// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_PHYSICS_COMMON_PRIORITYQUEUE #define PX_PHYSICS_COMMON_PRIORITYQUEUE #include "PsBasicTemplates.h" #include "CmPhysXCommon.h" #include "PsAllocator.h" #include "foundation/PxMemory.h" namespace physx { namespace Cm { template > class PriorityQueueBase : protected Comparator // inherit so that stateless comparators take no space { public: PriorityQueueBase(const Comparator& less, Element* elements) : Comparator(less), mHeapSize(0), mDataPtr(elements) { } ~PriorityQueueBase() { } //! Get the element with the highest priority PX_FORCE_INLINE const Element top() const { return mDataPtr[0]; } //! Get the element with the highest priority PX_FORCE_INLINE Element top() { return mDataPtr[0]; } //! Check to whether the priority queue is empty PX_FORCE_INLINE bool empty() const { return (mHeapSize == 0); } //! Empty the priority queue PX_FORCE_INLINE void clear() { mHeapSize = 0; } //! Insert a new element into the priority queue. Only valid when size() is less than Capacity PX_FORCE_INLINE void push(const Element& value) { PxU32 newIndex; PxU32 parentIndex = parent(mHeapSize); for (newIndex = mHeapSize; newIndex > 0 && compare(value, mDataPtr[parentIndex]); newIndex = parentIndex, parentIndex= parent(newIndex)) { mDataPtr[ newIndex ] = mDataPtr[parentIndex]; } mDataPtr[newIndex] = value; mHeapSize++; PX_ASSERT(valid()); } //! Delete the highest priority element. Only valid when non-empty. PX_FORCE_INLINE Element pop() { PX_ASSERT(mHeapSize > 0); PxU32 i, child; //try to avoid LHS PxU32 tempHs = mHeapSize-1; mHeapSize = tempHs; Element min = mDataPtr[0]; Element last = mDataPtr[tempHs]; for (i = 0; (child = left(i)) < tempHs; i = child) { /* Find highest priority child */ const PxU32 rightChild = child + 1; child += ((rightChild < tempHs) & compare((mDataPtr[rightChild]), (mDataPtr[child]))) ? 1 : 0; if(compare(last, mDataPtr[child])) break; mDataPtr[i] = mDataPtr[child]; } mDataPtr[ i ] = last; PX_ASSERT(valid()); return min; } //! Make sure the priority queue sort all elements correctly bool valid() const { const Element& min = mDataPtr[0]; for(PxU32 i=1; i> 1; } private: PriorityQueueBase& operator = (const PriorityQueueBase); }; template class InlinePriorityQueue : public PriorityQueueBase { Element mData[Capacity]; public: InlinePriorityQueue(const Comparator& less = Comparator()) : PriorityQueueBase(less, mData) { } PX_FORCE_INLINE void push(Element& elem) { PX_ASSERT(this->mHeapSize < Capacity); PriorityQueueBase::push(elem); } private: InlinePriorityQueue& operator = (const InlinePriorityQueue); }; template ::Type> class PriorityQueue : public PriorityQueueBase, protected Alloc { PxU32 mCapacity; public: PriorityQueue(const Comparator& less = Comparator(), PxU32 initialCapacity = 0, Alloc alloc = Alloc()) : PriorityQueueBase(less, NULL), Alloc(alloc), mCapacity(initialCapacity) { if(initialCapacity > 0) this->mDataPtr = reinterpret_cast(Alloc::allocate(sizeof(Element)*initialCapacity, __FILE__, __LINE__)); } ~PriorityQueue() { if(this->mDataPtr) this->deallocate(this->mDataPtr); } PX_FORCE_INLINE void push(Element& elem) { if(this->mHeapSize == mCapacity) { reserve((this->mHeapSize+1)*2); } PriorityQueueBase::push(elem); } PX_FORCE_INLINE PxU32 capacity() { return mCapacity; } PX_FORCE_INLINE void reserve(const PxU32 newCapacity) { if(newCapacity > mCapacity) { Element* newElems = reinterpret_cast(Alloc::allocate(sizeof(Element)*newCapacity, __FILE__, __LINE__)); if(this->mDataPtr) { physx::PxMemCopy(newElems, this->mDataPtr, sizeof(Element) * this->mHeapSize); Alloc::deallocate(this->mDataPtr); } this->mDataPtr = newElems; mCapacity = newCapacity; } } private: PriorityQueue& operator = (const PriorityQueue); }; } } #endif