particles attached to cameraPos, cleaning code

This commit is contained in:
Matraf 2022-01-24 19:08:28 +01:00
parent 782d777654
commit dcdbcb9588
4 changed files with 29 additions and 81 deletions

View File

@ -1,16 +1,13 @@
#version 330 core #version 330 core
// Interpolated values from the vertex shaders
in vec2 UV; in vec2 UV;
in vec4 particlecolor; in vec4 particlecolor;
// Ouput data
out vec4 color; out vec4 color;
uniform sampler2D myTextureSampler; uniform sampler2D myTextureSampler;
void main(){ void main(){
// Output color = color of the texture at the specified UV
color = texture( myTextureSampler, UV ) * particlecolor; color = texture( myTextureSampler, UV ) * particlecolor;
} }

View File

@ -1,22 +1,19 @@
#version 330 core #version 330 core
// Input vertex data, different for all executions of this shader.
layout(location = 0) in vec3 squareVertices; layout(location = 0) in vec3 squareVertices;
layout(location = 1) in vec4 xyzs; // Position of the center of the particule and size of the square layout(location = 1) in vec4 xyzs; // Position of the center of the particule and size of the square
layout(location = 2) in vec4 color; // Position of the center of the particule and size of the square layout(location = 2) in vec4 color; // Position of the center of the particule and size of the square
// Output data ; will be interpolated for each fragment.
out vec2 UV; out vec2 UV;
out vec4 particlecolor; out vec4 particlecolor;
// Values that stay constant for the whole mesh.
uniform vec3 CameraRight_worldspace; uniform vec3 CameraRight_worldspace;
uniform vec3 CameraUp_worldspace; uniform vec3 CameraUp_worldspace;
uniform mat4 VP; // Model-View-Projection matrix, but without the Model (the position is in BillboardPos; the orientation depends on the camera) uniform mat4 VP;
void main() void main()
{ {
float particleSize = xyzs.w; // because we encoded it this way. float particleSize = xyzs.w;
vec3 particleCenter_wordspace = xyzs.xyz; vec3 particleCenter_wordspace = xyzs.xyz;
vec3 vertexPosition_worldspace = vec3 vertexPosition_worldspace =
@ -24,10 +21,8 @@ void main()
+ CameraRight_worldspace * squareVertices.x * particleSize + CameraRight_worldspace * squareVertices.x * particleSize
+ CameraUp_worldspace * squareVertices.y * particleSize; + CameraUp_worldspace * squareVertices.y * particleSize;
// Output position of the vertex
gl_Position = VP * vec4(vertexPosition_worldspace, 1.0f); gl_Position = VP * vec4(vertexPosition_worldspace, 1.0f);
// UV of the vertex. No special space for this one.
UV = squareVertices.xy + vec2(0.5, 0.5); UV = squareVertices.xy + vec2(0.5, 0.5);
particlecolor = color; particlecolor = color;
} }

