GRK-Projekt/dependencies/physx-4.1/source/physxextensions/src/ExtConstraintHelper.h
2021-12-27 11:28:19 +01:00

384 lines
13 KiB
C++

//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef NP_CONSTRAINT_HELPER_H
#define NP_CONSTRAINT_HELPER_H
#include "foundation/PxAssert.h"
#include "foundation/PxTransform.h"
#include "foundation/PxMat33.h"
#include "extensions/PxD6Joint.h"
#include "ExtJointData.h"
namespace physx
{
namespace Ext
{
namespace joint
{
PX_INLINE void computeJointFrames(PxTransform& cA2w, PxTransform& cB2w, const JointData& data, const PxTransform& bA2w, const PxTransform& bB2w)
{
PX_ASSERT(bA2w.isValid() && bB2w.isValid());
cA2w = bA2w.transform(data.c2b[0]);
cB2w = bB2w.transform(data.c2b[1]);
PX_ASSERT(cA2w.isValid() && cB2w.isValid());
}
PX_INLINE void computeDerived(const JointData& data,
const PxTransform& bA2w, const PxTransform& bB2w,
PxTransform& cA2w, PxTransform& cB2w, PxTransform& cB2cA,
bool useShortestPath=true)
{
computeJointFrames(cA2w, cB2w, data, bA2w, bB2w);
if(useShortestPath)
{
if(cA2w.q.dot(cB2w.q)<0.0f) // minimum error quat
cB2w.q = -cB2w.q;
}
cB2cA = cA2w.transformInv(cB2w);
PX_ASSERT(cB2cA.isValid());
}
PX_INLINE PxVec3 truncateLinear(const PxVec3& in, PxReal tolerance, bool& truncated)
{
const PxReal m = in.magnitudeSquared();
truncated = m>tolerance * tolerance;
return truncated ? in * PxRecipSqrt(m) * tolerance : in;
}
PX_INLINE PxQuat truncateAngular(const PxQuat& in, PxReal sinHalfTol, PxReal cosHalfTol, bool& truncated)
{
truncated = false;
if(sinHalfTol > 0.9999f) // fixes numerical tolerance issue of projecting because quat is not exactly normalized
return in;
const PxQuat q = in.w>=0.0f ? in : -in;
const PxVec3 im = q.getImaginaryPart();
const PxReal m = im.magnitudeSquared();
truncated = m>sinHalfTol*sinHalfTol;
if(!truncated)
return in;
const PxVec3 outV = im * sinHalfTol * PxRecipSqrt(m);
return PxQuat(outV.x, outV.y, outV.z, cosHalfTol);
}
PX_FORCE_INLINE void projectTransforms(PxTransform& bA2w, PxTransform& bB2w,
const PxTransform& cA2w, const PxTransform& cB2w,
const PxTransform& cB2cA, const JointData& data, bool projectToA)
{
PX_ASSERT(cB2cA.isValid());
// normalization here is unfortunate: long chains of projected constraints can result in
// accumulation of error in the quaternion which eventually leaves the quaternion
// magnitude outside the validation range. The approach here is slightly overconservative
// in that we could just normalize the quaternions which are out of range, but since we
// regard projection as an occasional edge case it shouldn't be perf-sensitive, and
// this way we maintain the invariant (also maintained by the dynamics integrator) that
// body quats are properly normalized up to FP error.
if(projectToA)
{
bB2w = cA2w.transform(cB2cA.transform(data.c2b[1].getInverse()));
bB2w.q.normalize();
}
else
{
bA2w = cB2w.transform(cB2cA.transformInv(data.c2b[0].getInverse()));
bA2w.q.normalize();
}
PX_ASSERT(bA2w.isValid());
PX_ASSERT(bB2w.isValid());
}
PX_INLINE void computeJacobianAxes(PxVec3 row[3], const PxQuat& qa, const PxQuat& qb)
{
// Compute jacobian matrix for (qa* qb) [[* means conjugate in this expr]]
// d/dt (qa* qb) = 1/2 L(qa*) R(qb) (omega_b - omega_a)
// result is L(qa*) R(qb), where L(q) and R(q) are left/right q multiply matrix
const PxReal wa = qa.w, wb = qb.w;
const PxVec3 va(qa.x,qa.y,qa.z), vb(qb.x,qb.y,qb.z);
const PxVec3 c = vb*wa + va*wb;
const PxReal d0 = wa*wb;
const PxReal d1 = va.dot(vb);
const PxReal d = d0 - d1;
