GRK-Projekt/dependencies/physx-4.1/source/physxvehicle/src/PxVehicleLinearMath.h
2021-12-27 11:28:19 +01:00

434 lines
9.4 KiB
C++

//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PX_VEHICLE_LINEAR_MATH_H
#define PX_VEHICLE_LINEAR_MATH_H
/** \addtogroup vehicle
@{
*/
#include "vehicle/PxVehicleSDK.h"
#if !PX_DOXYGEN
namespace physx
{
#endif
#define MAX_VECTORN_SIZE (PX_MAX_NB_WHEELS+3)
class VectorN
{
public:
VectorN(const PxU32 size)
: mSize(size)
{
PX_ASSERT(mSize <= MAX_VECTORN_SIZE);
}
~VectorN()
{
}
VectorN(const VectorN& src)
{
for(PxU32 i = 0; i < src.mSize; i++)
{
mValues[i] = src.mValues[i];
}
mSize = src.mSize;
}
PX_FORCE_INLINE VectorN& operator=(const VectorN& src)
{
for(PxU32 i = 0; i < src.mSize; i++)
{
mValues[i] = src.mValues[i];
}
mSize = src.mSize;
return *this;
}
PX_FORCE_INLINE PxF32& operator[] (const PxU32 i)
{
PX_ASSERT(i < mSize);
return (mValues[i]);
}
PX_FORCE_INLINE const PxF32& operator[] (const PxU32 i) const
{
PX_ASSERT(i < mSize);
return (mValues[i]);
}
PX_FORCE_INLINE PxU32 getSize() const {return mSize;}
private:
PxF32 mValues[MAX_VECTORN_SIZE];
PxU32 mSize;
};
class MatrixNN
{
public:
MatrixNN()
: mSize(0)
{
}
MatrixNN(const PxU32 size)
: mSize(size)
{
PX_ASSERT(mSize <= MAX_VECTORN_SIZE);
}
MatrixNN(const MatrixNN& src)
{
for(PxU32 i = 0; i < src.mSize; i++)
{
for(PxU32 j = 0; j < src.mSize; j++)
{
mValues[i][j] = src.mValues[i][j];
}
}
mSize=src.mSize;
}
~MatrixNN()
{
}
PX_FORCE_INLINE MatrixNN& operator=(const MatrixNN& src)
{
for(PxU32 i = 0;i < src.mSize; i++)
{
for(PxU32 j = 0;j < src.mSize; j++)
{
mValues[i][j] = src.mValues[i][j];
}
}
mSize = src.mSize;
return *this;
}
PX_FORCE_INLINE PxF32 get(const PxU32 i, const PxU32 j) const
{
PX_ASSERT(i < mSize);
PX_ASSERT(j < mSize);
return mValues[i][j];
}
PX_FORCE_INLINE void set(const PxU32 i, const PxU32 j, const PxF32 val)
{
PX_ASSERT(i < mSize);
PX_ASSERT(j < mSize);
mValues[i][j] = val;
}
PX_FORCE_INLINE PxU32 getSize() const {return mSize;}
PX_FORCE_INLINE void setSize(const PxU32 size)
{
PX_ASSERT(size <= MAX_VECTORN_SIZE);
mSize = size;
}
public:
PxF32 mValues[MAX_VECTORN_SIZE][MAX_VECTORN_SIZE];
PxU32 mSize;
};
/*
LUPQ decomposition
Based upon "Outer Product LU with Complete Pivoting," from Matrix Computations (4th Edition), Golub and Van Loan
Solve A*x = b using:
MatrixNNLUSolver solver;
solver.decomposeLU(A);
solver.solve(b, x);
*/
class MatrixNNLUSolver
{
private:
MatrixNN mLU;
PxU32 mP[MAX_VECTORN_SIZE-1]; // Row permutation
PxU32 mQ[MAX_VECTORN_SIZE-1]; // Column permutation
PxF32 mdetM;
public:
MatrixNNLUSolver(){}
~MatrixNNLUSolver(){}
PxF32 getDet() const {return mdetM;}
void decomposeLU(const MatrixNN& A)
{
const PxU32 D = A.mSize;
mLU = A;
mdetM = 1.0f;
for (PxU32 k = 0; k < D-1; ++k)
{
PxU32 pivot_row = k;
PxU32 pivot_col = k;
float abs_pivot_elem = 0.0f;
for (PxU32 c = k; c < D; ++c)
{
for (PxU32 r = k; r < D; ++r)
{
const PxF32 abs_elem = PxAbs(mLU.get(r,c));
if (abs_elem > abs_pivot_elem)
{
abs_pivot_elem = abs_elem;
pivot_row = r;
pivot_col = c;
}
}
}
mP[k] = pivot_row;
if (pivot_row != k)
{
mdetM = -mdetM;
for (PxU32 c = 0; c < D; ++c)
{
//swap(m_LU(k,c), m_LU(pivot_row,c));
const PxF32 pivotrowc = mLU.get(pivot_row, c);
mLU.set(pivot_row, c, mLU.get(k, c));
mLU.set(k, c, pivotrowc);
}
}
mQ[k] = pivot_col;
if (pivot_col != k)
{
mdetM = -mdetM;
for (PxU32 r = 0; r < D; ++r)
{
//swap(m_LU(r,k), m_LU(r,pivot_col));
const PxF32 rpivotcol = mLU.get(r, pivot_col);
mLU.set(r,pivot_col, mLU.get(r,k));
mLU.set(r, k, rpivotcol);
}
}
mdetM *= mLU.get(k,k);
if (mLU.get(k,k) != 0.0f)
{
for (PxU32 r = k+1; r < D; ++r)
{
mLU.set(r, k, mLU.get(r,k) / mLU.get(k,k));
for (PxU32 c = k+1; c < D; ++c)
{
//m_LU(r,c) -= m_LU(r,k)*m_LU(k,c);
const PxF32 rc = mLU.get(r, c);
const PxF32 rk = mLU.get(r, k);
const PxF32 kc = mLU.get(k, c);
mLU.set(r, c, rc - rk*kc);
}
}
}
}
mdetM *= mLU.get(D-1,D-1);
}
//Given a matrix A and a vector b find x that satisfies Ax = b, where the matrix A is the matrix that was passed to decomposeLU.
