GRK-Projekt/dependencies/physx-4.1/source/common/src/CmBitMap.h
2021-12-27 11:28:19 +01:00

504 lines
14 KiB
C++

//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PX_PHYSICS_COMMON_BITMAP
#define PX_PHYSICS_COMMON_BITMAP
#include "foundation/PxAssert.h"
#include "foundation/PxMath.h"
#include "foundation/PxMemory.h"
#include "common/PxSerialFramework.h"
#include "PsAllocator.h"
#include "PsUserAllocated.h"
#include "PsIntrinsics.h"
#include "PsMathUtils.h"
#include "PsBitUtils.h"
#include "CmPhysXCommon.h"
namespace physx
{
namespace Cm
{
/*!
Hold a bitmap with operations to set,reset or test given bit.
We inhibit copy to prevent unintentional copies. If a copy is desired copy() should be used or
alternatively a copy constructor implemented.
*/
template<class Allocator>
class BitMapBase : public Ps::UserAllocated
{
//= ATTENTION! =====================================================================================
// Changing the data layout of this class breaks the binary serialization format. See comments for
// PX_BINARY_SERIAL_VERSION. If a modification is required, please adjust the getBinaryMetaData
// function. If the modification is made on a custom branch, please change PX_BINARY_SERIAL_VERSION
// accordingly.
//==================================================================================================
PX_NOCOPY(BitMapBase)
public:
// PX_SERIALIZATION
/* todo: explicit */ BitMapBase(const PxEMPTY)
{
if(mMap)
mWordCount |= PX_SIGN_BITMASK;
}
void exportExtraData(PxSerializationContext& stream, void*)
{
if(mMap && getWordCount())
{
stream.alignData(PX_SERIAL_ALIGN);
stream.writeData(mMap, getWordCount()*sizeof(PxU32));
}
}
void importExtraData(PxDeserializationContext& context)
{
if(mMap && getWordCount())
mMap = context.readExtraData<PxU32, PX_SERIAL_ALIGN>(getWordCount());
}
//~PX_SERIALIZATION
//sschirm: function for placement new. Almost the same as importExtraData above, but lets you set word count and map after default construction
void importData(PxU32 worldCount, PxU32* words)
{
PX_ASSERT(mWordCount == 0 && !mMap);
mMap = words;
mWordCount = worldCount | PX_SIGN_BITMASK;
}
PX_INLINE BitMapBase(Allocator& allocator) : mMap(0), mWordCount(0), mAllocator(allocator) {}
PX_INLINE BitMapBase() : mMap(0), mWordCount(0) {}
PX_INLINE ~BitMapBase()
{
if(mMap && !isInUserMemory())
mAllocator.deallocate(mMap);
mMap = NULL;
}
PX_INLINE Allocator& getAllocator() { return mAllocator; }
PX_INLINE void growAndSet(PxU32 index)
{
extend(index+1);
mMap[index>>5] |= 1<<(index&31);
}
PX_INLINE void growAndReset(PxU32 index)
{
extend(index+1);
mMap[index>>5] &= ~(1<<(index&31));
}
PX_INLINE Ps::IntBool boundedTest(PxU32 index) const
{
return Ps::IntBool(index>>5 >= getWordCount() ? Ps::IntFalse : (mMap[index>>5]&(1<<(index&31))));
}
// Special optimized versions, when you _know_ your index is in range
PX_INLINE void set(PxU32 index)
{
PX_ASSERT(index<getWordCount()*32);
mMap[index>>5] |= 1<<(index&31);
}
PX_INLINE void reset(PxU32 index)
{
PX_ASSERT(index<getWordCount()*32);
mMap[index>>5] &= ~(1<<(index&31));
}
PX_INLINE Ps::IntBool test(PxU32 index) const
{
PX_ASSERT(index<getWordCount()*32);
return Ps::IntBool(mMap[index>>5]&(1<<(index&31)));
}
// nibble == 4 bits
PX_INLINE PxU32 getNibbleFast(PxU32 nibIndex) const
{
PxU32 bitIndex = nibIndex << 2;
PX_ASSERT(bitIndex < getWordCount()*32);
return (mMap[bitIndex >> 5] >> (bitIndex & 31)) & 0xf;
}
PX_INLINE void andNibbleFast(PxU32 nibIndex, PxU32 mask)
{
//TODO: there has to be a faster way...