row[0] = (va * vb.x + vb * va.x + PxVec3(d, c.z, -c.y)) * 0.5f;
row[1] = (va * vb.y + vb * va.y + PxVec3(-c.z, d, c.x)) * 0.5f;
row[2] = (va * vb.z + vb * va.z + PxVec3(c.y, -c.x, d)) * 0.5f;
if((d0 + d1) != 0.0f) // check if relative rotation is 180 degrees which can lead to singular matrix
return;
else
{
row[0].x += PX_EPS_F32;
row[1].y += PX_EPS_F32;
row[2].z += PX_EPS_F32;
}
}
PX_FORCE_INLINE Px1DConstraint* _linear(const PxVec3& axis, const PxVec3& ra, const PxVec3& rb, PxReal posErr, PxConstraintSolveHint::Enum hint, Px1DConstraint* c)
{
c->solveHint = PxU16(hint);
c->linear0 = axis;
c->angular0 = ra.cross(axis);
c->linear1 = axis;
c->angular1 = rb.cross(axis);
c->geometricError = posErr;
PX_ASSERT(c->linear0.isFinite());
PX_ASSERT(c->linear1.isFinite());
PX_ASSERT(c->angular0.isFinite());
PX_ASSERT(c->angular1.isFinite());
return c;
}
PX_FORCE_INLINE Px1DConstraint* _angular(const PxVec3& axis, PxReal posErr, PxConstraintSolveHint::Enum hint, Px1DConstraint* c)
{
c->solveHint = PxU16(hint);
c->linear0 = PxVec3(0.0f);
c->angular0 = axis;
c->linear1 = PxVec3(0.0f);
c->angular1 = axis;
c->geometricError = posErr;
c->flags |= Px1DConstraintFlag::eANGULAR_CONSTRAINT;
return c;
}
class ConstraintHelper
{
Px1DConstraint* mConstraints;
Px1DConstraint* mCurrent;
PxVec3 mRa, mRb;
PxVec3 mCA2w, mCB2w;
public:
ConstraintHelper(Px1DConstraint* c, const PxVec3& ra, const PxVec3& rb)
: mConstraints(c), mCurrent(c), mRa(ra), mRb(rb) {}
ConstraintHelper(Px1DConstraint* c, PxConstraintInvMassScale& invMassScale,
PxTransform& cA2w, PxTransform& cB2w, PxVec3& body0WorldOffset,
const JointData& data, const PxTransform& bA2w, const PxTransform& bB2w)
: mConstraints(c), mCurrent(c)
{
invMassScale = data.invMassScale;
computeJointFrames(cA2w, cB2w, data, bA2w, bB2w);
body0WorldOffset = cB2w.p - bA2w.p;
mRa = cB2w.p - bA2w.p;
mRb = cB2w.p - bB2w.p;
mCA2w = cA2w.p;
mCB2w = cB2w.p;
}
PX_FORCE_INLINE const PxVec3& getRa() const { return mRa; }
PX_FORCE_INLINE const PxVec3& getRb() const { return mRb; }
// hard linear & angular
PX_FORCE_INLINE void linearHard(const PxVec3& axis, PxReal posErr)
{
Px1DConstraint* c = linear(axis, posErr, PxConstraintSolveHint::eEQUALITY);
c->flags |= Px1DConstraintFlag::eOUTPUT_FORCE;
}
PX_FORCE_INLINE void angularHard(const PxVec3& axis, PxReal posErr)
{
Px1DConstraint* c = angular(axis, posErr, PxConstraintSolveHint::eEQUALITY);
c->flags |= Px1DConstraintFlag::eOUTPUT_FORCE;
}
// limited linear & angular
PX_FORCE_INLINE void linearLimit(const PxVec3& axis, PxReal ordinate, PxReal limitValue, const PxJointLimitParameters& limit)
{
const PxReal pad = limit.isSoft() ? 0.0f : limit.contactDistance;
if(ordinate + pad > limitValue)
addLimit(linear(axis, limitValue - ordinate, PxConstraintSolveHint::eNONE), limit);
}
PX_FORCE_INLINE void angularLimit(const PxVec3& axis, PxReal ordinate, PxReal limitValue, PxReal pad, const PxJointLimitParameters& limit)
{
if(limit.isSoft())
pad = 0.0f;
if(ordinate + pad > limitValue)
addLimit(angular(axis, limitValue - ordinate, PxConstraintSolveHint::eNONE), limit);
}
PX_FORCE_INLINE void angularLimit(const PxVec3& axis, PxReal error, const PxJointLimitParameters& limit)
{
addLimit(angular(axis, error, PxConstraintSolveHint::eNONE), limit);
}
PX_FORCE_INLINE void anglePair(PxReal angle, PxReal lower, PxReal upper, PxReal pad, const PxVec3& axis, const PxJointLimitParameters& limit)
{
PX_ASSERT(lower<upper);
if(limit.isSoft())
pad = 0;
if(angle < lower+pad)
angularLimit(-axis, -(lower - angle), limit);
