Losowanie trzech liczb i tworzenie z nich liczby trzycyfrowej
This commit is contained in:
parent
627a6b5ab8
commit
7551296681
3
main.py
3
main.py
@ -125,6 +125,7 @@ def main():
|
||||
if krata_magazynu.agent.cel is None:
|
||||
nadaj_cel_agentowi(krata_magazynu.agent)
|
||||
krata_magazynu.agent.idzDoCelu()
|
||||
recognition()
|
||||
|
||||
if flaga1 == 1:
|
||||
osoba.krata.krata[osoba.wiersz][osoba.kolumna] = ZawartoscPola.PUSTE
|
||||
@ -146,7 +147,7 @@ def main():
|
||||
pygame.time.wait(1500)
|
||||
flaga1 = 0
|
||||
t = threading.Timer(5.0, zdarzenie_osoba).start()
|
||||
recognition()
|
||||
|
||||
|
||||
try:
|
||||
main()
|
||||
|
@ -5,6 +5,7 @@ import matplotlib.pyplot as plt
|
||||
import tensorflow as tf
|
||||
import random
|
||||
|
||||
|
||||
mnist = tf.keras.datasets.mnist
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
|
||||
@ -12,32 +13,42 @@ x_train = tf.keras.utils.normalize(x_train, axis=1)
|
||||
x_test = tf.keras.utils.normalize(x_test, axis=1)
|
||||
|
||||
model = tf.keras.models.Sequential()
|
||||
model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
|
||||
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
|
||||
model.add(tf.keras.layers.Dense(128, activation='relu'))
|
||||
model.add(tf.keras.layers.Dense(128, activation='relu'))
|
||||
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
||||
|
||||
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
||||
model.compile(optimizer ='adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy'])
|
||||
|
||||
model.fit(x_train, y_train, epochs=3)
|
||||
model.fit(x_train, y_train, epochs = 3)
|
||||
model.save('handwritten.model')
|
||||
|
||||
model = tf.keras.models.load_model('handwritten.model')
|
||||
|
||||
numery_paczek=[]
|
||||
def recognition():
|
||||
image_number = random.randint(1, 9)
|
||||
digits=[]
|
||||
try:
|
||||
img = cv2.imread(f"digits/digit{image_number}.png")[:,:,0]
|
||||
img = np.invert(np.array([img]))
|
||||
prediction = model.predict(img)
|
||||
print(f"This digit is probably a {np.argmax(prediction)}")
|
||||
plt.imshow(img[0], cmap = plt.cm.binary)
|
||||
plt.show()
|
||||
for i in range(0,3):
|
||||
image_number = random.randint(1, 19)
|
||||
img = cv2.imread(f"digits/digit{image_number}.png")[:,:,0]
|
||||
img = np.invert(np.array([img]))
|
||||
prediction = model.predict(img)
|
||||
print(f"This digit is probably a {np.argmax(prediction)}")
|
||||
digits.append(np.argmax(prediction))
|
||||
plt.imshow(img[0], cmap = plt.cm.binary)
|
||||
plt.show()
|
||||
except:
|
||||
print("Error!")
|
||||
|
||||
liczba = int(str(digits[0]) + str(digits[1])+str(digits[2]))
|
||||
if liczba in numery_paczek or liczba<100:
|
||||
recognition()
|
||||
else:
|
||||
numery_paczek.append(liczba)
|
||||
print(liczba)
|
||||
loss, accuracy = model.evaluate(x_test, y_test)
|
||||
|
||||
print(loss)
|
||||
print(accuracy)
|
||||
print(numery_paczek)
|
||||
return liczba
|
||||
recognition()
|
Loading…
Reference in New Issue
Block a user