//Returns true if the lu decomposition indicates that the matrix has an inverse and x was successfully computed.
//Returns false if the lu decomposition resulted in zero determinant ie the matrix has no inverse and no solution exists for x.
//Returns false if the size of either b or x doesn't match the size of the matrix passed to decomposeLU.
//If false is returned then each relevant element of x is set to zero.
bool solve(const VectorN& b, VectorN& x) const
{
const PxU32 D = x.getSize();
if((b.getSize() != x.getSize()) || (b.getSize() != mLU.getSize()) || (0.0f == mdetM))
{
for(PxU32 i = 0; i < D; i++)
{
x[i] = 0.0f;
}
return false;
}
x = b;
// Perform row permutation to get Pb
for(PxU32 i = 0; i < D-1; ++i)
{
//swap(x(i), x(m_P[i]));
const PxF32 xp = x[mP[i]];
x[mP[i]] = x[i];
x[i] = xp;
}
// Forward substitute to get (L^-1)Pb
for (PxU32 r = 1; r < D; ++r)
{
for (PxU32 i = 0; i < r; ++i)
{
x[r] -= mLU.get(r,i)*x[i];
}
}
// Back substitute to get (U^-1)(L^-1)Pb
for (PxU32 r = D; r-- > 0;)
{
for (PxU32 i = r+1; i < D; ++i)
{
x[r] -= mLU.get(r,i)*x[i];
}
x[r] /= mLU.get(r,r);
}
// Perform column permutation to get the solution (Q^T)(U^-1)(L^-1)Pb
for (PxU32 i = D-1; i-- > 0;)
{
//swap(x(i), x(m_Q[i]));
const PxF32 xq = x[mQ[i]];
x[mQ[i]] = x[i];
x[i] = xq;
}
return true;
}
};
class MatrixNGaussSeidelSolver
{
public:
void solve(const PxU32 maxIterations, const PxF32 tolerance, const MatrixNN& A, const VectorN& b, VectorN& result) const
{
const PxU32 N = A.getSize();
VectorN DInv(N);
PxF32 bLength2 = 0.0f;
for(PxU32 i = 0; i < N; i++)
{
DInv[i] = 1.0f/A.get(i,i);
bLength2 += (b[i] * b[i]);
}
PxU32 iteration = 0;
PxF32 error = PX_MAX_F32;
while(iteration < maxIterations && tolerance < error)
{
for(PxU32 i = 0; i < N; i++)
{
PxF32 l = 0.0f;
for(PxU32 j = 0; j < i; j++)
{
l += A.get(i,j) * result[j];
}
PxF32 u = 0.0f;
for(PxU32 j = i + 1; j < N; j++)
{
u += A.get(i,j) * result[j];
}
result[i] = DInv[i] * (b[i] - l - u);
}
//Compute the error.
PxF32 rLength2 = 0;
for(PxU32 i = 0; i < N; i++)
{
PxF32 e = -b[i];
for(PxU32 j = 0; j < N; j++)
{
e += A.get(i,j) * result[j];
}
rLength2 += e * e;
}
error = (rLength2 / (bLength2 + 1e-10f));
iteration++;
}
}
};
class Matrix33Solver
{
public:
bool solve(const MatrixNN& _A_, const VectorN& _b_, VectorN& result) const
{
const PxF32 a = _A_.get(0,0);
const PxF32 b = _A_.get(0,1);
const PxF32 c = _A_.get(0,2);
const PxF32 d = _A_.get(1,0);
const PxF32 e = _A_.get(1,1);
const PxF32 f = _A_.get(1,2);
const PxF32 g = _A_.get(2,0);
const PxF32 h = _A_.get(2,1);
const PxF32 k = _A_.get(2,2);
const PxF32 detA = a*(e*k - f*h) - b*(k*d - f*g) + c*(d*h - e*g);
if(0.0f == detA)
{
return false;
}
const PxF32 detAInv = 1.0f/detA;
const PxF32 A = (e*k - f*h);
const PxF32 D = -(b*k - c*h);
const PxF32 G = (b*f - c*e);
const PxF32 B = -(d*k - f*g);
const PxF32 E = (a*k - c*g);
const PxF32 H = -(a*f - c*d);
const PxF32 C = (d*h - e*g);
const PxF32 F = -(a*h - b*g);
const PxF32 K = (a*e - b*d);
result[0] = detAInv*(A*_b_[0] + D*_b_[1] + G*_b_[2]);
result[1] = detAInv*(B*_b_[0] + E*_b_[1] + H*_b_[2]);
result[2] = detAInv*(C*_b_[0] + F*_b_[1] + K*_b_[2]);
return true;
}
};
#if !PX_DOXYGEN
} // namespace physx
#endif
#endif //PX_VEHICLE_LINEAR_MATH_H