if(angle > upper-pad)
angularLimit(axis, (upper - angle), limit);
}
// driven linear & angular
PX_FORCE_INLINE void linear(const PxVec3& axis, PxReal velTarget, PxReal error, const PxD6JointDrive& drive)
{
addDrive(linear(axis, error, PxConstraintSolveHint::eNONE), velTarget, drive);
}
PX_FORCE_INLINE void angular(const PxVec3& axis, PxReal velTarget, PxReal error, const PxD6JointDrive& drive, PxConstraintSolveHint::Enum hint = PxConstraintSolveHint::eNONE)
{
addDrive(angular(axis, error, hint), velTarget, drive);
}
PX_FORCE_INLINE PxU32 getCount() const { return PxU32(mCurrent - mConstraints); }
void prepareLockedAxes(const PxQuat& qA, const PxQuat& qB, const PxVec3& cB2cAp, PxU32 lin, PxU32 ang, PxVec3& raOut, PxVec3& rbOut)
{
Px1DConstraint* current = mCurrent;
PxVec3 errorVector(0.f);
PxVec3 ra = mRa;
PxVec3 rb = mRb;
if(lin)
{
const PxMat33 axes(qA);
if(lin&1) errorVector -= axes.column0 * cB2cAp.x;
if(lin&2) errorVector -= axes.column1 * cB2cAp.y;
if(lin&4) errorVector -= axes.column2 * cB2cAp.z;
ra += errorVector;
if(lin&1) _linear(axes.column0, ra, rb, -cB2cAp.x, PxConstraintSolveHint::eEQUALITY, current++);
if(lin&2) _linear(axes.column1, ra, rb, -cB2cAp.y, PxConstraintSolveHint::eEQUALITY, current++);
if(lin&4) _linear(axes.column2, ra, rb, -cB2cAp.z, PxConstraintSolveHint::eEQUALITY, current++);
}
if (ang)
{
const PxQuat qB2qA = qA.getConjugate() * qB;
PxVec3 row[3];
computeJacobianAxes(row, qA, qB);
if (ang & 1) _angular(row[0], -qB2qA.x, PxConstraintSolveHint::eEQUALITY, current++);
if (ang & 2) _angular(row[1], -qB2qA.y, PxConstraintSolveHint::eEQUALITY, current++);
if (ang & 4) _angular(row[2], -qB2qA.z, PxConstraintSolveHint::eEQUALITY, current++);
}
raOut = ra;
rbOut = rb;
for(Px1DConstraint* front = mCurrent; front < current; front++)
front->flags |= Px1DConstraintFlag::eOUTPUT_FORCE;
mCurrent = current;
}
PX_FORCE_INLINE Px1DConstraint* getConstraintRow()
{
return mCurrent++;
}
private:
PX_FORCE_INLINE Px1DConstraint* linear(const PxVec3& axis, PxReal posErr, PxConstraintSolveHint::Enum hint)
{
return _linear(axis, mRa, mRb, posErr, hint, mCurrent++);
}
PX_FORCE_INLINE Px1DConstraint* angular(const PxVec3& axis, PxReal posErr, PxConstraintSolveHint::Enum hint)
{
return _angular(axis, posErr, hint, mCurrent++);
}
void addLimit(Px1DConstraint* c, const PxJointLimitParameters& limit)
{
PxU16 flags = PxU16(c->flags | Px1DConstraintFlag::eOUTPUT_FORCE);
if(limit.isSoft())
{
flags |= Px1DConstraintFlag::eSPRING;
c->mods.spring.stiffness = limit.stiffness;
c->mods.spring.damping = limit.damping;
}
else
{
c->solveHint = PxConstraintSolveHint::eINEQUALITY;
c->mods.bounce.restitution = limit.restitution;
c->mods.bounce.velocityThreshold = limit.bounceThreshold;
if(c->geometricError>0.0f)
flags |= Px1DConstraintFlag::eKEEPBIAS;
if(limit.restitution>0.0f)
flags |= Px1DConstraintFlag::eRESTITUTION;
}
c->flags = flags;
c->minImpulse = 0.0f;
}
void addDrive(Px1DConstraint* c, PxReal velTarget, const PxD6JointDrive& drive)
{
c->velocityTarget = velTarget;
PxU16 flags = PxU16(c->flags | Px1DConstraintFlag::eSPRING | Px1DConstraintFlag::eHAS_DRIVE_LIMIT);
if(drive.flags & PxD6JointDriveFlag::eACCELERATION)
flags |= Px1DConstraintFlag::eACCELERATION_SPRING;
c->flags = flags;
c->mods.spring.stiffness = drive.stiffness;
c->mods.spring.damping = drive.damping;
c->minImpulse = -drive.forceLimit;
c->maxImpulse = drive.forceLimit;
PX_ASSERT(c->linear0.isFinite());
PX_ASSERT(c->angular0.isFinite());
}
};
}
} // namespace
}
#endif