PxU32 bitIndex = nibIndex << 2;
PxU32 shift = (bitIndex & 31);
PxU32 nibMask = 0xf << shift;
PX_ASSERT(bitIndex < getWordCount()*32);
mMap[bitIndex >> 5] &= ((mask << shift) | ~nibMask);
}
PX_INLINE void orNibbleFast(PxU32 nibIndex, PxU32 mask)
{
PX_ASSERT(!(mask & ~0xf)); //check extra bits are not set
PxU32 bitIndex = nibIndex << 2;
PxU32 shift = bitIndex & 31;
PX_ASSERT(bitIndex < getWordCount()*32);
mMap[bitIndex >> 5] |= (mask << shift);
}
void clear()
{
PxMemSet(mMap, 0, getWordCount()*sizeof(PxU32));
}
void resizeAndClear(PxU32 newBitCount)
{
extendUninitialized(newBitCount);
PxMemSet(mMap, 0, getWordCount()*sizeof(PxU32));
}
void setEmpty()
{
mMap=NULL;
mWordCount=0;
}
void setWords(PxU32* map, PxU32 wordCount)
{
mMap=map;
mWordCount=wordCount;
mWordCount |= PX_SIGN_BITMASK;
}
// !!! only sets /last/ bit to value
void resize(PxU32 newBitCount, bool value = false)
{
PX_ASSERT(!value); // only new class supports this
PX_UNUSED(value);
extend(newBitCount);
}
PxU32 size() const { return getWordCount()*32; }
void copy(const BitMapBase& a)
{
extendUninitialized(a.getWordCount()<<5);
PxMemCopy(mMap, a.mMap, a.getWordCount() * sizeof(PxU32));
if(getWordCount() > a.getWordCount())
PxMemSet(mMap + a.getWordCount(), 0, (getWordCount() - a.getWordCount()) * sizeof(PxU32));
}
PX_INLINE PxU32 count() const
{
// NOTE: we can probably do this faster, since the last steps in PxcBitCount32 can be defered to
// the end of the seq. + 64/128bits at a time + native bit counting instructions(360 is fast non micro code).
PxU32 count = 0;
PxU32 wordCount = getWordCount();
for(PxU32 i=0; i<wordCount; i++)
count += Ps::bitCount(mMap[i]);
return count;
}
PX_INLINE PxU32 count(PxU32 start, PxU32 length) const
{
PxU32 end = PxMin(getWordCount()<<5,start+length);
PxU32 count = 0;
for(PxU32 i=start; i<end; i++)
count+= (test(i)!=0);
return count;
}
//! returns 0 if no bits set (!!!)
PxU32 findLast() const
{
for(PxU32 i = getWordCount(); i-- > 0;)
{
if(mMap[i])
return (i<<5)+Ps::highestSetBit(mMap[i]);
}
return PxU32(0);
}
// the obvious combiners and some used in the SDK
struct OR { PX_INLINE PxU32 operator()(PxU32 a, PxU32 b) { return a|b; } };
struct AND { PX_INLINE PxU32 operator()(PxU32 a, PxU32 b) { return a&b; } };
struct XOR { PX_INLINE PxU32 operator()(PxU32 a, PxU32 b) { return a^b; } };
// we use auxiliary functions here so as not to generate combiners for every combination
// of allocators
template<class Combiner, class _>
PX_INLINE void combineInPlace(const BitMapBase<_>& b)
{
combine1<Combiner>(b.mMap,b.getWordCount());
}
template<class Combiner, class _1, class _2>
PX_INLINE void combine(const BitMapBase<_1>& a, const BitMapBase<_2>& b)
{
combine2<Combiner>(a.mMap,a.getWordCount(),b.mMap,b.getWordCount());
}
PX_FORCE_INLINE const PxU32* getWords() const { return mMap; }
PX_FORCE_INLINE PxU32* getWords() { return mMap; }
// PX_SERIALIZATION
PX_FORCE_INLINE PxU32 getWordCount() const { return mWordCount & ~PX_SIGN_BITMASK; }
// We need one bit to mark arrays that have been deserialized from a user-provided memory block.
PX_FORCE_INLINE PxU32 isInUserMemory() const { return mWordCount & PX_SIGN_BITMASK; }
//~PX_SERIALIZATION
/*!
Iterate over indices in a bitmap
This iterator is good because it finds the set bit without looping over the cached bits upto 31 times.
However it does require a variable shift.
*/
class Iterator
{
public:
static const PxU32 DONE = 0xffffffff;
PX_INLINE Iterator(const BitMapBase &map) : mBitMap(map)
{
reset();
}
PX_INLINE Iterator& operator=(const Iterator& other)
{
PX_ASSERT(&mBitMap == &other.mBitMap);
mBlock = other.mBlock;
mIndex = other.mIndex;
return *this;
}
PX_INLINE PxU32 getNext()
{
if(mBlock)
{
PxU32 bitIndex = mIndex<<5 | Ps::lowestSetBit(mBlock);
mBlock &= mBlock-1;
PxU32 wordCount = mBitMap.getWordCount();
while(!mBlock && ++mIndex < wordCount)
mBlock = mBitMap.mMap[mIndex];
return bitIndex;
}
return DONE;
}
PX_INLINE void reset()
{
mIndex = mBlock = 0;
PxU32 wordCount = mBitMap.getWordCount();
while(mIndex < wordCount && ((mBlock = mBitMap.mMap[mIndex]) == 0))
++mIndex;
}
private:
PxU32 mBlock, mIndex;
const BitMapBase& mBitMap;
};
// DS: faster but less general: hasBits() must be true or getNext() is illegal so it is the calling code's responsibility to ensure that getNext() is not called illegally.