View File

@ -36,13 +36,12 @@ double lastTime = glutGet(GLUT_ELAPSED_TIME) / 1000.0f;
// CPU representation of a particle // CPU representation of a particle
struct Particle { struct Particle {
glm::vec3 pos, speed; glm::vec3 pos, speed;
unsigned char r, g, b, a; // Color unsigned char r, g, b, a;
float size, angle, weight; float size, angle, weight;
float life; // Remaining life of the particle. if <0 : dead and unused. float life;
float cameradistance; // *Squared* distance to the camera. if dead : -1.0f float cameradistance;
bool operator<(const Particle& that) const { bool operator<(const Particle& that) const {
// Sort in reverse order : far particles drawn first.
return this->cameradistance > that.cameradistance; return this->cameradistance > that.cameradistance;
} }
}; };
@ -57,7 +56,7 @@ void addParticleSource(glm::vec3 pos, double amount, float spread) {
particleSources.push_back(particleSource); particleSources.push_back(particleSource);
} }
const int MaxParticles = 10000; const int MaxParticles = 100000;
Particle ParticlesContainer[MaxParticles]; Particle ParticlesContainer[MaxParticles];
int LastUsedParticle = 0; int LastUsedParticle = 0;
@ -79,7 +78,7 @@ int FindUnusedParticle() {
} }
} }
return 0; // All particles are taken, override the first one return 0;
} }
void SortParticles() { void SortParticles() {
@ -216,23 +215,18 @@ void initParticles() {
void spawnParticles(double deltaTime, glm::vec3 sourcePosition, double amount, float spread) { void spawnParticles(double deltaTime, glm::vec3 sourcePosition, double amount, float spread) {
// Generate 10 new particule each millisecond,
// but limit this to 16 ms (60 fps), or if you have 1 long frame (1sec),
// newparticles will be huge and the next frame even longer.
int newparticles = (int)(deltaTime * amount); int newparticles = (int)(deltaTime * amount);
if (newparticles > (int)(0.016f * amount)) if (newparticles > (int)(0.016f * amount))
newparticles = (int)(0.016f * amount); newparticles = (int)(0.016f * amount);
for (int i = 0; i < newparticles; i++) { for (int i = 0; i < newparticles; i++) {
int particleIndex = FindUnusedParticle(); int particleIndex = FindUnusedParticle();
ParticlesContainer[particleIndex].life = 20.0f; // This particle will live 5 seconds. ParticlesContainer[particleIndex].life = 20.0f;
ParticlesContainer[particleIndex].pos = sourcePosition; ParticlesContainer[particleIndex].pos = sourcePosition;
glm::vec3 maindir = glm::vec3(0.0f, 0.4f, 0.0f); glm::vec3 maindir = glm::vec3(0.0f, 0.4f, 0.0f);
// Very bad way to generate a random direction;
// See for instance http://stackoverflow.com/questions/5408276/python-uniform-spherical-distribution instead,
// combined with some user-controlled parameters (main direction, spread, etc)
glm::vec3 randomdir = glm::vec3( glm::vec3 randomdir = glm::vec3(
(rand() % 2000 - 1000.0f) / 1000.0f, (rand() % 2000 - 1000.0f) / 1000.0f,
(rand() % 2000 - 1000.0f) / 1000.0f, (rand() % 2000 - 1000.0f) / 1000.0f,
@ -241,8 +235,6 @@ void spawnParticles(double deltaTime, glm::vec3 sourcePosition, double amount, f
ParticlesContainer[particleIndex].speed = maindir + randomdir * spread; ParticlesContainer[particleIndex].speed = maindir + randomdir * spread;
// Very bad way to generate a random color
ParticlesContainer[particleIndex].r = 200; ParticlesContainer[particleIndex].r = 200;
ParticlesContainer[particleIndex].g = 200; ParticlesContainer[particleIndex].g = 200;
ParticlesContainer[particleIndex].b = 255; ParticlesContainer[particleIndex].b = 255;
@ -254,11 +246,10 @@ void spawnParticles(double deltaTime, glm::vec3 sourcePosition, double amount, f
} }
void simulateParticles(glm::vec3 cameraPos, double deltaTime) { void simulateParticles(glm::vec3 cameraPos, double deltaTime) {
// Simulate all particles
ParticlesCount = 0; ParticlesCount = 0;
for (int i = 0; i < MaxParticles; i++) { for (int i = 0; i < MaxParticles; i++) {
Particle& p = ParticlesContainer[i]; // shortcut Particle& p = ParticlesContainer[i];
if (p.life > 0.0f) { if (p.life > 0.0f) {
@ -271,7 +262,6 @@ void simulateParticles(glm::vec3 cameraPos, double deltaTime) {
p.speed += glm::vec3(0.0f, 1.0f, 0.0f) * (float)deltaTime * 0.5f; p.speed += glm::vec3(0.0f, 1.0f, 0.0f) * (float)deltaTime * 0.5f;
p.pos += p.speed * (float)deltaTime; p.pos += p.speed * (float)deltaTime;
p.cameradistance = glm::length2(p.pos - cameraPos); p.cameradistance = glm::length2(p.pos - cameraPos);
//ParticlesContainer[i].pos += glm::vec3(0.0f,10.0f, 0.0f) * (float)delta;
// Fill the GPU buffer // Fill the GPU buffer
g_particule_position_size_data[4 * ParticlesCount + 0] = p.pos.x; g_particule_position_size_data[4 * ParticlesCount + 0] = p.pos.x;
@ -287,7 +277,6 @@ void simulateParticles(glm::vec3 cameraPos, double deltaTime) {
} }
else { else {
// Particles that just died will be put at the end of the buffer in SortParticles();
p.cameradistance = -1.0f; p.cameradistance = -1.0f;
} }
@ -295,24 +284,17 @@ void simulateParticles(glm::vec3 cameraPos, double deltaTime) {
} }
} }
SortParticles(); SortParticles();
// printf("%d ", ParticlesCount);
} }
void updateParticles() { void updateParticles() {
// Update the buffers that OpenGL uses for rendering.
// There are much more sophisticated means to stream data from the CPU to the GPU,
// but this is outside the scope of this tutorial.
// http://www.opengl.org/wiki/Buffer_Object_Streaming
glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer); glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLfloat), NULL, GL_STREAM_DRAW); // Buffer orphaning, a common way to improve streaming perf. See above link for details. glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLfloat), NULL, GL_STREAM_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLfloat) * 4, g_particule_position_size_data); glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLfloat) * 4, g_particule_position_size_data);
glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer); glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLubyte), NULL, GL_STREAM_DRAW); // Buffer orphaning, a common way to improve streaming perf. See above link for details. glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLubyte), NULL, GL_STREAM_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLubyte) * 4, g_particule_color_data); glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLubyte) * 4, g_particule_color_data);
} }
@ -331,13 +313,11 @@ void bindParticles(GLuint programParticles, glm::vec3 cameraSide, glm::vec3 came
// fragment shader // fragment shader
GLuint TextureID = glGetUniformLocation(programParticles, "myTextureSampler"); GLuint TextureID = glGetUniformLocation(programParticles, "myTextureSampler");
// Bind our texture in Texture Unit 0
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, particleTexture); glBindTexture(GL_TEXTURE_2D, particleTexture);
// Set our "myTextureSampler" sampler to user Texture Unit 0
glUniform1i(TextureID, 0); glUniform1i(TextureID, 0);
// Same as the billboards tutorial
glUniform3f(CameraRight_worldspace_ID, cameraSide.x, cameraSide.y, cameraSide.z); glUniform3f(CameraRight_worldspace_ID, cameraSide.x, cameraSide.y, cameraSide.z);
glUniform3f(CameraUp_worldspace_ID, cameraVertical.x, cameraVertical.y, cameraVertical.z); glUniform3f(CameraUp_worldspace_ID, cameraVertical.x, cameraVertical.y, cameraVertical.z);
@ -345,58 +325,28 @@ void bindParticles(GLuint programParticles, glm::vec3 cameraSide, glm::vec3 came
glUniformMatrix4fv(ViewProjMatrixID, 1, GL_FALSE, (float*)&transformation); glUniformMatrix4fv(ViewProjMatrixID, 1, GL_FALSE, (float*)&transformation);
// 1rst attribute buffer : vertices // vertices
glEnableVertexAttribArray(0); glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, billboard_vertex_buffer); glBindBuffer(GL_ARRAY_BUFFER, billboard_vertex_buffer);
glVertexAttribPointer( glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE,0, (void*)0);
0, // attribute. No particular reason for 0, but must match the layout in the shader.
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// 2nd attribute buffer : positions of particles' centers // positions of particles' centers
glEnableVertexAttribArray(1); glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer); glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
glVertexAttribPointer( glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE,0, (void*)0);
1, // attribute. No particular reason for 1, but must match the layout in the shader.
4, // size : x + y + z + size => 4
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// 3rd attribute buffer : particles' colors // particles' colors
glEnableVertexAttribArray(2); glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer); glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
glVertexAttribPointer( glVertexAttribPointer(2, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, (void*)0);
2, // attribute. No particular reason for 1, but must match the layout in the shader.
4, // size : r + g + b + a => 4
GL_UNSIGNED_BYTE, // type
GL_TRUE, // normalized? *** YES, this means that the unsigned char[4] will be accessible with a vec4 (floats) in the shader ***
0, // stride
(void*)0 // array buffer offset
);
} }
void renderParticles() { void renderParticles() {
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, ParticlesCount); glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, ParticlesCount);
// These functions are specific to glDrawArrays*Instanced*.
// The first parameter is the attribute buffer we're talking about.
// The second parameter is the "rate at which generic vertex attributes advance when rendering multiple instances"
// http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribDivisor.xml
glVertexAttribDivisor(0, 0); // particles vertices : always reuse the same 4 vertices -> 0 glVertexAttribDivisor(0, 0); // particles vertices : always reuse the same 4 vertices -> 0
glVertexAttribDivisor(1, 1); // positions : one per quad (its center) -> 1 glVertexAttribDivisor(1, 1); // positions : one per quad (its center) -> 1
glVertexAttribDivisor(2, 1); // color : one per quad -> 1 glVertexAttribDivisor(2, 1); // color : one per quad -> 1
// Draw the particules !
// This draws many times a small triangle_strip (which looks like a quad).
// This is equivalent to :
// for(i in ParticlesCount) : glDrawArrays(GL_TRIANGLE_STRIP, 0, 4),
// but faster.
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, ParticlesCount); glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, ParticlesCount);
glDisableVertexAttribArray(0); glDisableVertexAttribArray(0);
@ -408,12 +358,14 @@ void handleAllParticleSources(glm::vec3 cameraPos, GLuint programParticles, glm:
double currentTime = glutGet(GLUT_ELAPSED_TIME) / 1000.0f; double currentTime = glutGet(GLUT_ELAPSED_TIME) / 1000.0f;
double delta = currentTime - lastTime; double delta = currentTime - lastTime;
lastTime = currentTime; lastTime = currentTime;
//std::cout << particleSources.size() << std::endl;
for (ParticleSource particleSource : particleSources) for (ParticleSource particleSource : particleSources)
{ {
//std::cout << particleSource.pos.x << " " << particleSource.pos.y << "" << particleSource.pos.z << "" << std::endl;
spawnParticles(delta, particleSource.pos, particleSource.amount, particleSource.spread); spawnParticles(delta, particleSource.pos, particleSource.amount, particleSource.spread);
} }
if ((int)currentTime % 1 == 0) {
particleSources.clear();
}
simulateParticles(cameraPos, delta); simulateParticles(cameraPos, delta);
updateParticles(); updateParticles();

