// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #include "GuTriangleMesh.h" #include "GuTriangleMeshRTree.h" #if PX_ENABLE_DYNAMIC_MESH_RTREE #include "GuConvexEdgeFlags.h" #endif using namespace physx; namespace physx { Gu::RTreeTriangleMesh::RTreeTriangleMesh(GuMeshFactory& factory, TriangleMeshData& d) : TriangleMesh(factory, d) { PX_ASSERT(d.mType==PxMeshMidPhase::eBVH33); RTreeTriangleData& rtreeData = static_cast(d); mRTree = rtreeData.mRTree; rtreeData.mRTree.mPages = NULL; } Gu::TriangleMesh* Gu::RTreeTriangleMesh::createObject(PxU8*& address, PxDeserializationContext& context) { RTreeTriangleMesh* obj = new (address) RTreeTriangleMesh(PxBaseFlag::eIS_RELEASABLE); address += sizeof(RTreeTriangleMesh); obj->importExtraData(context); return obj; } void Gu::RTreeTriangleMesh::exportExtraData(PxSerializationContext& stream) { mRTree.exportExtraData(stream); TriangleMesh::exportExtraData(stream); } void Gu::RTreeTriangleMesh::importExtraData(PxDeserializationContext& context) { mRTree.importExtraData(context); TriangleMesh::importExtraData(context); } #if PX_ENABLE_DYNAMIC_MESH_RTREE PxVec3 * Gu::RTreeTriangleMesh::getVerticesForModification() { return const_cast(getVertices()); } template struct RefitCallback : Gu::RTree::CallbackRefit { const PxVec3* newPositions; const IndexType* indices; RefitCallback(const PxVec3* aNewPositions, const IndexType* aIndices) : newPositions(aNewPositions), indices(aIndices) {} PX_FORCE_INLINE ~RefitCallback() {} virtual void recomputeBounds(PxU32 index, shdfnd::aos::Vec3V& aMn, shdfnd::aos::Vec3V& aMx) { using namespace shdfnd::aos; // Each leaf box has a set of triangles Gu::LeafTriangles currentLeaf; currentLeaf.Data = index; PxU32 nbTris = currentLeaf.GetNbTriangles(); PxU32 baseTri = currentLeaf.GetTriangleIndex(); PX_ASSERT(nbTris > 0); const IndexType* vInds = indices + 3 * baseTri; Vec3V vPos = V3LoadU(newPositions[vInds[0]]); Vec3V mn = vPos, mx = vPos; //PxBounds3 result(newPositions[vInds[0]], newPositions[vInds[0]]); vPos = V3LoadU(newPositions[vInds[1]]); mn = V3Min(mn, vPos); mx = V3Max(mx, vPos); vPos = V3LoadU(newPositions[vInds[2]]); mn = V3Min(mn, vPos); mx = V3Max(mx, vPos); for (PxU32 i = 1; i < nbTris; i++) { const IndexType* vInds1 = indices + 3 * (baseTri + i); vPos = V3LoadU(newPositions[vInds1[0]]); mn = V3Min(mn, vPos); mx = V3Max(mx, vPos); vPos = V3LoadU(newPositions[vInds1[1]]); mn = V3Min(mn, vPos); mx = V3Max(mx, vPos); vPos = V3LoadU(newPositions[vInds1[2]]); mn = V3Min(mn, vPos); mx = V3Max(mx, vPos); } aMn = mn; aMx = mx; } }; PxBounds3 Gu::RTreeTriangleMesh::refitBVH() { PxBounds3 meshBounds; if (has16BitIndices()) { RefitCallback cb(mVertices, static_cast(mTriangles)); mRTree.refitAllStaticTree(cb, &meshBounds); } else { RefitCallback cb(mVertices, static_cast(mTriangles)); mRTree.refitAllStaticTree(cb, &meshBounds); } // reset edge flags and remember we did that using a mesh flag (optimization) if ((mRTree.mFlags & RTree::IS_EDGE_SET) == 0) { mRTree.mFlags |= RTree::IS_EDGE_SET; if(mExtraTrigData) { const PxU32 nbTris = getNbTriangles(); for(PxU32 i = 0; i < nbTris; i++) mExtraTrigData[i] |= ETD_CONVEX_EDGE_ALL; } } mAABB = meshBounds; return meshBounds; } #endif } // namespace physx