class LoopIterator
{
PX_NOCOPY(LoopIterator)
public:
PX_FORCE_INLINE LoopIterator(const BitMapBase &map) : mMap(map.getWords()), mBlock(0), mIndex(-1), mWordCount(PxI32(map.getWordCount())) {}
PX_FORCE_INLINE bool hasBits()
{
PX_ASSERT(mIndex<mWordCount);
while (mBlock == 0)
{
if (++mIndex == mWordCount)
return false;
mBlock = mMap[mIndex];
}
return true;
}
PX_FORCE_INLINE PxU32 getNext()
{
PX_ASSERT(mIndex<mWordCount && mBlock != 0);
PxU32 result = PxU32(mIndex) << 5 | Ps::lowestSetBit(mBlock); // will assert if mask is zero
mBlock &= (mBlock - 1);
return result;
}
private:
const PxU32*const mMap;
PxU32 mBlock; // the word we're currently scanning
PxI32 mIndex; // the index of the word we're currently looking at
PxI32 mWordCount;
};
//Class to iterate over the bitmap from a particular start location rather than the beginning of the list
class CircularIterator
{
public:
static const PxU32 DONE = 0xffffffff;
PX_INLINE CircularIterator(const BitMapBase &map, PxU32 index) : mBitMap(map)
{
mIndex = mBlock = mStartIndex = 0;
const PxU32 wordCount = mBitMap.getWordCount();
if ((index << 5) < wordCount)
{
mIndex = index << 5;
mStartIndex = mIndex;
}
if (mIndex < wordCount)
{
mBlock = mBitMap.mMap[mIndex];
if (mBlock == 0)
{
mIndex = (mIndex + 1) % wordCount;
while (mIndex != mStartIndex && (mBlock = mBitMap.mMap[mIndex]) == 0)
mIndex = (mIndex + 1) % wordCount;
}
}
}
PX_INLINE PxU32 getNext()
{
if (mBlock)
{
PxU32 bitIndex = mIndex << 5 | Ps::lowestSetBit(mBlock);
mBlock &= mBlock - 1;
PxU32 wordCount = mBitMap.getWordCount();
while (!mBlock && (mIndex = ((mIndex+1)%wordCount)) != mStartIndex)
mBlock = mBitMap.mMap[mIndex];
return bitIndex;
}
return DONE;
}
private:
PxU32 mBlock, mIndex;
PxU32 mStartIndex;
const BitMapBase& mBitMap;
PX_NOCOPY(CircularIterator)
};
protected:
PxU32* mMap; //one bit per index
PxU32 mWordCount;
Allocator mAllocator;
PxU8 mPadding[3]; // PT: "mAllocator" is empty but consumes 1 byte
void extend(PxU32 size)
{
PxU32 newWordCount = (size+31)>>5;
if(newWordCount > getWordCount())
{
PxU32* newMap = reinterpret_cast<PxU32*>(mAllocator.allocate(newWordCount*sizeof(PxU32), __FILE__, __LINE__));
if(mMap)
{
PxMemCopy(newMap, mMap, getWordCount()*sizeof(PxU32));
if (!isInUserMemory())
mAllocator.deallocate(mMap);
}
PxMemSet(newMap+getWordCount(), 0, (newWordCount-getWordCount())*sizeof(PxU32));
mMap = newMap;
// also resets the isInUserMemory bit
mWordCount = newWordCount;
}
}
void extendUninitialized(PxU32 size)
{
PxU32 newWordCount = (size+31)>>5;
if(newWordCount > getWordCount())
{
if(mMap && !isInUserMemory())
mAllocator.deallocate(mMap);
// also resets the isInUserMemory bit
mWordCount = newWordCount;
mMap = reinterpret_cast<PxU32*>(mAllocator.allocate(mWordCount*sizeof(PxU32), __FILE__, __LINE__));
}
}
template<class Combiner>
void combine1(const PxU32* words, PxU32 length)
{
extend(length<<5);
PxU32 combineLength = PxMin(getWordCount(), length);
for(PxU32 i=0;i<combineLength;i++)
mMap[i] = Combiner()(mMap[i], words[i]);
}
template<class Combiner>
void combine2(const PxU32* words1, PxU32 length1,
const PxU32* words2, PxU32 length2)
{
extendUninitialized(PxMax(length1,length2)<<5);
PxU32 commonSize = PxMin(length1,length2);
for(PxU32 i=0;i<commonSize;i++)
mMap[i] = Combiner()(words1[i],words2[i]);
for(PxU32 i=commonSize;i<length1;i++)
mMap[i] = Combiner()(words1[i],0);
for(PxU32 i=commonSize;i<length2;i++)
mMap[i] = Combiner()(0,words2[i]);
}
friend class Iterator;
};
typedef BitMapBase<Ps::NonTrackingAllocator> BitMap;
typedef BitMapBase<Ps::VirtualAllocator> BitMapPinned;
} // namespace Cm
}
#endif