View File

@ -206,6 +206,7 @@ void keyboard(unsigned char key, int x, int y)
float angleSpeed = 10.f; float angleSpeed = 10.f;
float moveSpeed = 1.0f; float moveSpeed = 1.0f;
glm::vec3 nextPosition; glm::vec3 nextPosition;
switch (key) switch (key)
{ {
case 'z': cursorDiff.z -= angleSpeed; break; case 'z': cursorDiff.z -= angleSpeed; break;
@ -214,12 +215,15 @@ void keyboard(unsigned char key, int x, int y)
nextPosition = cameraPos + (cameraDir * moveSpeed); nextPosition = cameraPos + (cameraDir * moveSpeed);
if (isInBoundaries(nextPosition)) { if (isInBoundaries(nextPosition)) {
cameraPos = nextPosition; cameraPos = nextPosition;
addParticleSource(cameraPos, 1000.0f, 0.6f);
} }
break; break;
case 's': case 's':
nextPosition = cameraPos - (cameraDir * moveSpeed); nextPosition = cameraPos - (cameraDir * moveSpeed);
if (isInBoundaries(nextPosition)) { if (isInBoundaries(nextPosition)) {
cameraPos = nextPosition; cameraPos = nextPosition;
addParticleSource(cameraPos, 1000.0f, 0.6f);
} }
break; break;
case 'd': case 'd':
@ -271,7 +275,6 @@ glm::mat4 createCameraMatrix()
glm::quat rotationChange = rotation_x * rotation_y * rotation_z; glm::quat rotationChange = rotation_x * rotation_y * rotation_z;
rotation = glm::normalize(rotationChange * rotation); rotation = glm::normalize(rotationChange * rotation);
cameraDir = glm::inverse(rotation) * glm::vec3(0, 0, -1); cameraDir = glm::inverse(rotation) * glm::vec3(0, 0, -1);
cameraSide = glm::inverse(rotation) * glm::vec3(1, 0, 0); cameraSide = glm::inverse(rotation) * glm::vec3(1, 0, 0);
cameraVertical = glm::inverse(rotation) * glm::vec3(0, 1, 0); cameraVertical = glm::inverse(rotation) * glm::vec3(0, 1, 0);
@ -359,6 +362,7 @@ void renderScene()
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
float time = glutGet(GLUT_ELAPSED_TIME) / 1000.f; float time = glutGet(GLUT_ELAPSED_TIME) / 1000.f;
glUseProgram(skyboxProgram); glUseProgram(skyboxProgram);
glUniform1i(glGetUniformLocation(skyboxProgram, "skybox"), 0); glUniform1i(glGetUniformLocation(skyboxProgram, "skybox"), 0);
glm::mat4 transformation = perspectiveMatrix * cameraMatrix; glm::mat4 transformation = perspectiveMatrix * cameraMatrix;
@ -370,7 +374,7 @@ void renderScene()
glEnable(GL_BLEND); glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
addParticleSource(glm::vec3(cameraPos.x, cameraPos.y - 0.5, cameraPos.z -0.4), 100.0f, 1.5f);
glm::mat4 submarineInitialTransformation = glm::translate(glm::vec3(0, -0.5, -0.4)) * glm::rotate(glm::radians(180.0f), glm::vec3(0, 1, 0)) * glm::scale(glm::vec3(0.25f)); glm::mat4 submarineInitialTransformation = glm::translate(glm::vec3(0, -0.5, -0.4)) * glm::rotate(glm::radians(180.0f), glm::vec3(0, 1, 0)) * glm::scale(glm::vec3(0.25f));
glm::mat4 submarineModelMatrix = glm::translate(cameraPos + cameraDir) * glm::mat4_cast(glm::inverse(rotation)) * submarineInitialTransformation; glm::mat4 submarineModelMatrix = glm::translate(cameraPos + cameraDir) * glm::mat4_cast(glm::inverse(rotation)) * submarineInitialTransformation;