViYqLmeVJSEuLi4mBvbw9PT0+EhoZi0qRJ6N69O3r06IEvv/wSeXl5mDx5soSpGz4e9/rB41w/eJzrD491/eBxbsAknvVOD9m/f78AUOkxadIkTZ+vv/5aeHp6CrlcLnr06CGOHj0qXeBGgse9fvA41w8e5/rDY10/eJwbLt7rnIiIiIj0gtdoEhEREZFesNAkIiIiIr1goUlEREREesFCk4iIiIj0goUmEREREekFC00iIiIi0gsWmkRERESkFyw0iYiIiEgvWGgSERERkV6w0CQiIiIivWChSURERER6wUKTiIiIiPSChSYR0WOoVCqEh4fDy8sLFhYW8PPzw+bNmwEAUVFRkMlk2LFjBzp37gxzc3P07NkT58+f17z+xo0bGDZsGOzs7NCsWTN06NABO3fulOrjEBHVKxOpAxARGbLw8HD8/PPP+Pbbb/HUU08hOjoaL730EpycnDR95s+fj+XLl8PFxQXvvPMOhg0bhsuXL8PU1BSzZ89GcXExoqOj0axZM8THx8PKykrCT0REVH9kQgghdQgiIkNUVFQEe3t7/PnnnwgMDNS0T5s2Dfn5+ZgxYwYGDBiA9evXY+zYsQCA+/fvw93dHWvWrMELL7yAzp07Y8yYMVi8eLFUH4OISDIc0SQieoTExETk5+dj8ODBWu3FxcXo2rWr5nnFItTe3h4+Pj64ePEiAOCNN97ArFmzsHfvXgQFBWHMmDHo3Llz/XwAIiKJ8RpNIqJHyM3NBQDs2LEDcXFxmkd8fLzmOs3qTJs2DdeuXcPLL7+Mc+fOoXv37vj666/1GZuIyGCw0CQiegRfX1+YmZkhOTkZ3t7eWg8PDw9Nv6NHj2p+fvDgAS5fvoz27dtr2jw8PDBz5kxs2bIFb731Fv7v//6vXj8HEZFUeOqciOgRrK2t8fbbb2PevHlQqVTo3bs3srKycPjwYSgUCrRs2RIA8M9//hMODg5wdnbGu+++C0dHR4wcORIAMHfuXAwdOhRt27bFgwcPsH//fq0ilIioMWOhSUT0GP/617/g5OSE8PBwXLt2Dba2tujWrRveeecdqFQqAMDSpUvx5ptv4sqVK+jSpQv+97//QS6XAwCUSiVmz56N1NRUKBQKPPvss/jiiy+k/EhERPWGs86JiGopKioKAwYMwIMHD2Brayt1HCIig8NrNImIiIhIL1hoEhEREZFe8NQ5EREREekFRzSJiIiISC9YaBIRERGRXrDQJCIiIiK9YKFJRERERHrBQpOIiIiI9IKFJhERERHpBQtNIiIiItILFppEREREpBf/D5ufZiGHk5hZAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -724,7 +724,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": { "slideshow": { "slide_type": "notes" @@ -766,7 +766,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": { "slideshow": { "slide_type": "subslide" @@ -776,7 +776,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a5cf632fac7a46c2a6ab4882fa66dbb2", + "model_id": "ff4fdbda4b1f4f2b8be74d4416294e0a", "version_major": 2, "version_minor": 0 }, @@ -793,7 +793,7 @@ "" ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -836,7 +836,7 @@ "source": [ "Użyjemy danych z „Gratka flats challenge 2017”.\n", "\n", - "Rozważmy model $h(x) = \\theta_0 + \\theta_1 x_1 + \\theta_2 x_2$, w którym cena mieszkania prognozowana jest na podstawie liczby pokoi $x_1$ i metrażu $x_2$:" + "Rozważmy model $h(x) = \\theta_0 + \\theta_1 x_1 + \\theta_2 x_2 + \\theta_3 x_3$, w którym cena mieszkania prognozowana jest na podstawie liczby pokoi $x_1$, piętra $x_2$ i metrażu $x_3$:" ] }, { @@ -969,9 +969,7 @@ } ], "source": [ - "show_mins_and_maxs(X)\n", - "\n", - "print(X.shape[1])\n" + "show_mins_and_maxs(X)\n" ] }, { @@ -1078,6 +1076,7 @@ "cell_type": "code", "execution_count": 20, "metadata": { + "scrolled": true, "slideshow": { "slide_type": "subslide" }